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Abstract

A fundamental problem in robust learning is
asymmetry: a learner needs to correctly classify
every one of exponentially-many perturbations
that an adversary might make to a test-time natu-
ral example. In contrast, the attacker only needs
to find one successful perturbation. Xiang et al.
(2022) proposed an algorithm that in the context
of patch attacks for image classification, reduces
the effective number of perturbations from an ex-
ponential to a polynomial number of perturba-
tions and learns using an ERM oracle. However,
to achieve its guarantee, their algorithm requires
the natural examples to be robustly realizable.
This prompts the natural question; can we extend
their approach to the non-robustly-realizable case
where there is no classifier with zero robust error?

Our first contribution is to answer this question
affirmatively by reducing this problem to a setting
in which an algorithm proposed by Feige et al.
(2015) can be applied, and in the process extend
their guarantees. Next, we extend our results to a
multi-group setting and introduce a novel agnostic
multi-robust learning problem where the goal is
to learn a predictor that achieves low robust loss
on a (potentially) rich collection of subgroups.

1 INTRODUCTION

Robustness to adversarial examples is considered a major
contemporary challenge in machine learning. Adversar-
ial examples are carefully crafted perturbations or manip-
ulations of natural examples that cause machine learning
predictors to miss-classify at test-time (Goodfellow et al.,
2014). One particularly challenging aspect of this problem
is the asymmetry between the learner and the adversary.
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Specifically, a learner needs to produce a predictor that is
correct on a randomly drawn natural example and robust to
potentially exponentially many possible perturbations of it;
while, the adversary needs to find just a single perturbation
that fools the learner. In fact, because of this, adversarially
robust learning has proven to require more sophisticated
learning algorithms that go beyond standard Empirical Risk
Minimization (ERM) in non-robust learning (Montasser
et al., 2019).

In patch attacks on images, for instance, an adversary can
select one of an exponential number of designs for a patch to
be placed in the image in order to cause a classification error.
To address this exponential asymmetry between the learner
and the adversary, recently Xiang et al. (2022) introduced a
clever algorithmic scheme, known as Patch-Cleanser, that
provably reduces the exponential number of ways that an ad-
versary can attack to a polynomial number of ways through
the idea of masking images.

Specifically, Patch-Cleanser’s double-masking approach is
based on zero-ing out two different contiguous blocks of
an input image, hopefully to remove the adversarial patch.
For each one-masked image, if for all possible locations
of the second mask, the prediction model outputs the same
classification, it means that the first mask removed the adver-
sarial patch, and the agreed-upon prediction is correct. Any
disagreements in these predictions imply that the mask was
not covered by the first patch. Crucially, the Patch-Cleanser
algorithm requires a two-mask correctness guarantee from
an underlying predictor F that is defined as follows: for a
given input image x and label y, if for any pair of masks
applied to x, predictor F outputs the correct prediction y,
then F has a two-correctness guarantee on (x, y) (see Defi-
nition 2 in Xiang et al., 2022). In order to train a predictor
with the two-mask correctness guarantee, Xiang et al. (2022)
augment the training dataset with pairs of masks at random
locations of training images, and perform empirical risk
minimization (ERM) on the augmented dataset.

Our Contributions When no predictor is perfectly correct
on all perturbations (e.g., all two-mask operations), which
we refer to as the the non-realizable or agnostic setting,
we exhibit an example where plain ERM on the augmented
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dataset fails (See Example 1). At a high-level, the main issue
is that plain ERM on the augmented data-set treats all mis-
takes equally and so this could lead to learning a predictor
with very high robust loss, i.e. on many training examples.
Our first contribution is to investigate whether the reduction
proposed by Xiang et al. (2022) can be extended to the non-
realizable setting. We answer this question affirmatively
in Section 3, by building upon a prior work by Feige et al.
(2015).

Next, in Section 4, we consider a multi-group setting and
investigate the question of agnostic multi-robust learning
using an ERM oracle. This question is inspired by the litera-
ture on multi-calibration and multi-group learning (Hébert-
Johnson et al., 2017; Kim et al., 2019; Rothblum and Yona,
2021; Tosh and Hsu, 2021; Globus-Harris et al., 2022). Our
objective is that given a hypothesis class H and a (poten-
tially) rich collection of subgroups G, learn a predictor h
such that for each group g ∈ G, h has low robust loss on
g ∈ G. However, we highlight that the prior work on multi-
group learning does not extend to the setting of robust loss
since they do not consider adversarial perturbations of nat-
ural examples. To our knowledge, our work is the first to
consider the notion of multi-group learning for robust loss.
That being said we emphasize that there is a trade-off here;
our guarantees are for the more challenging objective of
robust loss, but they are weaker than the ones given for PAC
learning in the prior work. A detailed comparison is given
in Section 1.1.

Our motivation for studying multi-robustness is two-fold.
First, to prohibit the adversary from targeting a specific
demographic group for adverse treatment. Additionally, it
can increase the overall performance of the model by forc-
ing the model to be robust on vulnerable examples. For
instance, imagine a self-driving car system with a vision
system recording a drive and we consider adversarial exam-
ples attacking individual frames of the video. Ideally, the
system would have robust performance over every frame.
However, average robust error of 1% could be very problem-
atic if those errors instead of occurring uniformly then those
errors concentrated on a specific adjacent set of frames. In
this example, imagine that the protected groups are nearby
frames so that we maintain smooth and reliable performance
locally and globally.

To achieve multi-robustness, using plain ERM can fail by
concentrating the overall robust loss on a few groups, in-
stead of spreading the loss across many groups. However,
building on our algorithm in Section 3 we propose Algo-
rithm 2 that runs an additional layer of boosting with respect
to groups to achieve multi-robustness guarantees across
groups. We propose two types of multi-robustness guaran-
tees, the first one is a randomized approach that guarantees
the expected robust loss on each group is low (Theorem 12).
Next, we add a de-randomization step to derive determin-
istic guarantees for the robust loss incurred on each group

(Theorem 13).

1.1 Related Work

Patch Attacks Patch attacks (Brown et al., 2017; Karmon
et al., 2018; Yang et al., 2020) are an important threat model
in the general field of test-time evasion attacks (Goodfellow
et al., 2014). Patch attacks realize adversarial test time
evasion attacks to computer vision systems in the wild by
printing and attaching a patch to an object. To mitigate
this threat, there has been an active line of research for
providing certifiable robustness guarantees against them
(see e.g., McCoyd et al., 2020; Xiang et al., 2020; Xiang
and Mittal, 2021; Metzen and Yatsura, 2021; Zhang et al.,
2020; Chiang et al., 2020).

Adversarial Learning using ERM Recent work by Feige
et al. (2015) gives a reduction algorithm for adversarial
learning using an ERM oracle, but their guarantee is only
for finite hypothesis classes. We observe in this work that
we can apply their reduction algorithm to our problem, and
along the way, we extend the guarantees of their algorithm.
A more detailed comparison is provided in Section 3.1.

Multi-group Learning Interestingly, the notion of multi-
robustness has connections with a thriving area of work
in algorithmic fairness centered on the notion of multi-
calibration (Hébert-Johnson et al., 2017; Kim et al., 2019;
Rothblum and Yona, 2021; Tosh and Hsu, 2021; Globus-
Harris et al., 2022; Gopalan et al., 2022). The promise
of these multi-guarantees, given a rich set of groups, is to
ensure uniformly acceptable performance on many groups
simultaneously.

