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Abstract

Stroke classification is a crucial step for applications with online handwritten input. It is a
challenging task due to the variations in writing style, complex structure, long contextual
semantic dependence of written content and etc. In this work, we propose a method called
Long-Range Graph U-Nets, which involves using a novel node and edge clustering graph
pooling layer in the encoder block and a multi-level feature fusion strategy. Such operations
guide the model to leverage both temporal and spatial contextual information, establish
long-range semantic dependencies, and effectively reduce redundant information caused
by local instances of the same category. Extensive experiments conducted on publicly
available online handwritten document datasets, demonstrate that our proposed method
outperforms previous methods by a significant margin, particularly in the List category,
and achieves state-of-the-art performance.
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1. Introduction

With the broad application of intelligent interactive tablets, automatic recognition of freely
handwritten ink documents has become an increasingly important research topic. Stroke
classification, aiming to divide the strokes into different categories, is a key component of the
handwritten ink analysis system. The difficulty of the problem can be summarized into two
aspects, one is the complexity of shape structure, variation of writing styles and complex
2D structure. The other is the association of contextual semantics. Strokes of different
categories may have similar shapes, while contextual semantics is the key to distinguishing
them. As shown in Fig. 1, the main difference between the Text category and the List
category lies in the numbering at the beginning.

Due to the inherent contextual relationships between strokes, such as spatial and tem-
poral relationships, the problem of stroke classification is typically formulated using the
structured prediction framework and tackled using various methods, including probabilis-
tic graphical model (PGM), recurrent neural networks (RNN) and graph neural networks
(GNN). The PGM-based methods (Ye et al., 2016) have disadvantages in computational
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Figure 1: Example of online handwritten documents from CASIA-onDo.

complexity and model capacity. RNN-based methods (Grygoriev et al., 2021) have a strong
capacity to model dependencies between temporally adjacent strokes, but they cannot make
effective use of the spatial contextual relationships. Recently, GNN-based methods (Ye
et al., 2019, 2020, 2021) have shown success in stroke classification problems, where each
node represents a stroke and edges are constructed based on the temporal and spatial rela-
tionship between strokes. For multi-class classification, the current state-of-the-art(SOTA)
method EGAT (Ye et al., 2020) achieves 89.87% on CASIA-onDo (Yang et al., 2021) dataset.
However, as mentioned in (Yang et al., 2021), this model performs poorly in distinguish-
ing between list and text, as well as inline formulas and text. We argue that this model
only aggregates information between neighborhood nodes, and these neighbor-
ing nodes usually belong to the same category. This limitation results in restricted
perception and the presence of redundant information in graph-level representations. As
the semantic information of strokes is highly dependent on other key stroke information to
form a complete semantic structure, addressing long-range dependencies and redundancy is
crucial for accurate stroke classification.

In this paper, we propose a Long-Range Graph U-Nets with an encoder-decoder ar-
chitecture to address above problems through two approaches: 1) a local node and edge
clustering pooling strategy; 2) a multi-level feature fusion strategy. Pooling layers play
a significant role in convolutional neural networks, largely due to their ability to reduce
the sizes of feature maps and enlarge receptive fields, which leads to better generalization
and performance. Many works (Liu et al., 2021; Itoh et al., 2022) have extended pooling
operations to graphs successfully, but most of them focus on node pooling while ignoring
edge information. In stroke classification, it is beneficial to have a module that allows edge
information to communicate directly with adjacent edges to obtain long-range contextual
semantic information. Therefore, we propose the node and edge clustering graph pooling
(CPool) and un-pooling (UCPool) operations. This pooling mechanism condenses the in-
put graph with node representations learned by GNN into a smaller-sized graph. However,
stroke classification is a node-level task. Building on our proposed CPool and UCPool layers,
we develop an encoder-decoder model on the graph, similar to U-Nets. To better capture
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the spatial and temporal information, we propose a multi-level feature fusion strategy to
improve the model’s performance.

The proposed method has several novelties and advantages:
• We propose a new clustering graph pooling/un-pooling strategy that fuses informa-

tion from both nodes and edges simultaneously. This strategy preserves and propagates
rich temporal-spatial context features to expand the receptive field and capture long-range
dependencies.

• Building on these graph pooling/un-pooling operations and EGAT, we develop a
Graph U-Nets architecture for stroke classification. Our proposed multi-level feature fusion
strategy comprises two major components: 1) Node features are extracted by combining
hand-crafted features with auto features extracted using BiLSTM. 2) We include skip con-
nections between corresponding blocks of the encoder and decoder layers.

