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In this supplementary material, in Section 1, we provide the proof of adaptive weight
assignment of gradient mentioned in the paper. We present additional experiment results
for the ablation studies in Section 2. Furthermore, we visualize the dynamic adjustment of
example sampling during training in Section 3.

1. Proof of Adaptive Weight Assignment of Gradient in Balance Loss

To make LBalance serve to minimize the positive distance and maximize the negative dis-
tance, we define different similarity measure functions s(d) for positive and negative dis-
tances to determine the direction and magnitude of the gradient descent, which can achieve
adaptive weight assignment of gradient. The following is the proof.

As mentioned in the paper, the similarity measure functions used in balance loss are:

sposi = (dposi − Ppos)
α
,

snegi = (dnegi − Pneg)
α
.

(1)

Additionally, the selection of triplet tuples and the computation of negative and positive
distances can be described as follows:
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Combined with Eq. (1) and Eq. (2), the gradient of our overall loss function can be
represented as:
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(3)

where N denotes the batch size, D denotes
{
p1, p2, . . . , pN ; p+

1 , p+
2 , . . . , p+

N

}
represent-

ing all embeddings of the corresponding patches in a batch. p−
i and p+

i represent the
selected patch embeddings that have the maximum or minimum distance from the anchors.
In our settings, ∂L

∂sposi
is equal to 1 for positive and negative similarity measure functions, so

combined with Eq. (1) the above equation can be reduced to
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(4)

Note that in Eq. (4), α is selected to range from even numbers greater than or equal to
2 and α (dnegi − Pneg)

α−1
is a negative number when it comes to actual training, so the

direction of gradient decline is consistent with the triplet loss. The original triplet loss and
its derivative can be represented as:

LTriplet =
1

N

N∑
i=1

max (0, t+ dposi − dnegi ) , (5)
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when compared Eq. (3) with Eq. (6),
∂sposi

∂dposi
and

∂sneg
i

∂dneg
i

are the terms that differentiate

the derivative of balance loss and the derivative of triplet loss. In s(d), the introduction of
the exponential term allows the updated weight of its gradient to automatically fit the size
of the distances of positive or negative examples. The behaviors of triplet loss and balance
loss and their derivatives are shown and compared in Figure 1.

In the backpropagation of balance loss, due to the similarity measure functions s(d),
the derivation of the network will generate additional functions with respect to the value
of distances. Usually, we can set them as a primary function so that their gradient values
vary linearly with the increase or decrease of distances, as shown in Figure 1 (c, d), so that
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the network can pay more attention and produce larger weight for patch embeddings with
smaller dnegi and larger dposi in the backpropagation process of each batch.
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Figure 1: Comparison between balance loss and triplet loss, and a schematic of their re-
spective gradients. (a), (c) represent the positive part loss and its gradient, while
(b), (d) represent the negative part loss and its gradient. Purple indicates the
proposed balance loss, blue indicates triplet loss. The green region is the actual
distribution range of L2 distances of patches after normalization, which indicates
the action range of loss functions.

2. Ablation Studies

In this section, we present detailed analyses of the contribution made by each component of
Self-TNet towards the overall performance, as well as the factors that influence its efficacy.
Specifically, we trained different models on Liberty dataset and tested them on the Hpatches
(Balntas et al. (2017)) matching task (data split ’full’) to obtain the influence of our two
modifications - loss function and annealing training.

2.1. Balance Loss

Adaptive weight assignment of gradient. In Table 1, compared to triplet loss, our
balance loss yields a performance improvement of approximately 0.7 mAP. Additionally,
we have implemented a version of balance loss without unbiased processing through a self-
supervised network, which achieves an mAP of 56.53. In contrast, the network that uses
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Modification Choice
Has unbiased
processing

MAP(%)

Triplet loss 55.67

Loss Function
Triplet loss ✓ 56.10
Balance loss 56.53
Balance loss ✓ 56.83

Annealing
Training

AT+Triplet loss 56.25
AT+Triplet loss ✓ 56.59
AT+Balance loss 57.05
AT+Balance loss ✓ 57.45

Table 1: Ablation experiments to explore the performance improvement of each modifica-
tion. The result is tested on data split ’full’ from the Hpatches benchmark. mAP
score for subtask image matching is reported.

the complete balance loss results in an mAP of 56.83. Overall, further performance gains
of approximately 0.3 to 0.4 are achievable with our complete balance loss as compared to
its unbiased processing-free version. These results provide evidence of the effectiveness of
our improvement strategy and the compatibility between different modifications.
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Figure 2: Experiment results. (a): Performance comparison of the models with and without
a supervising network. (b): Performance comparison of the models with triplet
loss and balance loss before and after annealing training.

