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Abstract

Recent Continuous Graph Neural Networks (CGNNs) have attracted great attention due to
its merits of infinite depth without oversmoothing. However, most of the existing CGNNs
perform low-pass filtering in nature, as they are derived from discrete Laplacian-smoothing
based graph neural networks (GNNs). While prior research has shown the promising results
of high-pass filtering for node representation learning, particularly on heterophilous graphs,
there remains a need to extend it to continuous domain and explore the synergy between two
filtering channels. In this paper, by leveraging low-pass and high-pass filtering, we propose
a novel dual-channel continuous graph neural network architecture to address this gap.
In particular, we introduce a dimension masking method to coordinate the contribution
of all low and high pass filtered feature dimensions to node classification. Our aim is to
deepen the understanding of the link between high and low filters, unraveling their distinct
roles in learning node representations. To evaluate the effectiveness of our framework, we
conduct extensive experiments focusing on the node classification task of heterophilous
graphs. Our results demonstrate the competitive performance of our approach, showcasing
its robustness to oversmoothing.

Keywords: Continuous graph neural network, high-pass filtering, semi-supervised learn-
ing, node classification.

1. Introduction

In recent years, graph neural networks(GNNs) (Bruna et al., 2014; Defferrard et al., 2016;
Hamilton et al., 2017; Xu et al., 2019; Huang et al., 2023a) have become one of the most
important techniques to solve a diversity of machine learning problems on non-Euclidean
data (Tu and Neumann, 2022; Bastos et al., 2021; Jin et al., 2020) and achieved promising
performance, such as nodes classification (Wang et al., 2020), link prediction (Li et al.,
2019), chemical property prediction (Gilmer et al., 2017), and so on and so forth.

Along with the developments of more advanced GNNs, thoroughly understanding of
both of its power and pitfalls has drawn great attention. As well-know limitation of GNNs
is over-smoothing, which refers to the exponentially performance degradation for increasing
number of layers. In an attempt to better resolve this issue, many efforts have been made
to understand GNNs from different perspectives (Bodnar et al., 2022; Kang et al., 2021;
Song et al., 2021), among which continuous graph neural networks (CGNNs) have become
a rapidly emerging direction for mitigating over-smoothing. Different from most of the
existing discrete message-passing based GNNs (Chen et al., 2020), CGNNs are built on
various continuous diffusion dynamics (Xhonneux et al., 2020; Chamberlain et al., 2021b;
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Song et al., 2022), so that the convolution can be performed with infinite number of layers
(i.e., continuous layer) without loss of performance. Nevertheless, most of modern CGNNs
are based on the homophily assumption, that is, connected nodes are similar, which limits
the generality of CGNNs in real-world applications. We observe that the root of this
limitation lies in the way of feature smoothing. In fact, most CGNNs perform Laplacian
low-pass filtering (Xhonneux et al., 2020), which tend to preserves the similarity between
neighboring nodes, while discarding the distinguishing features between them. However,
the latter is decisive for node classification on heterophilious graphs.

In this paper, we particularly focus on improving performance of CGNNs on heterophil-
ious graphs from the viewpoint of the interplay between low and high pass filtering. In the
field of discrete GNNs, it is well known that low-pass filtering based models perform well on
homophilous graphs (where neighboring nodes are more likely to be similar to each other
in features or classification) (Nt and Maehara, 2019), while in contrast high-pass filtering
based models are better at dealing with heterophilious graphs (Zhu et al., 2020). In this
regard, models that can be both low and high pass filtering are preferable (Huang et al.,
2023b; Yan et al., 2022). However, most of the existing models adopt sum or weighted sum
aggregation of the features from low and high pass filters. This manner somehow limits the
expressiveness power of these two pass filters in two ways: First, the current feature aggre-
gation requires dimension alignment, i.e., features from two filtering channels need to have
the same dimensionality, which can impair the flexibility of feature learning. Second, the
summation operation may compromise the contribution of some feature dimensions (Xu
et al., 2019). It is still unclear how to coordinate the two filtering methods so as to achieve
superior performance for a wide range of graphs.

To address this issue, we propose a novel filter-synergy approach to enhance the existing
low-pass filtering based continuous models. Building upon previous research (Xhonneux
et al., 2020), our method leverages the link between diffusion dynamics and continuous
messaging in GNNs to theoretically derive the high-pass filtering based continuous graph
neural network, which can enjoy the deep architecture and be nearly free of over-smoothing.
To coordinate the low and high pass filtering results (i.e., learned representations at steady
states), we introduce a dimension masking method, which serves as a feature selector to
learn the task-specific feature dimensions, enabling the model to be better adaptive to a full
spectrum of heterophily of the graph structure. We show the state-of-the-art performance
of our model over both strong discrete and continuous models on the benchmark datasets.