• We conducted extensive experiments on four popular public stroke datasets and
achieved SOTA results. On the largest CASIA-onDo dataset, our model Long-Range Graph
U-Nets (LR Graph) yields accuracy 93.56% for multi-class classification, and is a remarkable
improvements especially on the class ‘List’.

2. Related Work

2.1. Stroke Classification for Online Handwritten Documents

Exploiting temporal-spatial context for stroke classification is crucial. In the past, various
PGM methods, such as the Hidden Markov Model (HMM) and Conditional Random Fields
(CRF), have been used to exploit contextual relationships for stroke classification. HMM
assumes strokes are independent of each other, leading to limited effectiveness for stroke
classification. To overcome this drawback, (Ye et al., 2016) proposed a combined model of
neural networks and CRF by training all parameters simultaneously. However, the PGM-
based method has difficulty utilizing spatiotemporal contextual relationships effectively.

In contrast, RNNs can establish temporal contextual relationships effectively. (Gry-
goriev et al., 2021) proposed a hierarchical convolutional recurrent network (HCRNN),
which uses hierarchical Bidirectional LSTM (BiLSTM) to learn the inherent hierarchi-
cal structure of the online handwritten document (sampling points-strokes or trajectory-
document objects). However, due to the sequential structure of RNN, this type of network
has difficulty utilizing spatial contextual information, leading to incomplete semantic con-
textual information during stroke classification and causing classification ambiguity.

GNNs have powerful modeling capabilities for complex contextual relationships. (Ye
et al., 2019) proposed the GAT to establish the context of strokes. To address the issue
of attention weights in GAT being obtained only through node features and ignoring edge
features, (Ye et al., 2020) added the edge feature to GAT and designed the EGAT. How-
ever, EGAT heavily relies on hand-crafted feature extraction, which is problem-specific and
requires professional experience. To simplify feature extraction, (Yang et al., 2021) propose
adding a BiLSTM module before EGAT to extract node features. Although this approach
simplifies feature extraction, it still lacks graph-level representations, suffers from limited
receptive fields and redundant adjacent node information.
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2.2. Graph Neural Networks

GNNs have found applications in various fields due to their ability to efficiently capture
object and Non-Euclidean domain dependencies. (Kipf and Welling, 2016) proposed GCN,
which introduces graph convolution kernels to construct an efficient and simple information
transmission pathway that outperforms traditional GNN. (Veličković et al., 2017) proposed
GAT, which add an attention mechanism to GCN to determine the weights of aggregated
neighboring nodes. However, these models, such as GCN and GAT, only utilize the flat
structure of the graph and do not consider graph-level representations.

Graph pooling layers can effectively learn graph-level representations, accelerates infor-
mation exchange between nodes, and are roughly divided into flat pooling and hierarchical
pooling. The former (Gao and Ji, 2019) directly generates a graph-level representation in
one step, while the latter (Ying et al., 2018; Diehl, 2019) coarsens the graph gradually into
a smaller sized graph. In (Gao and Ji, 2019), the top-k method is adopted to discard nodes
with lower scores. Its node selection relies on global status and may discard nodes in the
entire region, resulting in information loss. (Ying et al., 2018) proposed DiffPool based on
clustering, which learns the feature of each node and soft-assigns each node to a fixed num-
ber of clusters to shrink the original graph. Cluster assignment based only on node feature
may result in an unnecessary merge, ignoring distance information. (Diehl, 2019) further
propose an edge-based associative progressive shrinkage clustering graph pooling method,
which requires a amount of computation for single-edge contraction multiple times.

For the stroke classification problem, designing a model that can handle long-range
semantic dependencies and reduce local redundant information of the same category is cru-
cial. Graph pooling is an effective way to enlarge the receptive field and reduce redundancy.
However, both dropout pooling and clustering pooling have their own disadvantages. Drop
pooling can cause significant contextual information loss and orphaned nodes. Clustering
pooling requires a high amount of computation. Therefore, designing efficient and effective
pooling methods and integrating them into existing graph neural networks to achieve better
performance in node-level tasks remains a key challenge.

3. Proposed Method
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Figure 2: The overall architecture of our model. The node fusion uses dashed arrows, while
the edge relationships are represented with solid lines.



Long-Range Graph U-Nets

An online handwritten document consists of a set of variable-length stroke sequences
S = {si, i = 1...T}, where each stroke is comprised of a series of sample points. The
objective is to train a model that can accurately classify the stroke sequences in the online
document. Fig. 2 depicts the key components of our model, including graph building, cluster
graph pooling layer, un-pooling layer as the inverse operation of the pooling layer, and the
U-Nets-Like encoder-decoder architecture.