Specifically, Rothblum and Yona (2021) show how to learn
a predictor such that the loss experienced by every group
is not much larger than the best possible loss for this group
within a given hypothesis class. However, we highlight that
the prior work on multi-group learning does not extend to
the setting of robust loss since their goal is not to minimize
the robust loss by taking into consideration different pertur-
bations of natural examples. In contrast, our approach can
achieve multi-robustness guarantees by utilizing two layers
of boosting to ensure ‘emphasis’ on both specific groups
and the adversarial perturbations.

Tosh and Hsu (2021); Globus-Harris et al. (2022) study
the problem of minimizing a general loss function over a
collection of subgroups. Their approach can capture the
robust loss, however, the main distinction between their
algorithm and our approach is that unlike them, we do not
use group membership during the test time. This is essential
when groups correspond to protected features, and therefore
in some scenarios, it would be undesirable to incorporate
them in decision models. Additionally, if we interpret some
of the groups in our setting as objects to be classified like
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a stop-sign group or fire-hydrant group, then an approach
that needs to detect group membership is too strong an
assumption since the correct classification of those objects
is our original goal.

However, we highlight that there is a trade-off here; To our
knowledge, our work is the first one to achieve guarantees
for the more challenging objective of robust learning without
having access to the group membership of examples but at
the cost of achieving a weaker upper bound on the robust
loss incurred on each group compared to the previous work
on multi-group PAC learning. A detailed comparison is
given in Section 4.1.

2 SETUP AND NOTATION

Let X denote the instance space and Y denote the label
space. Our main objective is to be robust against adversarial
patches A : X → 2X , where A(x) represents the (poten-
tially infinite) set of adversarially patched images that an
adversary might attack with at test-time on input x. Xiang
et al. (2022) showed that even though the space of adver-
sarial patches A(x) can be exponential or infinite, one can
consider a “covering” function U : X → 2X of masking
operations on images where |U(x)| shows the covering set
on input image x and is polynomial in the image size. Thus,
for the remainder of the paper, we focus on the task of learn-
ing a predictor robust to a perturbation set U : X → 2X ,
where U(x)is the set of allowed masking operations that can
be performed on x. We assume that U(x) is finite where
|U(x)| ≤ k.

We observe m iid samples S ∼ Dm from an unknown dis-
tribution D, and our goal is to learn a predictor ĥ achieving
small robust risk:

E
(x,y)∼D

[ max
z∈U(x)

1[ĥ(z) ̸= y]]. (1)

Let H ⊆ YX be a hypothesis class, and denote by vc(H)
its VC dimension. Let ERMH be an ERM oracle for H
that returns a hypothesis h ∈ H that minimizes empirical
loss. For any set arbitrary set W , denote by ∆(W ) the set
of distributions over W .

In Section 3, we focus on a single-group setting where the
benchmark OPTH is defined as follows:

OPTH ≜ min
h∈H

E
(x,y)∼D

max
z∈U(x)

1 [h(z) ̸= y] . (2)

In Section 4, we consider a multi-group setting, where the
instance space X is partitioned into a set of g groups G =
{G1, . . . , Gg}. These groups solely depend on the features
x and not the labels. The goal is to learn a predictor that
has low robust loss on all the groups simultaneously. In this

setup, the benchmark OPTD
max is as follows:

OPTD
max = min

h∈H
max
j∈[g]

E
(x,y)∼D

[
max

z∈U(x)
1[h(z) ̸= y]

∣∣x ∈ Gj

]
(3)

3 MINIMIZING ROBUST LOSS USING
AN ERM ORACLE

First, we show an example where the approach of Xiang
et al. (2022) of calling ERMH on the inflated dataset, i.e.,
original training points plus all possible perturbations result-
ing from the allowed masking operations, fails by obtaining
a multiplicative gap of k − 1 in the robust loss between
the optimal robust classifier and the classifer returned by
ERMH, where k is the size of the perturbation sets. This gap
exists since ERM can exhibit a solution that incorrectly clas-
sifies at least one perturbation per natural example, while
there is a robust classifier that concentrates error on one
natural example, thus getting low robust loss.
Example 1. Consider the following example in R. There is
a training set {z1, · · · , z2n} of original examples, where ex-
amples {z1, · · · , zn} are positively labeled and are located
at x = 1. {zn+1, · · · , z2n} are negatively labeled and are
at x = −1. Each example zi has k = n perturbations
denoted by {zi,1, · · · , zi,k}.

For each of the negative examples {zn+1, · · · , z2n−1}, all
their perturbations are at x = −0.75. For the negative
example z2n, all its perturbations, i.e. {z2n,1, · · · , z2n,k},
are at x = 0. For each positive example zi where i ∈
{1, · · · , n− 1}, one of their perturbations zi,1 is at x = 0
and the rest, i.e. {zi,2, · · · , zi,k}, are at x = 0.75. For the
positive example zn, all its perturbations zn,1, · · · , zn,k are
at x = 0.75.

The adversarial training procedure considered in the paper
by Xiang et al. (2022) runs ERM on the augmented dataset
(original examples and all their perturbations) to minimize
the 0/1 loss. ERM finds a threshold classifier hERM with
threshold τ = ε1 for any 0 < ε1 < 0.75 that classifies
any points with x < τ as negative and points with x ≥ τ
as positive. As a result, for each positive example zi for
i ∈ {1, · · · , n−1}, the perturbation zi,1 is getting classified
mistakenly which causes a robust loss on zi. Therefore,
hERM has a robust loss of (n − 1)/2n since n − 1 of the
positive examples are not robustly classified. However, there
exists a threshold classifier h∗ with threshold τ = ε2 for any
−0.75 < ε2 < 0 that only makes mistakes on perturbations
of z2n and thus has a robust loss of 1/2n. However, its 0/1
loss is higher than hERM and therefore ERM does not pick
it. Therefore, ERM can be suboptimal up to a multiplicative
factor of n− 1 for any arbitrary value of n. An illustration
is given in Figure 1.

Next, we present our first contribution: we show in The-
orem 1 that Algorithm 1 proposed by Feige et al. (2015)
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hERM

ε2
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Figure 1: ERM failure mode in the robustly un-realizable
case. Blue, red, and black points show respectively original
examples with a positive label, original examples with a
negative label, and perturbations of original examples.

learns a predictor that is simultaneously robust to a set of
(polynomially many) masking operations, using an ERMH
oracle. The algorithm is based on prior work, but the analy-
sis and application are novel in this work. A detailed com-
parison with Feige et al. (2015) is given in Section 3.1. The
main interesting feature of this algorithm is that it achieves
stronger robustness guarantees in the non-realizable regime
when OPTH ≫ 0, where the approach of Xiang et al.
(2022) can fail as mentioned in Example 1.