In summary, the main contributions of our work are as follows:

• We introduce a high pass filtering based continuous graph neural network model,
which can bring significant gains to supervised node classification on graphs with
strong heterophily.

• To exploit the advantages of high-pass filtering, we propose a novel feature aggrega-
tion method to fuse features from low-pass and high-pass networks respectively by
leveraging masking mechanism at dimension level, which can flexibly coordinate the
two types of features and offer more distinguishable representations for each class of
nodes.
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2. Preliminaries

Notation. Suppose we have an undirected connected graphG = (V,E) with f -dimensional
attributes X ∈ Rn×f on the nodes, where V is the set of nodes, E is the set of edges, and
n = |V | is the number of nodes. The adjacency matrix associated with graphG is denoted as
A ∈ Rn×n. LetD = diag(di) be the diagonal degree matrix. The Graph Laplacian is defined
as L = D−A, which is Symmetric Positive Semi-Definite (SPSD) (Chung, 1997). Through
the eigenvalues and eigenvectors, we have L = UV UT , where V = diag([λ1, λ2, · · · , λn]).
In addition to L, some other variants are also commonly used, such as the symmetric

normalized Laplacian Lsym = D− 1
2LD− 1

2 and the random walk normalized Laplacian
Lrw = D−1L = I − D−1A. Just as graph Laplacians and their variants are viewed as
high-pass filters for graph signals, similarly, low-pass filters for graph signals can be seen

as Arw = I − Lrw = D−1A,Asym = I − Lsym = D− 1
2LD− 1

2 . Because they are real
symmetric matrix, their eigenvalues satisfy λi(Arw) = λi(Asym) ∈ (−1, 1].Then, the graph

with self-loop at every node can be represented as Ã = A + I, and the corresponding di-
agonal degree matrix is D̃ = D+ I. Thus, the self-looped adjacency can be symmetrically
normalized as Asym = D̃−1/2ÃD̃−1/2 and Lsym = I − D̃−1/2ÃD̃−1/2.
GNN. The renormalized affinity matrix basically adds a self-loop to each node in the graph,
and is widely used in GCN (Kipf and Welling, 2017) as follows:

H = ÂsymReLU(ÂsymXW (0))W (1), (1)

where W (0) is a layer-specific trainable weight matrix, which can be learned by minimizing
the cross-entropy between ground truth and predicted labels on the training set T , as

L = −
∑
vi∈T

C∑
k=1

yik ln zik, (2)

in which z = softmax(H) is the output of last layer.
Neural ODEs. In this paper, we adopt a continuous Ordinary Differential Equation (ODE)
formulation, which is expressed as follows:

x(T ) = x(0) +

∫ T

0

∂x(t)

∂t
dt,

∂x(t)

∂t
= F (x(t), t). (3)

Here, x can be a scalar, vector-valued, or matrix-valued variable, and F is a function that we
parameterize to define the hidden dynamics. The work by (Chen et al., 2018) demonstrated
how it is possible to perform backpropagation through such an ODE equation, enabling us
to use it as a fundamental building block for a neural network.

3. Model

In this section, we present our method, which aims to improve the learning of node repre-
sentations for supervised node classification tasks using high-pass and low-pass filters. Our
approach involves several key steps. First, we apply a linear transformation layer, denoted
as fθ(·), to map the features of all nodes into a latent space, represented as H(0) = fθ(X).
This transformation helps capture the initial representations of nodes. Next, we employ
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Ordinary Differential Equations (ODEs) to define the continuous dynamics of node repre-
sentations. ODEs enable the efficient capture of long-term dependencies between nodes. To
fully leverage these dependencies, we design a low-pass filter, denoted as Asym, and a high-
pass filter, denoted as Lsym, to separate the low-pass and high-pass signals from the node
representations. The separation of low-pass and high-pass signals allows us to design tar-
geted ODEs that not only define the continuous dynamics of node representations but also
possess discriminative properties. We construct two ODEs based on different frequencies,
drawing inspiration from existing diffusion-based graph methods. In both ODEs, each fea-
ture channel (i.e., dimension) represented by a node at a given state evolves independently,
taking into account the fusion of label information with frequency information. This design
choice enables better integration and utilization of the node representations for downstream
tasks. A crucial step in our framework is the establishment of a coordination masker. This
masker takes advantage of the complementarity between high-pass and low-pass filters. By
applying the mask to the node representations (HL(t) and HH(t)) obtained at the end
time t, the representations can be fully integrated and effectively utilized for downstream
tasks. Overall, our method combines ODEs, high-pass and low-pass filters (see Section
3.1), and filtering coordination to improve node representation learning for supervised node
classification tasks (see Section 3.2).