3.1. Graph Building

Graph Construction. We construct a relation graph G = {V,E} based on the relation-
ships between the strokes in an online document. Each stroke si ∈ S is represented as a
node vi ∈ V , and the edge eij ∈ E is defined as the contextual relationship between a
pair of strokes (si, sj). As demonstrated in (Ye et al., 2020), strokes that are temporally
or spatially adjacent in an online document are often strongly correlated. To leverage both
temporal and spatial contextual information, we consider two different edge construction
approaches to build the edge set as referred in (Ye et al., 2020). One is the K-nearest
temporal edges. For each stroke si, its forward kt nearest strokes and backward kt nearest
strokes in the drawing sequence are considered as the temporal neighbors NT (si) of si. The
other is K-nearest spatial edges. For each stroke si, its ks nearest strokes in Euclidean space
are identified as the spatial neighbors NS(si) of si. The distance between two strokes is
defined as the minimal Euclidean distance among all pairwise points on the strokes. The
hyperparameters kt and ks control the number of edges in the graph.

Feature Extraction. To account for different sampling rate on different hardware de-
vices, we resample the origin points of each stroke si to k points based on equidistant
resample and normalize the entire document to a resolution of 100x100. We then extract
hand-crafted features (Indermühle et al., 2010) and perform feature normalization as their
initial representations. For each node, a 13-dimensional vector of geometric features and a
10-dimensional vector of local context features are extracted from the corresponding stroke.
For each edge, a 19-dimensional vector of features is extracted to model the spatial and
temporal relationship between the two connected strokes. However, hand-crafted features
may suffer from limited descriptive ability. To overcome this limitation, we also use an au-
tomatic stroke feature extraction method (Yang et al., 2021). For each node, the resampled
points are processed into a 9-dimensional vector using first- and second-order derivatives.
The encoded points are then input to a stroke feature extraction network based on BiLSTM.
For each edge, the coordinate differences between the sampling points of two strokes are
taken as the original edge feature.

Multi-Level Feature Fusion. The hand-crafted features characterize the information
between strokes and stroke pairs based on different distance metrics, including temporal and
spatial contextual features. In contrast, the automatically extracted node features focus
more on the strokes themselves while ignoring their relationships with adjacent nodes. The
automatic edge features are obtained by subtracting position information from adjacent
strokes in space but do not consider temporal relationships between strokes.

We propose using the EGAT model to encode the hand-crafted features and concatenat-
ing them with the automatically extracted features to supplement the missing temporal and
spatial contextual information in the automatic feature extraction process. The multi-level
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feature fusion also includes skip connections, which we will describe in the next section on
how and why we use them.

3.2. CPool Layer and UCPool Layer

This section introduces the node and edge clustering graph pooling (CPool) layer and graph
un-pooling (UCPool) layer. Fig. 3 provides a graphical illustration of these layers.
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Figure 3: CPool and UCPool Layers.

CPool Layer. The clustering graph pooling (CPool) layer performs down-sampling on
graph data, preserving graph-level representations by iteratively coarsening the graph into a
smaller size. Clustering graph pooling considers graph pooling as a node and edge clustering
problem, where nodes are mapped to a set of clusters that are treated as new nodes of the
new graph. We adaptively select critical nodes for preservation while pooling the features
of non-critical nodes and edges. If there is interaction between the nodes in two clusters,
a new edge is created between them. Learning graph-level representations enhances the
model’s ability to capture long-range semantic dependencies.

Assume a graph G = (V,E) with node features H = {hi, i ∈ V } where hi ∈ RD1 ,
and edge features F = {fij , (i, j) ∈ E} where fij ∈ RD2 . Here, D1 and D2 represent the
dimensions of the node and edge features, respectively. V is the set of vertices, E is the set
of edges, and the relationships between nodes can be represented by the adjacency matrix
A. Gc represents the graph after pooling, which also contracts with node features Hc, edge
features F c, and adjacency matrix Ac. Specifically, node and edge clustering graph pooling
can be deconstructed into three modules:

1) The Cluster Assignment Matrix (CAM) Construction. CAM is used to par-
tition the nodes into clusters based on node and edge features. CAM ∈ Rn×m records the
relationships between the clusters when n is the number of nodes in G and m is the number
of nodes in Gc. We define the keep rate (kr) as the proportion of the original n nodes that
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are collapsed into m nodes, where m = n × kr. A value of C[x, y] = 1 in CAM indicates
that the x-th node is assigned to the y-th cluster.