Unbiased processing with a supervising network. In Table 1, we observe that
unbiased processing typically operates effectively in conjunction with other components, and
can result in a moderate performance gain when integrated into models. Furthermore, we
have implemented unbiased processing to improve the performance of the original triplet
loss. This adaptation yields an mAP increase from 55.67 to 56.10. Figure 2(a) shows
that as the number of training epochs increases, the mAP performance of the model with
balance loss but without unbiased processing tends to first increase and then decrease.
Compared with the unbiased processing-free version, the introduction of the supervising
network alleviates the problem of the model overly focusing on difficult examples in the
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later stages of training, and provides a more relaxed selection interval for the optimal model,
without worrying about the timing of early stopping. At the same time, Figure 2(a) shows
the mean and variance of the performance using the balance loss (no unbiased processing)
with 4 different random seeds trained after 22 epochs under the same settings, which has
a larger variance compared with the balance loss. Thus, the supervising network can also
help the supervised network to improve performance stability.

2.2. Annealing Training

The main hyperparameters in AT are the step sizes of bs and thr. In this paper, we use bs
decreasing by 128 at a time and thr increasing by 0.05 at a time as a general adjustment
strategy. In general, smaller step sizes mean smoother transitions between the two training
phases and usually better performance, but they also increase the computational cost. Here
we balance the effects of both to choose the hyperparameters.

AT has a similar effect on the performance improvements shown in Figure 2(b), as long
as the model has previously undergone the HNS process. In addition, we can see from Fig-
ure 2(b) that the model trained with balance loss can get more performance improvement
in the annealing training. This can be attributed to the fact that the balance loss can han-
dle the difficulty of the training examples by assigning more appropriate adaptive weights
than the triplet loss, thus helping to learn more abstract rules from the examples. This
proves that our new loss function and training strategy can collaborate to provide the best
performance.

2.3. Influence of Hyperparameters
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Figure 3: Experiment results. (a): The effect of hyperparameter γ on the model perfor-
mance. (b): The effect of hyperparameters threshold and upper on the model
performance.

Attention Coefficient γ when constructing balance loss. According to the pre-
vious discussions, the γ can be interpreted as a parameter here that balances the attention
between positive and negative distances. Specifically, a value greater than 1 leads to greater
attention for negative part, and a value less than 1 indicates greater attention for positive
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part. The influence of the magnitude of hyperparameter γ on the final mAP performance of
the model can be seen in the Figure 3(a). Through hyperparameter search, we found that
the model achieved the highest mAP performance when A=1.05 for the current training
settings.

Upper and threshold in sampling unbiased processing. The hyperparameter
values of upper and threshold can be used to adjust the mitigation of weight for hard
examples. Usually, the higher the threshold value means the higher the magnitude of
alleviation, and the higher the upper value means the higher the number of samples involved
in mitigation. The influence of upper and threshold on performance is shown in Figure 3(b).
In addition, for models that can achieve similar performance in preliminary training, we
found that selecting models that trained at a lower threshold and a lower upper conditions
as possible could lead to larger performance improvement in subsequent annealing training.

3. Visualizations of the Training Process

The visualization of training sample distributions as training proceeds:
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Figure 4: Positive and negative distance distributions with different epochs. As the train-
ing progresses the positive distance distribution tends to move in the positive
direction of the x-axis, while the negative distance distribution tends to move in
the opposite direction. The visualization is performed by taking the first batch
in each iteration.

The adaptive variation of the zero position Pneg as training proceeds:
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Figure 5: Adaptive changes of Pneg values during gradient modulation.
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