3.1. Low and High-Pass Filtering

Since the nodes in the graph are connected to each other and the attributes or categories
of the nodes may be different, more detailed operations are performed when disseminating
information between different nodes. Some works (Bo et al., 2021; Huang et al., 2023b)
proposes low-pass and high-pass filter effects to make nodes more similar and dissimilar,
respectively. Inspired by the existing graph diffusion-based method CGNN (Xhonneux
et al., 2020), for the representation propagation process, we consider information diffusion
from two channels, i.e., low-pass and high-pass:

H
(n+1)
L =

i=0∑
n

ÂsymH(0) = (Âsym − I)−1(Â
n+1

sym − I),

H
(n+1)
H =

i=0∑
n

L̂symH(0) = (−Âsym)−1((I − Âsym)n+1 + I).

(4)

where we see that the representation H
(n+1)
L ,H

(n+1)
H ∈ R|V |×d at step n+1 incorporates all

the information propagated up to n+1 steps with the initial representation H(0) = fθ(X).
Intuitively, each node at stage n+1 learns the node information from its neighbours through

H
(n+1)
L = ÂsymH

(n)
L +H(0),H

(n+1)
H = L̂symH

(n)
H +H(0) and remembers its original node

features through H(0). This allows us to learn the graph structure without forgetting the
original node features.

In view of the previous research (Klicpera et al., 2019; Xhonneux et al., 2020), we can
clearly understand the effectiveness of the discrete propagation process in Eq. 4, so we
replace n with a continuous variable t ∈ R+

0 , convert the discrete form into a continuous
diffusion form and use ODE to characterize this continuous spread the dynamics. We treat
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the summation in Eq. 4 as the Riemann sum of the integral from time 0 to time t = n+ 1,
which allows us to move naturally from discrete propagation processes to the continuous
case, where we separate the low-pass filtering and high-pass filtering has undergone a trans-
formation, as follow:

∂HL(t)

∂t
= lnÂsymHL(t) +H(0),

∂HH(t)

∂t
= lnL̂symHH(t) +H(0) = ln(I − Âsym)HH(t) +H(0),

(5)

whereH(0) = fθ(X) is the output of the encoder fθ(·). We provide proof in the appendix A.
In practice, ln(Âsym), ln(L̂sym) in Eq. 5 is intractable to compute, hence we approximate

it using the first order of the Taylor expansion, i.e. ln(Âsym) ≈ Âsym − I, ln(I − Âsym) ≈
−Âsym which gives us:

∂HL(t)

∂t
= (Âsym − I)HL(t) +H(0),

∂HH(t)

∂t
= (−Âsym)HH(t) +H(0). (6)

These are the two ODEs used in our model EGLD. We can find that the process of continu-
ous diffusion at high-pass can actually be regarded as the process of negative sign diffusion
at low-pass. The two ODEs we use can be understood theoretically. Specifically, the node
representation matrix H(t) at time t has an analytical form, and its form expresses the
following proposition.

Proposition 1 The analytical solution of the ODEs defined in Eq. 6 are given by:

HL(t) = (Âsym − I)−1(e(Âsym−I)t − I)H(0) + e(Âsym−I)tH(0),

HH(t) = (L̂sym − I)−1(e(L̂sym−I)t − I)H(0) + e(L̂sym−I)tH(0).
(7)

We provide proof in the appendix. From the proposition, since the eigenvalues of (Âsym−I)

and −Âsym are in the interval [−2, 0) and (−1, 1], we can obtain the values of HL(t) and
HH(t) changing with time t respectively.

Proposition 2 If t to ∞, HL(t) can be viewed as the sum of all different orders of prop-
agation information, essentially having an infinite number of discrete propagation layers,
HH(t) can be seen as suppressing low-pass signals when the eigenvalue λ is at (0, 1), and
when λ is at (1, 2], it makes the high eigenvalues achieve negative feedback.