C = CAM(H,F,A) (1)

The core of CAM is the adaptive selection of more representative nodes as centers and
the fusion of other nodes into representative nodes. The selection of important nodes not
only depends on their geometric relationships but also on the influence of their edges.
Therefore, we aggregate the edge information to comprehensively select the key nodes. We
use two common pooling functions (maximum pooling and average pooling) to aggregate
edge feature information connected to it onto nodes:

tmax
i = maxpool(i,j)∈E{fij} (2)

tavei = avepool(i,j)∈E{fij} (3)

The edge feature is aggregated into its endpoint node vi. Then, we merge the node fea-
tures with the aggregated edge feature and project the resulting features using a trainable
projection vector Wscore to one dimension, forming a score for each node. Considering com-
putational efficiency, we finally perform k-max pooling to select the top k nodes based on
their scores.

rnode = σ(Wscore nodeH) (4)

rmax = σ(Wscore maxt
max) (5)

rave = σ(Wscore avet
ave) (6)

score = (Wscore[r
node||rmax||rave])/||Wscore|| (7)

idx = rank(score, k) (8)

Y = sigmoid(score) (9)

Here, Wscore node ∈ RD′
1×D1 and Wscore ∈ R1×(D′

1+2D′
2) are learnable parameter which maps

feature to a new feature space. Wscore max ∈ RD′
2×D2 and Wscore ave ∈ RD′

2×D2 are learnable
parameters that encode the maximum and average values of the edge features. σ(·) is leaky
ReLU activation function, | · | represents concatenation, idx represents the central node in
the new graph and Y represents the normalized scores of those nodes.

The correct classification of a stroke is strongly related to its adjacent nodes. Nodes
with high scores need to aggregate the features of unselected nodes to preserve their strong
contextual relationships. As demonstrated in (Ye et al., 2020), temporal information in
online documents is critical. Thus, for nodes with low scores, we do not drop them and
propose a simple method for selecting nodes to merge with them. Specifically, low-scoring
nodes are merged with the nearest high-scoring nodes based on their temporal distance.

2) New Graph Generation. The structure of the new graph is obtained by the above
clustering pooling from G. So the new adjacency matrix Ac represents the new graph
relationships structured based on the A and CAM .

Ac = pool(A,C) = CTAC (10)
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3) Feature Update. The features of the nodes and edges in the new graph are formed
by aggregating from the old graph based on CAM . For node features in Gc, we obtain
them using the following equations:

Hc = fnode(H,C) = CTH (11)

Hc = Hc ⊙ Y [idx] (12)

where idx represents the central node in the new graph, and Y [idx] represents the score of
the node in the new graph, we assign different weights to Hc based on their scores.

To establish the long-range semantic dependencies in stroke classification, we need to
design a reasonable method to generate edge features in Gc. It is beneficial to have a module
that allows edge features to communicate directly with adjacent edges. We aggregate three
different edge features. The first part of edge features is obtained based on the connected
nodes.

rnij = σ(Wnode[h
d1
i ||hd1j ]) (13)

Additionally, the other two parts of the edge features are mapped from G. We combine the
three parts of edge features to generate the final edge features F c

ij .

ctmax
i = CT tmax

i (14)

ctavei = CT tavei (15)

rmax
ij = σ(Wmax[ct

max
i ||ctmax

j ]) (16)

raveij = σ(Wave[ct
ave
i ||ctavej ]) (17)

f c
ij = σ(Wedge[r

n
ij ||rmax

ij ||raveij ]) (18)

To increase the stability of training, we add batch normalization to the node and edge
updated features(Hc and F c).

UCPool Layer. The core of UCPool is to restore the structure of G and embed the
learned hierarchical features into it. Assuming Gu is the new graph with node features Hu,
edge features F u, and adjacency matrix Au generated by applying UCPool to Gc. To im-
plement the inverse operation of CPool, we need to re-establish A and CAM corresponding
to the CPool Layer, which involves two independent modules:

1) Generate The Relationship of Graph Gu. The structure of Gu is the same as
that of G, Au = A. Therefor, the nodes and edges from same cluster have same features.
How to enrich the features to enhance the model’s representational power?

2) Generate The Features of Gu. We use a residual module that skip connections
the features from Gc and Gu.