Algorithm 1 Feige, Mansour, and Schapire (2015)
Input weight update parameter η > 0, number of rounds
T , and training dataset S = {(x1, y1), . . . , (xm, ym)} and
corresponding weights p1, · · · , pm
Set w1(z, (x, y)) = 1, for each (x, y) ∈ S, z ∈ U(x).
Set P 1(z, (x, y)) = w1(z,(x,y))∑

z′∈U(x) w1(z′,(x,y)) , for each (x, y) ∈
S, z ∈ U(x).
for each t ∈ {1, · · ·T} do

Call ERM on the empirical weighted distribution:

ht = argmin
h∈H

∑
(x,y)∈S

∑
z∈U(x)

p(x,y)P
t(z, (x, y))1 [ht(z) ̸= y]

for each (x, y) ∈ S and z ∈ U(x) do
wt+1(z, (x, y)) = (1 + η1 [ht(z) ̸= y]) · wt(z, (x, y))

P t+1(z, (x, y)) = wt(z,(x,y))∑
z′∈U(x) wt(z′,(x,y))

Output The majority-vote predictor MAJ(h1, . . . , hT ).

Theorem 1. Set T (ε) = 32 ln k
ε2 and m(ε, δ) =

O
(

vc(H)(ln k)2

ε4 ln
(
ln k
ε2

)
+ ln(1/δ)

ε2

)
. Then, for any distri-

bution D over X × Y , with probability at least 1− δ over
S ∼ Dm(ε,δ), running Algorithm 1 where p(x,y) = 1/m
for all (x, y) ∈ S for T (ε) rounds produces h1, . . . , hT (ε)

satisfying:

E
(x,y)∼D

[
max

z∈U(x)
1
[
MAJ(h1, . . . , hT (ε))(z) ̸= y

]]
≤ 2OPTH+ε

where MAJ(h1, . . . , hT (ε)) shows the majority-vote of predictors
h1, . . . , hT (ε).

Remark 1. In the approach proposed by Xiang et al. (2022),
the robust loss with respect to the (exponentially many)
patches is upper bounded by the robust loss with respect
to the (polynomially many) masking operations. There-
fore, Theorem 1 implies that the robust loss against patches
is at most 2OPTH + ε.

3.1 Comparison with prior related work

As presented, Feige et al. (2015) only considered finite hy-
pothesis classes H and provided generalization guarantees
depending on log |H|. On the other hand, we consider here
infinite classes H with bounded VC dimension and pro-
vide tighter robust generalization bounds (see Theorem 1).
We would also like to highlight another difference. Given
an output of h1, . . . , hT from Algorithm 1, the guarantee
provided by Feige et al. (2015) is on average and does
not exactly capture the notion of robust loss i.e. the loss
on input x is supz∈U(x)

1
T

∑T
t=1 1[ht(z) ̸= y] (Lemma 3

states their result). We emphasize that this is different from
the robust loss guarantee that we obtain in Theorem 1 for
a single classifier, i.e. the loss on input x is captured as
supz∈U(x) 1[MAJ(h1, . . . , hT )(z) ̸= y]. In particular, un-
like the guarantee provided by Feige et al. (2015) in which
the adversary chooses z ∈ U(x) and then we can proba-
bilistically choose a classifier to classify it, to implement
the Patch-Cleanser reduction we need a single classifier that
is simultaneously correct on all z ∈ U(x). Because of the
difference in guarantees derived, we incur a multiplicative
factor of 2 compared with their bound.

The robust learning guarantee (Attias et al., 2022, Theorem
2) assumes access to a robust ERM oracle, which minimizes
the robust loss on the training dataset. On the other hand,
at the expense of higher sample complexity, we provide a
robust learning guarantee using only an ERM oracle which
is a more common and simpler assumption in the challeng-
ing non-realizable setting. Prior work due to Montasser
et al. (2020) considered using an ERM oracle for robust
learning but only in the simpler realizable setting (when
OPTH = 0).

3.2 Proof of Theorem 1

Before proceeding with the proof of Theorem 1, we describe
at a high-level the proof strategy. The main insight is to
solve a finite zero-sum game. In particular, our goal is
to find a mixed-strategy over the hypothesis class that is
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approximately close to the value of the game:

OPTS,H ≜ min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi] .

We observe that Algorithm 1 due to Feige et al. (2015) solves
a similar finite zero-sum game (see Lemma 3), and then we
relate it to the value of the game we are interested in (see
Lemma 2). Combined together, this only establishes that we
can minimize the robust loss on the empirical dataset using
an ERM oracle. We then appeal to uniform convergence
guarantees for the robust loss in Lemma 4 to show that, with
a large enough training data, our output predictor achieves
robust risk that is close to the value of the game.

Lemma 2. For any dataset S =
{(x1, y1), . . . , (xm, ym)} ∈ (X ×Y)m with corresponding
weights p1, · · · , pm = 1/m,

OPTS,H = min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi]

≥ min
Q∈∆(H)

max
P1∈∆(U(x1)),

...
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi]

Lemma 3 (Feige, Mansour, and Schapire (2015)). For any
data set S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m with
corresponding weights p1, · · · , pm = 1/m, running Al-
gorithm 1 for T rounds produces a mixed-strategy Q̂ =
1
T

∑T
t=1 ht ∈ ∆(H) satisfying:

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ min
Q∈∆(H)

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] +

2

√
ln k

T

Lemma 4 (VC Dimension for the Robust Loss (Attias
et al., 2022)). For any class H and any U such that
supx∈X |U(x)| ≤ k, denote the robust loss class of H with
respect to U by

LU
H = {(x, y) 7→ max

z∈U(x)
1 [h(z) ̸= y] : h ∈ H}.

Then, it holds that vc(LU
H) ≤ O(vc(H) log(k)).

We are now ready to proceed with the proof of Theorem 1.

Proof of Theorem 1. Let S ∼ Dm be an iid sample from
D, where the size of the sample m will be determined
later. By invoking Lemma 3 and Lemma 2, we observe
that running Algorithm 1 on S with corresponding weights

p1, · · · , pm = 1/m for T rounds, produces h1, . . . , hT sat-
isfying

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi] ≤ OPTS,H+
ε

4

Next, the average robust loss for the majority-vote predictor
MAJ(h1, . . . , hT ) can be bounded from above as follows:

1

m

m∑
i=1

max
zi∈U(xi)

1 [MAJ(h1, . . . , hT )(zi) ̸= yi]

≤ 1

m

m∑
i=1

max
zi∈U(xi)

2 E
t∼[T ]

1 [ht(zi) ̸= yi]

= 2
1

m

m∑
i=1

max
zi∈U(xi)

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ 2 max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ 2OPTS,H +
ε

2
.

In the second line above, the factor 2 shows up since for any
arbitrary example (z, y), if at least half the predictors make
a mistake then the majority-vote is wrong, and otherwise it
is correct. The factor 2 is used as a correction so that RHS
is bigger than LHS, where the edge case is exactly when
half the predictors make a mistake.

Next, we invoke Lemma 4 to obtain a uniform convergence
guarantee on the robust loss. In particular, we apply Lemma
4 on the convex-hull of H: HT = {MAJ(h1, . . . , hT ) :
h1, . . . , hT ∈ H}. By a classic result due to Blumer et al.
(1989), it holds that vc(HT ) = O(vc(H)T lnT ). Com-
bining this with Lemma 4 and plugging-in the value of
T = 32 ln k

ε2 , we get that the VC dimension of the robust loss
class of HT is bounded from above by

vc(LU
HT ) ≤ O

(
vc(H)(ln k)2

ε2
ln

(
ln k

ε2

))
.