Let t to ∞. Then we can approximate HL(t), HH(t) as:

HL(t) ≈ (I − Âsym)−1H(0) ≈ (

∞∑
i=0

Âi
sym)H(0),

HH(t) ≈ (I − L̂sym)−1H(0) ≈ (Âsym)−1H(0).

(8)

These are approximated by t time to ∞, limt→∞e(Âsym−I)t = 0, limt→∞e(−Âsym−I)t = 0.
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3.2. Filtering Coordination

In fact, the representations propagated between nodes in different frequency states are very
different, how can they be well combined and used in downstream tasks? Generally, addition
(i.e., summing) and concatenation fusion are commonly used. Previous study (Xu et al.,
2019) has shown that simple addition or global mixing is very easy to cover up important
information and cause a lot of noise information. Although the concatenation method
provides more information than addition, it is easy to cause redundancy of information and
affect the representation.

To this end, we design a masking method for dimension reduction, based on the coor-
dination principle: encouraging the consistency of feature dimensions on the nodes in the
same class. Moreover, due to the complementarity of high and low pass filtering, repre-
sentations in different states are complementary masked. First, we obtain binarized mask
information through the representations HL(t) and HH(t) at steady states of the CGNNs
from two frequency channels. In order to enable the model to perform gradient propagation,
we use activation function operations to perform approximations to achieve the effect of the
mask, which reads as

M = Sigscal([HL(t1),HH(t1)]W 1 + b1), (9)

where M ∈ Rn×d, W 1 ∈ R2d×d, Sigscal(·) = Sigmoid(·
1
τ ) is to use τ to scale the value to

approximate the mask effect (i.e. 0, 1). The [HL(t1),HL(t1)] indicates the concatenation
of the two representations HL(t1) and HH(t1). Here we simply use a linear projection with
bias b1. After obtaining the masks for feature dimension reduction, we can create the final
node representations by fusing the masked features

Hfinal = fθ([M ⊙HL(t1), (1−M)⊙HH(t1)]). (10)

Here, we demonstrate how to implement the coordination principle. We perform mask-
ing regularization w.r.t classification by introducing label information. It is expected that
the masking on the nodes with the same label should be in the same dimension, and vice
versa, as follows:

Ldis = ||GGT − I||2F , GT = softmax((MT
|S|B)), (11)

where the label information B = one − hot(Y |S|)B ∈ R|S|×c,Y |S| represents the training
set label, |S| is the number of training set labels, and then combine the mask matrix
M |S| to obtain the mask dimension information of each category, G ∈ Rc×d represents the
distribution of mask position dimensions for each category, || · ||F indicates the Frobenius
norm. In this way, the final representations will be more conducive to the classification of
nodes.

3.3. Objective

Armed with the key model components introduced in the previous two sections, i.e. high
and low pass filtering and dimension coordination, we next introduce our jointly optimized
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classification loss and masking regularization for feature coordination. The overall objective
function can be stated as:

L = Lclass + λLdis = −
∑
vi∈T

C∑
k=1

yik ln zik + λ||GGT − I||2F , (12)

where z = Softmax(Hfinal), λ is the hyper-parameters that control the contribution of
Ldis.

The computational complexity of the Eq.6 is O(2|E|dnt), where nt, |E| and d are number
of time steps in time interval [0, T ], number of edges and number of feature dimension,
respectively. The complexity of the mask part of the fused representation is O(2nd2 +
2ndc+ |U |dc+ c2d2), where |U | and c are the number of nodes in the training set and the
number of label categories, respectively. So the complexity of EGLD is O(|E|dnt + nd2),
which is linearly related to the number of nodes and edges.

Table 1: Mean accuracy±stdev over different data splits on the ten datasets. The best per-
formance for each dataset is highlighted in bold and the second best performance
is underlined for comparison.