Hu = fu
node(H

c, H,C) = CHc +H (19)

Referring to formulas (2) and (3), we merge the edge features of Gc to the nodes in Gc , get
tmax
i

c and tavei
c represented the edge feature of Gc and then restoring them to the nodes in

Gu based on the CAM . As follow:

ctmax
i

u = Ctmax
i

c + tmax
i (20)
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ctavei
u = Ctavei

c + tavei (21)

We obtained the node information rnij
u, edge maximum pooling rmax

ij
u, and average pooling

raveij
u of the endpoint nodes based on equations (13), (16), and (17), respectively. Finally,

we incorporate the F into F u.
reij

u = σ(W fu
edgefij) (22)

fu
ij = σ(W u

edge[r
n
ij
u||reij

u||rmax
ij

u||raveij
u]) + fij (23)

where both W fu
edge ∈ RD′

2×D2 and W u
edge ∈ RD′

2×4D2 are a learnable parameter.

3.3. Long-Range Graph U-Nets

Building on CPool and UCPool layers, we construct an encoder-decoder architecture called
Long-Range Graph U-Nets. Each encoder layer is composed of a CPool and EGAT layer.
The EGAT layer aggregates information from each node and edge, while CPool captures
the long-range contextual semantic dependencies. In the decoder block, we stack the same
number of decoding blocks as in the encoder part. Each decoder layer consists of a UCPool
and EGAT layer. The UCPool layer restores the graph to its higher-resolution structure and
fuses the features from the corresponding CPool layer through multi-level residuals. Fig. 4
provides a graphical illustration of this Graph U-Nets architecture. It is worth noting that
there is an EGAT layer before each CPool layer and UCPool layer, allowing both the encoder
and decoder to implicitly capture the topological information in the graph.
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Figure 4: The framework of Long-Range Graph U-Nets.

4. Experiment

4.1. Datasets

CASIA-onDo (Yang et al., 2021) is the largest online handwritten document dataset for
document layout analysis, which contains 2012 documents.

IAMonDo (Indermühle et al., 2010) is a publicly available online English handwritten
document dataset, which contains 941 documents.
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FC (Awal et al., 2011) is a publicly available online handwritten dataset of flowcharts,
which contains 419 documents produced by 46 writers. As FC lacks a validation set, we
followed the set paritioning by (Ye et al., 2020).

FA (Bresler et al., 2014) is a finite-state automaton dataset, which contains 300 diagrams
produced by 25 writers.

4.2. Training

Hyper-Parameters. For stroke feature extraction, we set the number of sampling points
k to 20, and we use a BiLSTM module with 50 hidden units consisting of 3 layers. Addi-
tionally, we set the attention heads (H) in EGAT layer to 8. kr is set to 0.7 and dropout
rate is set to 0.2. We conduct the experiments on a single NVIDIA 1080Ti GPU, training
the network for 300 epochs using the AdamW optimizer with a cosine annealing learning
rate optimization algorithm. Other hyper-parameters, such as kt, number of node output
features (D′

1), number of edge output features (D′
2), and pooling layers(L) are adjusted

through random search on the validation set. Details are provided in Table 1.

Table 1: Hyper-parameters for all experiments

Hyperparameters CASIA-onDo-2 CASIA-onDo-6 IAMonDo-2 IAMonDo-5 FC FA

kt 8 8 2 2 1 1
ks 8 8 6 6 4 4
D′

1 32 32 32 32 32 28
D′

2 40 40 40 40 40 32
L 3 5 3 3 3 1

Batch size 13 11 18 18 40 40
Learning rate 0.003 0.0015 0.007 0.007 0.008 0.008

Evaluation Metrics. We evaluate our model on both text/non-text classification and
multi-class classification tasks. For text/non-text classification, the accuracy used as the
evaluation metric is defined as:

Accuracy =

∑N
i=1

∑Ti
i=1 δ(yit = ŷit)∑N
i=1 Ti

(24)

where N is the number of documents, and Ti is the number of strokes in the i-th document.
ŷit and yit are the corresponding prediction and ground truth. For multi-class classification,
the accuracy for each class c is defined as:

Accuracy[c] =

∑N
i=1

∑Ti
i=1 δ(yit = c)δ(ŷit = yit)∑N
i=1

∑Ti
i=1 σ(yit = c)

(25)

4.3. Experiments and Analysis

Text/Nontext Classification. We report the results of different methods on text/non-
text classification tasks on the CASIA-onDo and IAMonDo in Tables 2 and 3, respectively.
Our model achieves an accuracy of 97.68%(+0.96%) on the CASIA-onDo. On the IAMonDo,
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our model achieves an accuracy of 98.78%, which is 1.77% higher than the BiLSTM that
only considers temporal context and 1.57% higher than the CRF with multiple context.
Those indicate that our model better utilizes temporal and spatial contexts. Compared
to EGAT, our model achieves a 1.56% and 0.13% improvement on the CAISA-onDo and
IMAonDo datasets, respectively.