Finally, using Vapnik’s “General Learning” uniform conver-
gence (Vapnik, 1982), with probability at least 1− δ over
S ∼ Dm where m = O

(
vc(H)(ln k)2

ε4 ln
(
ln k
ε2

)
+ ln(1/δ)

ε2

)
,

it holds that

∀f ∈ HT : E
(x,y)∼D

[
max

z∈U(x)
1 [f(z) ̸= y]

]
≤ 1

m

m∑
i=1

max
zi∈U(xi)

1 [f(zi) ̸= yi] +
ε

4

This also applies to the particular output MAJ(h1, . . . , hT )
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of Algorithm 1, and thus

E
(x,y)∼D

[
max

z∈U(x)
1
[
MAJ(h1, . . . , hT (ε))(z) ̸= y

]]
≤ 1

m

m∑
i=1

max
zi∈U(xi)

1 [MAJ(h1, . . . , hT )(zi) ̸= yi] +
ε

4

≤ 2OPTS,H +
ε

2
+

ε

4
.

Finally, by applying a standard Chernoff-Hoeffding con-
centration inequality, we get that OPTS,H ≤ OPTH + ε

8 .
Combining this with the above inequality concludes the
proof.

4 MULTI-ROBUSTNESS GUARANTEES
ON A SET OF GROUPS

In this section, we propose a boosting algorithm that learns
a predictor with a low robust loss on a collection of sub-
groups simultaneously. First, we consider the case of dis-
joint groups and present our training-time algorithm for this
case in Section 4.2. Section 4.4 provides generalization
guarantees. In Section 4.3, we show a reduction from over-
lapping groups to disjoint groups. In the following, first we
formalize the notions of robust loss on a specific group and
multi-robustness.

When the training dataset S is partitioned into g groups
G = {G1, . . . , Gg}, the empirical robust loss of a predictor
h on group Gj is defined as follows:

ℓrob
j (h) =

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1[h(z) ̸= y] (4)

The learning benchmark that we compete with on a dataset S
for the robust loss on each group is OPTS

max that is defined
as follows:

OPTS
max = min

h∈H
max
j∈[g]

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1[h(z) ̸= y]

(5)

Definition 1 (Multi-Robustness). A hypothesis h is multi-
robust on a dataset S if it achieves the following guarantee:

max
j∈[g]

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1[h(z) ̸= y] ≤ OPTS
max + ε

Definition 2 (β-Multi-Robustness). A hypothesis h is β-
multi-robust on a dataset S if it achieves the following guar-
antee:

max
j∈[g]

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1[h(z) ̸= y] ≤ β(OPTS
max + ε)

Definition 3 (Multi-Robustness on Average). A set of hy-
potheses H′ = {h1, . . . , hT } is multi-robust on a dataset S
on average if the the following property holds:

1

T
max
j∈[g]

T∑
t=1

ℓrob
j (ht) ≤ OPTS

max + ε

Remark 2. Definition 1 is a stronger notion of multi-
robustness compared to Definition 3.

Summary of Results. Section 4.2 investigates the case
of disjoint groups and proposes a two-layer boosting algo-
rithm (Algorithm 2) that achieves multi-robustness on the
training dataset S. First, we show that H′ = {h1, . . . , hT }
returned by Algorithm 2 is multi-robust on average (Theo-
rem 8). Theorem 10 exhibits that the majority-vote classifier
over H′, i.e. MAJ(h1, . . . , hT ), obtains β-multi-robustness
for β = 2. We remark that although Theorem 8 achieves a
tighter upper bound on the multi-robustness guarantee, The-
orem 10 gives a guarantee for the stronger notion of multi-
robustness. In Section 4.3, we show a reduction from over-
lapping groups to disjoint groups. Section 4.4 provides gen-
eralization guarantees for both notions of average multi-
robustness and β-multi-robustness.

4.1 Comparison to Prior Work on Multi-group
Learning

Rothblum and Yona (2021) study agnostic multi-group PAC
learning and their algorithm returns a hypothesis h such
that for each group Gj in a collection of groups G:

E [ℓ(h(x), y)|x ∈ Gj ] ≤ min
hGj

∈H
E
[
ℓ(hGj

(x), y)|x ∈ Gj

]
That is, the hypothesis h must compete against a hypothesis
hGj ∈ H trained specifically to minimize the error over the
group Gj ∈ G, for every group in the collection. However,
their results do not extend to the case of robust loss. In
contrast, in our notion of multi-robustness loss that holds
for the more challenging objective of robust learning, our
benchmark is weaker ( Definition 1). We leave it as an open
question to study whether our upper bounds for the robust
loss over a collection of groups can be strengthened.

4.2 Boosting algorithm achieving multi-robustness
guarantees:

In this section, we present Algorithm 2 that obtains multi-
robustness guarantees on a set of disjoint groups. The al-
gorithm follows the idea proposed by Freund and Schapire
(1996) that obtains boosting by playing a repeated game.
Initially a sample set S = {(x1, y1), . . . , (xm, ym)} parti-
tioned into a set of disjoint groups G = {G1, . . . , Gg} is
received as input. P t

j shows the normalized weight of group
Gj in step t. Initially, for each group Gj , P t

j = 1/g. In
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each round t, the weight of each group gets split between its
examples equally: pi = P t

j /|Gj | where (xi, yi) ∈ Gj . Sub-
sequently, an oracle call is made to Algorithm 1 with sample
weights p1, . . . , pm. Lemma 6 shows at each iteration t, Al-
gorithm 1 returns a hypothesis ht such that its average robust
loss across the groups is at most OPTS

max+ ε. In the next it-
eration t+1, for each group Gj , the weights of examples in
Gj get decreased by a multiplicative factor of 1− δmrob

j (ht)

where mrob
j (ht) = 1 − ℓrob

j (ht) and δ =
√
ln g/T . The-

orem 8 exhibits that after T = O(ln g/ε2) rounds, Algo-
rithm 2 outputs a set of hypotheses H′ = {h1, . . . , hT } such
that for each group Gj the average multi-robustness guaran-
tee is obtained, i.e., 1

T

∑T
t=1 ℓ

rob
j (ht) ≤ OPTS

max + ε. The-
orem 10 provides that MAJ(h1, . . . , ht) achieves β-multi-
robustness guarantee for β = 2.

Algorithm 2 Boosting Algorithm Achieving Multi-
Robustness
Input training dataset S = {(x1, y1), . . . , (xm, ym)} parti-
tioned into a set of groups {G1, · · · , Gg}
Initially, ∀1 ≤ j ≤ g : P t

j = 1/g

for t = 1, . . . , T do
pi = P t

j /|Gj | where (xi, yi) ∈ Gj

Call Algorithm 1 on S with weights (p1, . . . , pm) for
T ′ = 36 ln k

ε2 rounds.
Update P t

j , for all j ∈ [g]:

P t+1
j =

P t
j ·

(
1− δmrob

j (ht)
)

Zt

where mrob
j (ht) = 1 − ℓrob

j (ht), Zt is a normalization

factor, and δ =
√

ln g
T .