Dataset Chameleon Squirrel Film Texas Wisconsin Cornell Cora Citeseer Pubmed
Hom level 0.23 0.22 0.22 0.11 0.21 0.30 0.81 0.74 0.8 Avg.
#Nodes 2,277 5,201 7,600 183 251 183 2,708 3,327 18,717 Rank
#Edges 31,421 198,493 26,752 295 466 280 5,278 4,676 44,327
#Classes 5 5 5 5 5 5 6 7 3

MLP 46.93±1.7 29.95±1.6 34.78±1.2 79.19±6.3 83.15±5.7 79.79±4.2 75.13±2.7 73.26±1.7 85.69±0.3 18.6
GCN 65.92±2.5 49.78±2.0 27.51±1.2 55.14±5.16 51.76±3.06 60.54±5.3 86.98±1.27 76.50±1.36 88.42±0.5 17.7
GAT 65.32±1.9 46.79±2.0 29.03±0.9 52.16±6.63 49.41±4.09 61.89±5.05 87.30±1.10 76.55±1.23 86.33±0.48 15.6
GraphSAGE 58.71±2.3 41.05±1.1 34.37±1.3 82.70±5.9 81.76±5.6 75.59±5.2 86.60±1.8 75.61±1.6 88.01±0.8 16.9
MixHop 60.50±2.53 43.80±1.48 32.22±2.34 77.84±7.73 75.88±4.90 73.51±6.34 87.61±0.85 76.26±1.33 85.31±0.61 16.8
GCNII 63.86±3.04 36.37±1.6 34.40±0.7 77.57±3.8 80.39±3.4 77.86±3.7 88.37±1.25 77.33±1.48 90.15±0.43 11.4

H2GCN 59.56±1.8 37.90±2.0 35.55±1.6 82.16±5.2 85.88±4.3 82.16±6.0 88.13±1.4 76.73±1.4 88.46±0.7 12.9
Geom-GCN 60.90±2.8 38.14±0.92 31.63±1.15 60.18 67.57 64.12 85.35±1.57 78.02±1.15 89.95±0.47 15.9
FAGCN 45.13±2.2 31.77±2.1 34.51±0.7 72.43±5.6 67.84±4.8 77.06±6.3 87.87±0.8 76.76±1.6 88.80±0.6 16.9
GPRGNN 46.58±1.71 31.61±1.24 34.63±1.22 78.38±4.36 82.94±4.21 80.27±8.11 87.95±1.18 77.13±1.67 87.54±0.38 15.4
GGCN 71.14±1.84 55.17±1.58 37.54±1.56 84.86±4.55 86.86±3.29 85.68±6.63 87.95±1.05 77.14±1.45 89.15±0.37 6.2
Diag-NSD 68.68±1.73 54.78±1.81 37.79±1.01 85.67±6.95 88.63±2.75 86.49±7.35 87.14±1.06 77.14±1.85 89.42±0.13 5.8
O(d)-NSD 68.04±1.58 56.34±1.32 37.81±1.15 85.95±5.51 89.41±4.74 84.86±4.71 86.90±1.13 76.77±1.57 89.49±0.40 6.3
Gen-NSD 67.93±1.58 53.17±1.31 37.80±1.22 82.97±5.13 89.21±3.84 85.68±6.51 87.30±1.15 76.32±1.65 89.33±0.35 8.2
ACM-GCN 66.93±1.85 54.40±1.88 36.28±1.09 87.84±4.40 88.43±3.22 85.14±6.07 87.91±0.95 77.32±1.70 90.00±0.52 5.8
AERO-GNN 71.58±2.4 61.76±2.4 36.57±1.1 84.35±5.2 84.80±3.3 81.24±6.8 - - - -

BLEND 60.11±2.09 43.06±1.39 35.63±0.89 83.24±4.65 84.12±3.56 85.95±6.82 88.09±1.22 76.63±1.60 89.24±0.42 10.3
GRAND 54.63±2.54 40.05±1.50 35.62±1.01 75.68±7.25 79.41±3.64 82.16±7.09 87.36±0.96 76.46±1.77 89.02±0.51 15.2
CGNN 46.89±1.66 29.24±1.09 35.95±0.86 81.35±4.05 74.31±7.26 66.22±7.69 87.10±1.35 76.91±1.81 87.70±0.49 17.0
Cont Diag-NSD 62.06±3.84 38.17±9.29 36.85±1.21 82.97±4.73 86.47±2.55 80.00±6.07 86.88±1.21 76.56±1.19 89.47±0.42 12.0
Cont O(d)-NSD 63.18±1.69 40.40±2.01 36.39±1.37 82.43±5.95 84.50±4.34 72.16±10.40 86.70±1.24 75.19±1.67 89.12±0.30 14.7
Cont Gen-NSD 66.40±2.28 52.57±2.76 37.28±0.74 83.78±6.62 85.29±3.31 84.60±4.69 87.45±1.35 77.54±1.72 89.67±0.40 7.2
CDE-GraphBel 56.34±3.2 39.19±2.12 35.88±0.9 87.57±3.24 87.84±4.87 85.14±5.95 84.54±1.48 76.36±1.8 88.61±0.42 13.3
GREAD-FB 65.83±1.10 50.57±1.52 37.70±0.51 87.03±3.97 88.04±1.63 85.95±5.64 88.01±0.80 77.42±1.93 90.08±0.46 5.6
EGLD 76.86±1.90 68.83±2.14 36.43±0.74 87.07±2.92 89.54±2.91 86.55±5.80 88.20±1.47 77.41±1.59 89.74±0.50 2.6