Table 2: Text/Nontext stroke classification on the CASIA-onDo

Method Description Accuracy

EGAT (Yang et al., 2021) EGAT with hand-crafted feature. 96.12
EGAT(Auto) (Yang et al., 2021) EGAT with BiLSTM. 96.72

LR Graph(ours) Long-Range Graph U-Nets. 97.68

Table 3: Text/Nontext stroke classification on the IAMOnDo

Method Description Accuracy

(Indermuhle et al., 2012) BLSTM network 97.01
(Delaye and Liu, 2014a) CRF with multiple contexts 97.21
GCN (Ye et al., 2020) Graph convolutional networks 97.21
GAT (Ye et al., 2020) Graph attention networks 97.87
EGAT (Ye et al., 2020) EGAT with hand-crafted feature. 98.65

LR Graph(ours) Long-Range Graph U-Nets. 98.78

Multi-Class Classification. Tables 4, 5, 6, and 7 compare the results of our model for
multi-classification on the CASIA-onDo, IAMonDo, FC, and FA. Our LR Graph achieves
SOTA. On the CASIA-onDo, our model achieves the accuracy 93.56%, which is 3.69%
than the EGAT(Auto). Except for the Formula, all other classes have an improvement,
especially the List, which increased by 21.5%. The confusion matrix of the LR Graph on the
CASIA-onDo is shown in Fig. 5, where the Text, Formula, and List categories demonstrate
remarkable improvements. Similar conclusions are also demonstrated on the IAMonDo
and an accuracy of 97.89% is achieved, representing an improvement of 2.08% over EGAT.
Especially, the accuracy of the List increase by 22.65%. On the FC dataset, the accuracy
of our model is 97.94% and is 0.58% higher than that of the previous best method. On the
FA, our model yields 99.49% accuracy, which is 0.44% higher than that of the previous best
method. Those results indicate that our model captures long-range dependency information
and reduced redundant information through clustering graph pooling.

Table 4: Multi-Class stroke classification on the CASIA-onDo

Method Text Formula Diagram Table Figure List Accuracy

EGAT (Yang et al., 2021) 89.59 76.94 98.17 94.50 91.26 76.13 88.79
EGAT(Auto) (Yang et al., 2021) 93.04 89.43 96.07 94.35 91.17 68.55 89.87

LR Graph(ours) 94.26 86.06 98.14 96.71 91.41 90.05 93.56
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Table 5: Multi-Class stroke classification on the IAMonDo

Method Graphics Text Table List Math Accuracy

Loopy CRF (Delaye and Liu (2014b)) 79.22
(Delaye and Liu, 2014b) 95.85 97.25 77.64 74.73 84.28 93.46
GCN (Ye et al., 2020) 93.09 97.97 70.31 52.73 74.48 91.11
GAT (Ye et al., 2020) 95.12 98.19 77.59 69.66 82.22 93.51
EGAT (Ye et al., 2020) 97.11 98.35 89.70 76.15 88.43 95.81

LR Graph(ours) 98.00 98.83 97.12 98.80 85.65 97.89

Table 6: Multi-Class stroke classification on the FC

Method Text Arrow Data Decision Process Terminator Connection Accuracy

(Wang et al., 2017) 99.0 92.1 84.4 89.9 93.5 78.9 79.3 95.8
(Bresler et al., 2016) 99.2 87.5 95.3 88.2 96.3 90.7 94.1 96.3
GCN (Ye et al., 2020) 97.74 89.44 88.67 92.92 82.30 85.96 85.19 93.99
GAT (Ye et al., 2020) 98.01 88.21 88.57 92.27 82.39 87.09 87.56 94.00
EGAT (Ye et al., 2020) 98.84 96.39 94.40 95.19 92.94 93.23 92.89 97.36

LR Graph(ours) 99.39 96.77 94.90 95.82 96.00 91.69 86.57 97.94

Table 7: Multi-Class stroke classification on the FA

Method Label Arrow Initial arrow State Final state Accuracy

(Wang et al., 2017) 99.0 97.7 91.6 96.5 97.8
(Bresler et al., 2016) 99.7 98.0 98.6 98.3 99.2 99.0
GCN (Ye et al., 2020) 94.04 91.75 84.18 87.81 92.13
GAT (Ye et al., 2020) 99.01 97.89 92.30 94.81 97.87
EGAT (Ye et al., 2020) 99.49 99.08 97.18 97.42 99.05

LR Graph(ours) 99.76 99.93 96.52 98.08 99.49

Figure 5: The confusion matrix of LR Graph on the he CASIA-onDo
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Ablation Study. To determine the key factors of our proposed model, we conducted
ablation studies in four different aspects based on the baseline EGAT. Table 8 shows the
methods and their related modules.