Output H′ = {h1, · · · , hT }

Remark 3. We remark that the output of Algorithm 2 is a
set of majority-vote classifiers over H:

H′ =
{
MAJ(h1,1, . . . , h1,T ′), . . . ,MAJ(hT,1, . . . , hT,T ′)

: ∀i ∈ [T ],∀j ∈ [T ′], hi,j ∈ H
}

Before proving the multi-robustness guarantees, we show
that Lemma 6 holds. In order to prove that Lemma 6 holds,
first we show in Lemma 5 that an extension of Lemma
3 holds when p1, · · · , pm are arbitrary weights such that∑m

i=1 pi = 1. Next, we restate the guarantee of the Mul-
tiplicative Weights algorithm that is a generalization of
Weighted Majority algorithm (Littlestone and Warmuth,
1994) and is equivalent to Hedge developed by Freund and
Schapire (1997).

Lemma 5 (Extension to general weights). For any dataset
S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m and any cor-
responding weights p1, . . . , pm > 0 such that

∑m
i=1 pi = 1,

running Algorithm 1 for T rounds produces a mixed-strategy

Q̂ = 1
T

∑T
t=1 ht ∈ ∆(H) satisfying:

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

m∑
i=1

pi · E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ min
Q∈∆(H)

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

m∑
i=1

pi · E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi]

+ 2

√
ln k

T

Lemma 6. In each round t of Algorithm 2, by making
an oracle-call to Algorithm 1 after T ′ = 4 ln k

ε2 rounds, a
hypothesis ht is outputted such that Ej∼P t [ℓrobj (ht)] =∑

j∈[g] P
t
j ℓ

rob
j (ht) ≤ OPTS

max + ε.

Theorem 7 (Mutiplicative Weights Algorithm (Kale, 2007)).
For any sequence of costs of experts m1, · · · ,mT revealed
by nature where all the costs are in [0, 1], the sequence of
mixed strategies p1, · · · ,pT produced by the Multiplicative
Weights algorithm satisfies:

T∑
t=1

mt · pt ≤ (1 + δ)min
p

T∑
t=1

mt · p+
lnn

δ

where n is the number of experts.

Theorem 8. When T = O( ln g
ε2 ), Algorithm 2 computes a

set of hypotheses H′ = {h1, · · · , hT }, such that for each
group Gj , 1

T

∑T
t=1 ℓ

rob
j (ht) ≤ OPTS

max + ε.

Proof. In each iteration t, we define average loss and reward
terms as follows:

L(P t, ht) = E
j∼Pt

[
ℓrob
j (ht)

]
=

∑
j∈[g]

P t
j ℓ

rob
j (ht),

M(P t, ht) = E
j∼Pt

[
mrob

j (ht)
]

Substituting ℓrob
j (ht) = 1−mrob

j (ht) provides:

M(P t, ht) =
∑
j∈[g]

P t
j (1− ℓrob

j (ht)) = 1−
∑
j∈[g]

P t
j ℓ

rob
j (ht)

= 1− L(P t, ht)

Now by setting T = 9 ln g
ε2 which implies that δ =

√
ln g
T =

ε
3 , and by using the guarantee of Theorem 7, the following
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bound is obtained.

1

T

T∑
t=1

M(P t, ht) ≤
(1 + δ)

T
min
j∈[g]

T∑
t=1

M(j, ht) +
ln g

δT

→ 1

T

T∑
t=1

M(P t, ht) ≤
1

T
min
j∈[g]

T∑
t=1

M(j, ht) + δ +
ln g

δT

→ 1

T

T∑
t=1

M(P t, ht) ≤
1

T
min
j∈[g]

T∑
t=1

M(j, ht) +
2ε

3

where M(j, ht) is the reward term when the whole proba-
bility mass is concentrated on group Gj . Therefore for each
group j ∈ [g]:

1

T

T∑
t=1

M(j, ht) ≥
1

T

T∑
t=1

M(P t, ht)−
2ε

3
(6)

Lemma 6 provides that in each iteration t, L(P t, ht) ≤
OPTS

max+ ε/3 given that Algorithm 1 is executed for T ′ =
36 ln k

ε2 rounds. Thus, at each iteration t, M(P t, ht) ≥ 1−
(OPTS

max + ε/3). Therefore, 1
T

∑T
t=1 M(P t, ht) ≥ 1 −

(OPTS
max + ε/3); combining with Equation 6 implies that:

1

T

T∑
t=1

M(j, ht) ≥
1

T

T∑
t=1

M(P t, ht)−
2ε

3

≥ 1− (OPTS
max +

ε

3
)− 2ε

3
= 1− (OPTS

max + ε)

Plugging in the definition of L(P t, ht) implies that:

1

T

T∑
t=1

L(j, ht) ≤ OPTS
max + ε

Which concludes the proof.

Corollary 9. Theorem 8 implies that if for each example a
predictor is picked uniformly at random from H′ to predict
its label, then for each group Gj ∈ G, the expected robust
loss is at most OPTS

max + ε.

Theorem 10. When T = O( ln g
ε2 ), Algorithm 2 computes

a set of hypotheses H′ = {h1, . . . , hT } such that for each
group Gj , ℓrob

j (MAJ(h1, · · · , hT )) ≤ 2(OPTS
max + ε).

Proof. By Theorem 8, after T = O( ln g
ε2 ) rounds, for each

group Gj , 1
T

∑T
t=1 ℓ

rob
j (ht) ≤ OPTS

max + ε. Therefore,
the total number of robustness mistakes on Gj across all
the classifiers h1, · · · , hT is at most T (OPTS

max + ε)|Gj |
which is equal to T/2 · 2(OPTS

max + ε)|Gj |.

Therefore, the fraction of examples in Gj that at least T/2
of the classifiers in h1, · · ·hT make a robustness mistake on
is at most 2(OPTS

max + ε). Hence, the fraction of examples
in Gj that are not robustly classified by the majority-vote
classifier is at most 2(OPTS

max + ε).

4.3 Reduction from overlapping groups to disjoint
groups

When the groups are overlapping, we reduce it to the case
of disjoint groups. The reduction is as follows: for an input
instance I(G = {G1, . . . , Gg}, S) of overlapping groups,
create a new instance I ′(G′ = {G′

1, . . . , G
′
g}, S′) as fol-

lows. Initially, for all G′
j ∈ G′, G′

j is an empty set. For
each example (xi, yi) ∈ S that belongs to a set of groups
Gi = {Gi,1, · · · , Gi,|Gi|} ⊆ G in I, create identical copies
of (xi, yi) and assign each copy including the original exam-
ple to exactly one of the groups in G′

i = {G′
i,1, · · · , G′

i,|G′
i|
}.

Now we have an instance I ′ with disjoint groups. By execut-
ing Algorithm 2 on I ′, it returns a predictor h that achieves
a β-multi-robustness guarantee. First, we argue that if h
is used on I, it achieves a multi-robustness guarantee of
β · (OPTI′

max + ε). This is the case since either h makes
a robustness mistake on all copies of an example or does
not make any robustness mistakes on any of them. Next,
we show that OPTI′

max ≤ OPTI
max. Consider a predictor

h∗ ∈ H that achieves multi-robustness of OPTI
max on I. If

h∗ is used on I ′, for each example (x, y) ∈ S that h∗ has
zero robust loss on, it does not make any mistakes on any
of its copies in I ′. Additionally, if h∗ makes a robustness
mistake on (x, y), then it makes a robustness mistake on all
its copies in I ′. Thus, h∗ achieves a multi-robustness guar-
antee of OPTI

max on I ′. Therefore, OPTI′

max ≤ OPTI
max,

and a β(OPTI′

max + ε) multi-robustness guarantee on I im-
plies β(OPTI

max+ ε) multi-robustness. A similar argument
holds for the average multi-robustness guarantee.