4. Experiment

In order to verify the effectiveness of the continuous model we designed using two Laplacian
flows for information propagation fusion, we conduct experiments to answer the following
questions:
Q1 Is our model superior to the existing strong baselines, including continuous or discrete
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methods?
Q2 Can we solve the problems of deepening convolution layers without over-smoothing and
achieving good performance on graphs with strong heterophily at the same time?
Q3 Is it meaningful to introduce high-pass filtering, and what role does it play compared
to low-pass filtering?

4.1. Node classification

To answer Q1, we evaluate the node classification performance of the proposed mothed and
compare it with state-of-the-art heterophily-oriented GNN models on heterophilious graphs.
Moreover, we test our model on some benchmark graph datasets with strong homophily that
cover a full spectrum of heterophily.

Datasets. We evaluate the performance of EGLD model and existing GNNs in node
classification on various real-world datasets (Sen et al., 2008; Pei et al., 2020; Rozember-
czki et al., 2021; Tang et al., 2009; Yang et al., 2016). For all benchmarks, we use the
feature vectors, class labels, and 10 random splits (48%/32%/20% of nodes per class for
train/validation/test1 ) from (Pei et al., 2020).

Baselines.We compare our scheme with following methods, some of which are shown
to be competitive on various graphs: Multilayer Perceptron (MLP), SGC (Wu et al.,
2019), Graph Convolutional Network (GCN) (Kipf and Welling, 2017), Graph Attention
Network(GAT) (Velickovic et al., 2018), Mixhop (Abu-El-Haija et al., 2019) and GC-
NII (Chen et al., 2020). For the heterophilious datasets, we specifically compare our model
with heterophily-oriented methods, namely, two variants of H2GCN (i.e., H2GCN-1 and
H2GCN-2) (Zhu et al., 2020), Geom-GCN (Pei et al., 2020), FAGNN (Bo et al., 2021) and
one variant of GCNII (Chen et al., 2020) wherein parameters are shared between layers,
GPRGNN (Chien et al., 2021), GGCN (Yan et al., 2022), ACM-GCN (Luan et al., 2022),
AERO-GNN (Lee et al., 2023). Additionally we compare to recent ODE-based GNN mod-
els, Continuous Graph Neural Networks (Xhonneux et al., 2020), GRAND (Chamberlain
et al., 2021a), BLEND (Chamberlain et al., 2021b), Neural Sheaf Diffusion (Bodnar et al.,
2022)which includes continuous and discrete three variant models, CDE-GraphBel (Zhao
et al., 2023), GREAD-FB (Choi et al., 2023).

Model Setting. We implement the proposed EGLD and some necessary baselines using
PyTorch and PyTorch Geometric, a library for deep learning on irregularly structured data
built upon PyTorch. We try our best to provide a rigorous and fair comparison between
different models. To mitigate the effects of randomness, we run each method 10 times and
report the average performance. For the baseline methods, whose results on the benchmark
datasets are publicly available, we directly present the results. For the models without
publicly reported results, we use the original codes published by their authors and fine-tune
them.

Experimental Results. To answer Q1, we present the test accuracy results of dif-
ferent GNN models on the supervised node classification task across datasets with varying
homophily levels. The results are summarized in Table 1. From the table, we observe
that our proposed EGLD model achieves new state-of-the-art performance on almost all

1. (Pei et al., 2019) claims that the ratios are 60%/20%/20%, which are different from the real data splits
shared on GitHub.
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heterophilous graphs (where h < 0.5), surpassing the best-performing existing models.
Remarkably, EGLD also demonstrates strong performance on homophily graphs. It out-
performs most methods across all datasets, as evidenced by its average rank of 2.3. This
indicates the model’s exceptional adaptability to graphs at various homophily levels. Fur-
thermore, EGLD achieves competitive accuracy when compared to leading GNNs designed
specifically for homophilous graphs. It is worth noting that, in previous research (Bodnar
et al., 2022) and based on experimental results, continuous models typically exhibit infe-
rior performance compared to discrete models. However, our continuous model, EGLD,
demonstrates a significant improvement in performance compared to the ODE-based GNN
model. This improvement can be attributed to the introduction of high-pass filtering and
the effective coordination of the final representations.
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Figure 1: Model performance at different layers or end times.