Table 8: Methods and its associated modules. ‘Hand’ denotes hand-crafted features, ‘Auto’
denotes BiLSTM-extracted features, ‘CPool and UCPool’ denotes clustering pool-
ing layers, and ‘Multi-Residual’ denotes skip connections from CPool to UCPool.

Method Hand Auto CPool and UCPool Multi-Residual

EGAT ✓
EGAT(Auto) ✓

LR Graph(Hand and Auto) ✓ ✓
LR Graph(Multi-Residual) ✓ ✓ ✓

LR Graph(Pool) ✓ ✓ ✓
LR Graph ✓ ✓ ✓ ✓

For combining hand-crafted features with auto features, LR Graph(Hand and Auto)
gets accuracies of 91.40% on CASIA-onDo in Table 9. The result demonstrates that the
concatenation of hand-crafted features and BiLSTM-extracted features can improve perfor-
mance, especially for BiLSTM-extracted features, which focus more on spatial context but
lack temporal context information, hand-crafted features can provide complete contextual
information and enhance the model’s performance. For Multi-Residual, LR Graph (Multi-
Residual) outperformed LR Graph(Hand and Auto) by 0.72% in Table 9, LR Graph with
an accuracy of 93.56% outperforms LR Graph(Pool) which represents an improvement of
1.48%. These results indicate that multi-level feature fusion enhance the model’s expressive
power by combining hand-crafted features with auto features and skip connections between
shallow-level graph features and deep-level graph features.

Table 9: Ablation study on multi-class stroke classification on the CASIA-onDo

Method Text Formula Diagram Table Figure List Accuracy

EGAT(Auto) 93.04 89.43 96.07 94.35 91.17 68.55 89.87
LR Graph(Hand and Auto) 92.90 81.66 97.24 95.85 91.91 85.50 91.40

LR Graph(Pool) 93.37 83.83 97.67 94.72 91.10 87.60 92.08
LR Graph(Multi-Residual) 94.11 84.00 97.65 95.36 90.89 84.70 92.12

LR Graph 94.26 86.06 98.14 96.71 91.41 90.05 93.56

Table 10: LR Graph(w, w/o cluster) on multi-class classification on the CASIA-onDo

Method Text Formula Diagram Table Figure List Accuracy

LR Graph(w/o cluster) 93.00 82.97 98.11 95.85 90.00 89.97 92.44
LR Graph 94.26 86.06 98.14 96.71 91.41 90.05 93.56
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Evaluation of CPool and UCPool. In Tables 9 and 10, we study the contribution
of CPool and UCPool layers in LR Graph. We direct discard of nodes in pooling without
cluster to obtain LR Graph(w/o cluster). LR Graph(w/o cluster) and LR Graph achieve
92.44% and 93.56%, respectively, with an improvement of 0.32% and 1.44% compared to
LR Graph(Multi-Residual). Notably, LR Graph(Pool) has slightly lower accuracy than LR
Graph (Multi-Residual), with a decrease of 0.04% but it can be seen that LR Graph(Pool)
has a higher recall rate than LR Graph(Multi-Residual) in the List category, with an im-
provement of 2.9%. In the List category that requires long-range dependencies, LR Graph
(w/o cluster) and LR Graph both achieve a significant improvement with an increase of
5.27% and 5.35%, respectively. This indicates that the model can learn graph-level repre-
sentations and capture long-range dependencies under the pooling, which is a key feature
of the LR Graph.

Visualization Analysis.With the color of the instance category referencing in Fig. 6(a),
Fig. 6 shows the recognition results of LR Graph, LR Graph(Hand and Auto), and LR
Graph(w/o cluster) on the same document. LR Graph and LR Graph(w/o cluster) effec-
tively address the problem of long-range dependencies, as demonstrated in the classification
of List compared with LR Graph(Hand and Auto) in Fig. 6(b). However, the loss of essen-
tial stroke information leads to the misclassification of most of the subsequent strokes in
Fig. 6(c). Thus, LR Graph’s ability to aggregate low-scoring nodes while maintaining high
contextual information greatly improves performance, as evident in Fig. 6(d).