Remark 4. When |G| is large, this reduction becomes com-
putationally inefficient, since in the worst case, the num-
ber of samples gets increased by a multiplicative factor of
|G|. However, this reduction is equivalent to keeping only
one copy of each sample (xi, yi) ∈ S and when execut-
ing Algorithm 2, in each iteration t, assigning it a weight of
pi =

∑
j∈[g]:(xi,yi)∈Gj

P t
j /|Gj |.

4.4 Generalization Guarantees

In this section, we derive generalization guarantees for multi-
robustness. First, Lemma 11 shows how to bound the VC-
Dimension of the intersection of robust loss and groups. We
can then invoke this Lemma to get uniform convergence
guarantees that will allow us to get concentration for the
conditional robust loss across groups (see Definition 1).

Lemma 11 (VC Dimension of Intersection of Robust Loss
and Groups). For any class H, any perturbation set U , and
any group class G, denote the intersection function class by

FU
H,G ≜ {(x, y) 7→ max

z∈U(x)
1 [h(z) ̸= y] ∧ 1[x ∈ Gj ] :

h ∈ H, Gj ∈ G}

Then, it holds that vc(FU
H,G) ≤ Õ

(
vc(LU

H) + vc(G)
)
.
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Theorem 12 (Generalization guarantees for average
multi-robustness). With T = O(ln g/ε2) and m =

Õ
(

vc(H) ln2(k)
ε4 + vc(G)+ln(1/δ)

ε2

)
, Algorithm 2 computes a

set of hypotheses H′ = {h1, . . . , hT }, such that ∀Gj ∈ G,

1

T

T∑
t=1

Pr
(x,y)∈D

[
∃z ∈ U(x) : ht(z) ̸= y | x ∈ Gj

]
≤

(
1 +

ε

PrD(x ∈ Gj)

)(
OPTS

max + ε
)
+

ε

PrD(x ∈ Gj)

Theorem 13 (Generalization guarantees for
β-multi-robustness). With T = O(ln g/ε2),

m = Õ
(

vc(H) ln(g) ln2(k)
ε6 + vc(G)+ln(1/δ)

ε2

)
, and β = 2, Al-

gorithm 2 computes a set of hypotheses H′ = {h1, . . . , hT },
such that ∀Gj ∈ G,

Pr
(x,y)∈D

[
∃z ∈ U(x) : MAJ(h1, . . . , hT )(z) ̸= y | x ∈ Gj

]
≤

(
1 +

ε

PrD(x ∈ Gj)

)(
β(OPTS

max + ε)
)
+

ε

PrD(x ∈ Gj)

Remark 5. In Section A.9, we show how to achieve general-
ization guarantees in terms of OPTD

max instead of OPTS
max.

5 CONCLUSION

We exhibited an example showing how using ERM on an
augmented dataset to learn a robust classifier can fail when
the examples are robustly un-realizable. Next, we pro-
vided a “boosting-style” algorithm that uses ERM and ob-
tains strong robust learning guarantees in the non-realizable
regime. This work provides theoretical evidence that our
existing methods of learning accurate classifiers i.e. ERM,
can be modified effectively to learn robust classifiers even
in the agnostic robust regime. Next, we introduced a new
multi-robustness objective to obtain robustness guarantees
simultaneously across a collection of subgroups. We showed
this objective can be achieved by adding a second layer of
boosting to the first algorithm.

Adversarial examples exist for many types of classifiers but
are especially salient with modern neural-based vision meth-
ods. However, due to the large capacity of these networks,
it is not clear that they would benefit from boosting. There-
fore, the fact that our algorithms rely on boosting should
not be interpreted as a firm recommendation to use boosting
with neural networks, but instead as a theoretical proof-of-
concept that plain ERM can be used to learn robust models,
given the right algorithmic scheme, especially if such a
scheme can reduce the effective number of perturbations
available to the adversary.
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provals if applicable. [Not Applicable]
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and the total amount spent on participant compen-
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A Supplementary Materials

A.1 Proof of Lemma 2

Proof. By definition of OPTS,H, it follows that

OPTS,H = min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi]

≥ min
h∈H

max
z1∈U(x1),...,zm∈U(xm)

1

m

m∑
i=1

1 [h(zi) ̸= yi]

≥ min
Q∈∆(H)

max
z1∈U(x1),...,zm∈U(xm)

1

m

m∑
i=1

E
h∼Q

1 [h(zi) ̸= yi]

≥ min
Q∈∆(H)

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] .

A.2 Proof of Lemma 3

Proof. By the minimax theorem and (Feige, Mansour, and Schapire, 2015, Equation 3 and 9 in proof of Theorem 1), we
have that

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi] ≤

min
Q∈∆(H)

max
P1∈∆(U(x1)),

...,
Pm∈∆(U(xm))

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi]

+ 2

√
L∗m ln k

T
,

where L∗ =
∑m

i=1 maxz∈U(xi)

∑T
t=1 1 [ht(z) ̸= y]. By observing that L∗ ≤ mT and dividing both sides of the inequality

above by m, we arrive at the inequality stated in the lemma.

A.3 Proof of Lemma 5

Proof. We generalize the argument in Feige, Mansour, and Schapire (2015) to accommodate the weights on the samples
p1, . . . , pm. Specifically, let

LON
T =

T∑
t=1

m∑
i=1

∑
z∈U(xi)

piP
t(z, (xi, yi))1 [ht(z) ̸= yi]

be the loss of Algorithm 1 after T rounds, and let

L∗ = max
P

T∑
t=1

m∑
i=1

∑
z∈U(xi)

piP (z, (xi, yi))1 [ht(z) ̸= yi]

be the benchmark loss. We show that L∗(1− η)− ln k
η ≤ LON

T .
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To this end, define W t
i =

(∑
z∈U(xi)

wt(z, (xi, yi))
)pi

and W t =
∏m

i=1 W
t
i . Let

F t
i = pi ·

∑
z∈U(x) wt(z, (x, y))1 [ht(z) ̸= y]∑

z∈U(x) wt(z, (x, y))

= pi
∑

z∈U(xi)

P t(z, (xi, yi))1 [ht(z) ̸= y]

be the loss of Algorithm 1 on example (xi, yi) at round t. Observe that by the Step 7 in Algorithm 1, it holds that
WT

i ≥ (1 + η)pi maxz∈U(xi)

∑T
t=1[ht(z)̸=y], and therefore WT ≥ (1 + η)L

∗
.

Observe also

W t+1
i = ∑
z:[ht(z)̸=y]=0

wt(z, (x, y)) +
∑

z:[ht(z)̸=y]=1

(1 + η)wt(z, (x, y))

pi

= W t
i

(
1 + η

F t
i

pi

)pi

This implies that

WT =

m∏
i=1

WT
i =

m∏
i=1

[
k

T∏
t=1

(
1 + η

F t
i

pi

)]pi

=

k
∑m

i=1 pi

m∏
i=1

T∏
t=1

(
1 + η

F t
i

pi

)pi

Combining the above we have,

(1 + η)L
∗
≤ k

m∏
i=1

T∏
t=1

(
1 + η

F t
i

pi

)pi

.