Table 2: Ablation study.
Datasets Cora CiteSeer Pubmed Chameleon Squirrel Film Connell Wisconsin Texas

w/o L-F 30.94 23.91 68.41 61.16 51.36 31.17 62.70 72.35 74.05

w/o H-F 87.66 76.84 87.17 54.05 41.37 30.82 61.62 57.05 62.97

w/o C-Mask 87.80 77.00 89.23 73.68 56.73 36.01 85.40 86.86 85.79

EGLD 88.20 77.41 89.74 76.86 68.83 36.43 86.55 89.54 87.07

4.2. Depth and PDE Solvers

There are various numerical methods (Euler, RK4, DOPRI5) for solving the diffusion equa-
tion, and these solvers can be divided into single-step and multi-step schemes, where multi-
step schemes involve using multiple function evaluations at different time steps to compute
the next iteration. We compared running EGLD using the Euler method, DOPRI5 and
the adaptive Runge-Kutta 4 method. Finally, our model chooses the Euler solver with
better performance and computational efficiency. To answers Q2, our model can avoid
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Figure 2: The performance of the model with random mask high and low frequency dimen-
sion information.

the oversmoothing problem, we experimentally show the performance of different methods
with different numbers of layers (e.g., GGCN and GCNII) or end times T (e.g., EDLD),
we performed an experiment using the Euler, varying the integration time T while holding
the other hyper-parameters fixed. As shown in the Figure 1, GCN (red) achieves the best
performance at the second layer under both Cora and Chameleon. As the number of layers
increases, over-smoothing occurs and the performance drops sharply. However, the perfor-
mance of the two models GGCN (yellow) and GCNII (green) that perform well in alleviating
oversmoothing remains stable as the number of layers increases. Compared with our model
EGLD (blue), as the time step increases, the performance under Cora first increases and
then has a small decline, while the performance under Chameleon maintains an upward
trend. This is just like the theorem we analyzed, when t → ∞ in the high-pass filtering, the
low-frequency signal has a tendency to amplify to infinity, and the high eigenvalues part
presents a negative feedback effect. As a result, our model has a small performance drop
on homophily graphs when the time step is relatively large, but it can tend to be stable or
even slightly improved on heterophilious graphs.

4.3. Ablation Study

To answer Q3, we performed a series of experiments and analyses. Firstly, we removed
the filtering coordination from the EGLD model and instead applied the mask method on
random dimensions to complementarily fuse low-pass and high-pass information. Figure 2
illustrates the results, where the x-axis represents the ratio of dimensions covered by low-
pass information (m, the number of covered dimensions divided by the total number of
dimensions), and the ratio of dimensions covered by high-pass information (1 − m). The
figure shows that as the proportion of low-pass masks increases, the performance of the
model on homogeneous graph data (i.e. cora and citeseer) gradually declines. In contrast,
the performance on heterophily graph data (i.e. chameleon and squirrel) initially improves
and then decreases. Notably, at a small proportion (m = 0.2), the performance on homo-
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geneous graphs exhibits a slight improvement, demonstrating the effectiveness of high-pass
information in conjunction with low-pass information.

Next, we conducted ablation experiments to evaluate the effectiveness of different com-
ponents in our model: low-pass filtering (L-F) and high-pass filtering (H-F), corresponding
to the first and second terms in the Eq.6, and label-based mask constraint (C-L) in the Eq.11.
These experiments were conducted separately on homophily and heterophily datasets. The
Table 2 clearly indicate that removing high-pass filtering leads to a significant drop in per-
formance on heterophily graphs, emphasizing the importance of high-pass filter in handling
high heterogeneity. Similarly, removing low-pass filtering significantly reduces the perfor-
mance on all datasets, suggesting that low-pass filter play a dominant role in representation
learning. Additionally, we analyzed the impact of removing the filtering coordination. By
removing this constraint, the mask becomes more random, resulting in insufficient infor-
mation for fusion and utilization. Consequently, the model’s performance slightly declines.
These findings demonstrate that the effective utilization of high-pass information are crucial
for model performance.