We then apply a logarithmic transformation on both sides

L∗ ln(1 + η) ≤ ln k +

m∑
i=1

T∑
t=1

pi ln

(
1 + η

F t
i

pi

)
.

Since a− a2 ≤ ln(1 + a) ≤ a for a ≥ 0, we have

L∗(η − η2) ≤ ln k +

m∑
i=1

T∑
t=1

ηF t
i = ln k + ηLON

T .

By dividing by η and rearranging terms we get L∗(1− η)− ln k
η ≤ LON

T .

By setting η =
√

ln k
L∗ and observing that L∗ ≤ T , the remainder of the analysis follows similar to Feige, Mansour, and

Schapire (2015, Equation 3-10 in proof of Theorem 1).

A.4 Proof of Lemma 4

Proof. By finiteness of U , observe that for any dataset S ∈ (X × Y)m, each robust loss vector in the set of robust loss
behaviors:

ΠLU
H
(S) = {(f(x1, y1), . . . , f(xm, ym)) : f ∈ LU

H}

maps to a 0-1 loss vector on the inflated set SU = {(z11 , y1), . . . , (zk1 , y1), . . . , (z1m, ym), . . . , (zkm, ym)},

ΠH(SU ) = {(h(z11), . . . , h(zk1 ), . . . , h(z1m), . . . , h(zkm)) : h ∈ H}

Therefore, it follows that
∣∣∣ΠLU

H
(S)

∣∣∣ ≤ |ΠH(SU )|. Then, by applying the Sauer-Shelah lemma, it follows that |ΠH(SU )| ≤
O((mk)vc(H)). Then, by solving for m such that O((mk)vc(H)) ≤ 2m, we get that vc(LU

H) ≤ O(vc(H) log(k)).



Agnostic Multi-Robust Learning Using ERM

A.5 Proof of Lemma 6

Proof.

E
j∈[g]

[ℓrobj (ht)] =
∑
j

P t
j (1/|Gj |)

∑
(x,y)∈Gj

max
z∈U(x)

1 [ht(z) ̸= y] (7)

=

m∑
i=1

pi · max
z∈U(x)

1 [ht(z) ̸= y] (8)

≤ max
P ′
1∈∆(U(x1)),

...,
P ′
m∈∆(U(xm))

m∑
i=1

pi · E
zi∼P ′

i

1

T

T∑
τ=1

1
[
hFMS
τ (zi) ̸= yi

]
(9)

≤ min
Q∈∆(H)

max
P ′
1∈∆(U(x1)),

...,
P ′
m∈∆(U(xm))

m∑
i=1

pi E
zi∼P ′

i

E
h∼Q

1 [h(zi) ̸= yi] + 2

√
ln k

T
(10)

≤ min
h∈H

max
P ′
1∈∆(U(x1)),

...,
P ′
m∈∆(U(xm))

m∑
i=1

pi · E
zi∼P ′

i

1 [h(zi) ̸= yi] + 2

√
ln k

T
(11)

= min
h∈H

max
z1∈U(x1),

...,
zm∈U(xm)

m∑
i=1

pi · 1 [h(zi) ̸= yi] + 2

√
ln k

T
(12)

≤ min
h∈H

max
j∈[g]

(1/|Gj |)
∑

(x,y)∈Gj

max
z∈U(x)

1 [h(z) ̸= y] + 2

√
ln k

T
(13)

= OPTmax + 2

√
ln k

T
(14)

Equation 7 holds by plugging in the definition of ℓrob
j (ht)(Equation 4). Equation 8 holds for a distribution p1, . . . , pm on the

samples. In Equation (9), ht is replaced with the hypothesis selected by Algorithm 1 in each round t. Equation (10) holds
by Lemma 5. Equation (12) holds since it suffices for the max-player to pick a pure strategy. Equation (13) holds since the
whole probability mass is put as a uniform distribution on the worst-off group. Note that when defining p1, · · · , pm, all
individuals that belong to the same group have equal weights.

A.6 Proof of Corollary 9

Proof. Expected robust loss on each group Gj ∈ G is:

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1

T

T∑
t=1

1[ht(z) ̸= y] (15)

=
1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

E
ht∼U(H′)

1[ht(z) ̸= y] (16)

≤ 1

|Gj |
∑

(x,y)∈Gj

E
ht∼U(H′)

max
z∈U(x)

1[ht(z) ̸= y] (17)

=
1

T

T∑
t=1

1

|Gj |
∑

(x,y)∈Gj

max
z∈U(x)

1[ht(z) ̸= y] (18)

=
1

T

T∑
t=1

ℓrob
j (ht) ≤ OPTS

max + ε (19)

Where Equation 17 holds by Jensen’s inequality and Equation 19 holds by Theorem 8.
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A.7 Proof of Lemma 11

Proof. The proof is inspired by the proof of (claim B.1 in Kearns et al., 2018) which proved a similar result for the standard
0-1 loss, and here we extend the result to the robust loss using essentially the same proof.

Let S ⊆ X × Y be a dataset of size m that is shattered by FU
H,G . Then, observe that, by definition of FU

H,G , the number of

possible behaviors
∣∣∣ΠFU

H,G
(S)

∣∣∣ is at most
∣∣∣ΠLU

H
(S)

∣∣∣ · |ΠG(S)|. By Sauer-Shelah Lemma,
∣∣∣ΠLU

H
(S)

∣∣∣ ≤ O(mvc(LU
H)) and

|ΠG(S)| ≤ O(mvc(G)). Thus,
∣∣∣ΠFU

H,G
(S)

∣∣∣ = 2m ≤ O(mvc(LU
H)+vc(G)), and solving for m yields that m = Õ(vc(LU

H) +

vc(G)). Hence, vc(FU
H,G) ≤ Õ

(
vc(LU

H) + vc(G)
)
.

A.8 Proof of Theorem 12

Proof. The output of Algorithm 2 is H′ = {h1, . . . , hT } where each of the predictors h1, . . . , hT is a majority-vote
predictor over H. Due to Blumer et al. (1989), the VC-dimension of the output space is vc(HT ′

) =
(
vc(H)T ′ lnT ′

)
where

T ′ is the number of rounds of Algorithm 1 in each oracle call.

Set m = Õ

(
vc(HT ′

) ln(k)+vc(G)+ln(1/δ)
ε2

)
. By setting T ′ = O( ln k

ε2 ) and by invoking Lemma 4 and Lemma 11 on the

hypothesis class H and group class G, we get the following uniform convergence guarantee. With probability at least 1− δ
over S ∼ Dm,

(
∀h ∈ HT ′

)
(∀Gj ∈ G) :∣∣∣∣∣ E

(x,y)∼D

[
1[x ∈ Gj ] ∧ max

z∈U(x)
1[h(z) ̸= y]

]
− 1

m

∑
(x,y)∈S

1[x ∈ Gj ] ∧ max
z∈U(x)

1[h(z) ̸= y]

∣∣∣∣∣ ≤ ε

We can rewrite the above guarantee in a conditional form which will be useful for us shortly in the proof. Namely,
∀h ∈ HT ′

,∀Gj ∈ G:

Pr
(x,y)∼D

[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ] ≤
PrS(x ∈ Gj)

PrD(x ∈ Gj)

1

|Gj |
∑

(x,y)∈S∧x∈Gj

max
z∈U(x)

1[h(z) ̸= y] +
ε

PrD(x ∈ Gj)
(20)

where |Gj | =
∑

(x,y)∈S 1[x ∈ Gj ].