In summary, our experimental results show that low-pass filtering dominates in graph
representation learning, while high-pass filtering is effective not only in heterophily data,
but also in homophily data. The key is to effectively coordinate low-pass and high-pass
information.

5. Related Work

Oversmoothing and Heterophily. In some early works, different methods were used
to obtain and aggregate high-order neighbor information to adapt normal GNNs to het-
erophily networks. For example, H2GCN (Zhu et al., 2020) spliced high-order neighbors,
Geom-GCN (Pei et al., 2020) aggregated distant nodes in latent space, and CPGNN (Zhu
et al., 2021) used compatibility matrix to learn the likelihood of connections between nodes
in different categories. Some recent works have jointly solved the two problems of over-
smoothing and heterophily. For example, GPR-GNN (Chien et al., 2021) learns a weight
for each step of propagation. GGCN (Yan et al., 2022) analyzes the performance of linear
SGC (Wu et al., 2019) on random attribute maps. Sheaf (Bodnar et al., 2022) uses cell
bundle theory and focuses on diffusion. Common to their work on partial differential equa-
tions is the discovery of negative-signed side benefits in the propagation process. However,
in our work, using high and low frequency filtering to propagate information can also play
the same role. Although FAGCN (Bo et al., 2021) and ACM-GCN (Luan et al., 2022) both
integrate low-pass and high-pass filter. In contrast, our work mainly focuses on using graph
partial differential equations to simulate message propagation and close labels at the time
of fusion.

Neural ODEs. Since (Chen et al., 2018) introduction of neural ODEs, this topic
has become an emerging field, and subsequent works (Dupont et al., 2019; Finlay et al.,
2020) have explored and extended it into new areas. In many follow-up works, neural ODE
was applied to GNN: (Avelar et al., 2021) proposed to use continuous residual module
for GNN; (Xhonneux et al., 2020) extending GNN to continuous time is the solution of
constant linear diffusion partial differential equation; GRAND (Chamberlain et al., 2021a)
regards GNN as a continuous diffusion process, and spread through the graph diffusion
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equation; sheaf introduces the cell beam diffusion operator to control the diffusion process;
ACMP (Wang et al., 2022) is inspired by the particle reaction-diffusion process, and models
the repulsive and gravitational interactions as dual flow directions between nodes. (Zhao
et al., 2023)incorporates the principle of heterogeneity by using the convection-diffusion
equation (CDE) to model information flow on nodes.

6. Conclusion

This paper presents a novel exploration of continuous high-pass filtering and establishes
connections between high-pass and low-pass filtering. Moreover, we investigate the coor-
dination method between these continuous processes at feature dimension level, aiming to
improve adaptation to downstream tasks on a variety of graph structures. Through em-
pirical experiments, we demonstrate the superior efficacy of our approach compared to the
existing strong methods. Additionally, we validate the effectiveness of each component in
our method. We note that our approach essentially involves constructing a dual-channel
continuous method. However, as part of future work, we intend to enhance model efficacy
by obtaining high and low frequency information via a single continuous process. This
improvement will streamline the computational complexity of our model while maintaining
its effectiveness.
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Appendix A. Proof

The starting point is to see Eq. 4 as a Riemann sum, here we use high-pass filtering L̂sym,
i.e.:

n+1∑
i=1

L̂sym
0+(i+1)△̇t

H(0)△t (13)

Now letting n → ∞ we get the following integral

HH(t) =

∫ t+1

0
L̂s

symH(0)ds. (14)

The derivative is then given by

∂HH(t)

∂t
= L̂t+1

symH(0). (15)

For the convenience of solving, we solve the ODE through the second-order ODE and then
integrate.

∂2HH(t)

∂t2
= lnL̂symL̂t+1

symH(0) = lnL̂sym
∂HH(t)

∂t
. (16)

Now, integrating again
∂HH(t)

∂t
= lnL̂symH(t) + const, (17)

and solving for the constant using the fact that

H(0) =

∫ 1

0
L̂s

symH(0)ds =
L̂sym − I

lnL̂sym

H(0), (18)

we get that

∂HH(t)

∂t
|t=0 = L̂symH(0) = lnL̂symH(0) + const ⇒ const = H(0) (19)

Therefore, we get the final high-pass filtered ODE

∂HH(t)

∂t
= ln(L̂sym)HH(t) +H(0) = ln(I − Âsym)HH(t) +H(0), (20)

in the same way, the ODE of low-pass filtering can be obtained.
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