Theorem 8 shows that running Algorithm 2 produces hypotheses h1, . . . , hT such that, ∀Gj ∈ G:

1

T

T∑
t=1

1

|Gj |
∑

(x,y)∈S∧x∈Gj

max
z∈U(x)

1[ht(z) ̸= y] ≤ OPTS
max + ε (21)

Equation 20 implies that ∀Gj ∈ G,

1

T

T∑
t=1

Pr
(x,y)∼D

[∃z ∈ U(x) : ht(z) ̸= y|x ∈ Gj ] ≤
1

T

T∑
t=1

PrS(x ∈ Gj)

PrD(x ∈ Gj)

1

|Gj |
∑

(x,y)∈S∧x∈Gj

max
z∈U(x)

1[ht(z) ̸= y] (22)

+
ε

PrD(x ∈ Gj)
, (23)

Combining Equation 21 and Equation 23 implies:

1

T

T∑
t=1

Pr
(x,y)∈D

[∃z ∈ U(x) : ht(z) ̸= y|x ∈ Gj ] ≤
PrS(x ∈ Gj)

PrD(x ∈ Gj)

(
OPTS

max + ε
)
+

ε

PrD(x ∈ Gj)
(24)
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Now, given additional samples m̃ = O
(

vc(G)+log(2/δ)
ε2

)
, in addition to the above, we can guarantee that:

∀Gj ∈ G :
PrS(x ∈ Gj)

PrD(x ∈ Gj)
≤ PrD(x ∈ Gj) + ε

PrD(x ∈ Gj)
= 1 +

ε

PrD(x ∈ Gj)
. (25)

Combining Equation 24 and Equation 25 implies that:

1

T

T∑
t=1

Pr
(x,y)∼D

[∃z ∈ U(x) : ht(z) ̸= y|x ∈ Gj ] ≤
(
1 +

ε

PrD(x ∈ Gj)

)(
OPTS

max + ε
)
+

ε

PrD(x ∈ Gj)

which completes the proof. We can also obtain a bound in terms of OPTD
max instead of OPTS

max using a similar approach
used in Section A.9.

A.9 Proof of Theorem 13

Proof. The output of Algorithm 2 is H′ = {h1, . . . , hT }. Taking majority-vote over the predictors in H′ is equivalent to
taking the majority-vote of majority-vote predictors over H. Therefore, due to Blumer et al. (1989), the VC-dimension of
the output space is vc(HT ′

)T =
(
vc(H)T ′ lnT ′

)
T lnT , where T ′ is the number of rounds of Algorithm 1 in each oracle

call and T is the number of rounds of Algorithm 2.

Let the sample size m = Õ

(
vc(HT ′

)T log(k)+vc(G)+log(1/δ)
ε2

)
. By setting T = O(ln g/ε2) and T ′ = O( ln k

ε2 ) and by

invoking Lemma 4 and Lemma 11 on the hypothesis class H and group class G, we get the following uniform convergence
guarantee. With probability at least 1− δ over the sample set S ∼ Dm, ∀h ∈ (HT ′

)T and ∀Gj ∈ G:∣∣∣∣∣ E
(x,y)∼D

[
1[x ∈ Gj ] ∧ max

z∈U(x)
1[h(z) ̸= y]

]
− 1

m

∑
(x,y)∈S

1[x ∈ Gj ] ∧ max
z∈U(x)

1[h(z) ̸= y]

∣∣∣∣∣ ≤ ε (26)

We can rewrite the above guarantee in a conditional form which will be useful for us shortly in the proof. Namely,
∀h ∈ (HT ′

)T and ∀Gj ∈ G:

Pr
(x,y)∼D

[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ] ≤
PrS(x ∈ Gj)

PrD(x ∈ Gj)

1

|Gj |
∑

(x,y)∈S∧x∈Gj

max
z∈U(x)

1[h(z) ̸= y] +
ε

PrD(x ∈ Gj)
(27)

where |Gj | =
∑

(x,y)∈S 1[x ∈ Gj ]. Theorem 10 provides that hmaj = MAJ(h1, . . . , hT ) satisfies that ∀Gj ∈ G:

1

|Gj |
∑

(x,y)∈S∧x∈Gj

max
z∈U(x)

1[hmaj(z) ̸= y] ≤ β(OPTS
max + ε) (28)

Combining Equation 27 and Equation 28 implies that ∀Gj ∈ G:

Pr
(x,y)∼D

[
∃z ∈ U(x) : hmaj(z) ̸= y|x ∈ Gj

]
≤ PrS(x ∈ Gj)

PrD(x ∈ Gj)

(
β(OPTS

max + ε)
)
+

ε

PrD(x ∈ Gj)
(29)

Now, given additional samples m̃ = O
(

vc(G)+log(2/δ)
ε2

)
, guarantees that:

∀Gj ∈ G :
PrS(x ∈ Gj)

PrD(x ∈ Gj)
≤ PrD(x ∈ Gj) + ε

PrD(x ∈ Gj)
= 1 +

ε

PrD(x ∈ Gj)
(30)
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Combining Equation 29 and Equation 30 gives a refined bound on the average conditional robust loss that holds uniformly
across groups. Namely, ∀Gj ∈ G,

Pr
(x,y)∼D

[
∃z ∈ U(x) : hmaj(z) ̸= y|x ∈ Gj

]
≤

(
1 +

ε

PrD(x ∈ Gj)

)(
β(OPTS

max + ε)
)
+

ε

PrD(x ∈ Gj)

We can also obtain a guarantee in terms of OPTD
max instead of OPTS

max, as follows. Let h∗ ∈ H be a predictor which
attains OPTD

max defined as

OPTD
max = min

h∈H
max
Gj∈G

E
(x,y)∼D

[
max

z∈U(x)
1[h(z) ̸= y]

∣∣∣∣x ∈ Gj

]
.

Dividing both sides of Equation 26 by PrS(x ∈ Gj) provides that ∀Gj ∈ G,∀h ∈ H:

∣∣∣∣∣PrD(x ∈ Gj)

PrS(x ∈ Gj)
Pr

(x,y)∈D
[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ]− Pr

(x,y)∈S
[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ]

∣∣∣∣∣ ≤ ε

PrS(x ∈ Gj)

and thus it implies that

Pr
(x,y)∈S

[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ] ≤
(
1 +

ε

PrS(x ∈ Gj)

)
Pr

(x,y)∼D
[∃z ∈ U(x) : h(z) ̸= y|x ∈ Gj ] +

ε

PrS(x ∈ Gj)

Supposing that ∀Gj ∈ G, PrS(x ∈ Gj) ≥ γ. By taking a max over groups Gj ∈ G, we get

OPTS
max ≤ (1 +

ε

γ
)OPTD

max +
ε

γ
.
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