(a) Ground truth (b) LR Graph(Hand and Auto)

(c) LR Graph (w/o cluster) (d) LR Graph

Figure 6: The recognition results of different methods on CASIA-onDo
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5. Conclusion

In this paper, we present a novel framework for stroke classification in online handwritten
documents. Our approach employs a novel node and edge clustering graph pooling and
un-pooling operations, which enlarge the model’s receptive fields, enabling it to capture
long-range dependencies and reduce redundant information. To improve generalization and
performance, a multi-level feature fusion strategy is also used. Experiments conducted on
four publicly available online handwritten document datasets, including CASIA-onDo, IA-
MonDo, FC, and FA, demonstrate that our proposed method outperforms previous methods
by a significant margin, particularly in the List category, achieving state-of-the-art perfor-
mance. While these results are encouraging, some challenges remain to be further explored,
such as in our clustering graph pooling layer the low-scoring nodes are merged with the
nearest high-scoring nodes based on their temporal distance, which may be replaced by a
better mechanism and precise distinction between text and inline formula.
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connected diagrams. International Journal on Document Analysis and Recognition (IJ-
DAR), 19:253–267, 2016.

Adrien Delaye and Cheng Lin Liu. Contextual text/non-text stroke classification in online
handwritten notes with conditional random fields. Pattern Recognition, 47(3):959–968,
2014a.

Adrien Delaye and Cheng-Lin Liu. Multi-class segmentation of free-form online documents
with tree conditional random fields. International Journal on Document Analysis and
Recognition (IJDAR), 17:313–329, 2014b.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine
learning, pages 2083–2092. PMLR, 2019.

Andrii Grygoriev, Illya Degtyarenko, Ivan Deriuga, Serhii Polotskyi, Volodymyr Melnyk,
Dmytro Zakharchuk, and Olga Radyvonenko. Hcrnn: a novel architecture for fast online
handwritten stroke classification. In Document Analysis and Recognition–ICDAR 2021:
16th International Conference, Lausanne, Switzerland, September 5–10, 2021, Proceed-
ings, Part II, pages 193–208. Springer, 2021.



Yao1 She2∗ Li2 Lin2 Yang2 Peng1‡

E Indermuhle, Volkmar Frinken, and Horst Bunke. Mode Detection in Online Handwritten
Documents Using BLSTM Neural Networks. Mode Detection in Online Handwritten
Documents Using BLSTM Neural Networks, 2012.

Emanuel Indermühle, Marcus Liwicki, and Horst Bunke. Iamondo-database: an online
handwritten document database with non-uniform contents. In Proceedings of the 9th
IAPR international workshop on document analysis systems, pages 97–104, 2010.

Takeshi D Itoh, Takatomi Kubo, and Kazushi Ikeda. Multi-level attention pooling for
graph neural networks: Unifying graph representations with multiple localities. Neural
Networks, 145:356–373, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. 2016.

Ning Liu, Songlei Jian, Dongsheng Li, Yiming Zhang, Zhiquan Lai, and Hongzuo Xu. Hi-
erarchical adaptive pooling by capturing high-order dependency for graph representation
learning. 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Chengcheng Wang, Harold Mouchere, Christian Viard-Gaudin, and Lianwen Jin. Combined
segmentation and recognition of online handwritten diagrams with high order markov
random field. In International Conference on Frontiers in Handwriting Recognition, 2017.

Yu-Ting Yang, Yan-Ming Zhang, Xiao-Long Yun, Fei Yin, and Cheng-Lin Liu. Casia-
ondo: a new database for online handwritten document analysis. In Asian Conference
on Pattern Recognition, pages 174–188. Springer, 2021.

Jun-Yu Ye, Yan-Ming Zhang, and Cheng-Lin Liu. Joint training of conditional random
fields and neural networks for stroke classification in online handwritten documents. In
2016 23rd International Conference on Pattern Recognition (ICPR), pages 3264–3269.
IEEE, 2016.

Jun Yu Ye, Yan Ming Zhang, Qing Yang, and Cheng Lin Liu. Contextual stroke classification
in online handwritten documents with graph attention networks. 2019 International
Conference on Document Analysis and Recognition (ICDAR), 2019.

Jun-Yu Ye, Yan-Ming Zhang, Qing Yang, and Cheng-Lin Liu. Contextual stroke classifica-
tion in online handwritten documents with edge graph attention networks. SN Computer
Science, 1:1–13, 2020.

Jun-Yu Ye, Yan-Ming Zhang, Qing Yang, and Cheng-Lin Liu. Joint stroke classification and
text line grouping in online handwritten documents with edge pooling attention networks.
Pattern Recognition, 114:107859, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. Ad-
vances in neural information processing systems, 31, 2018.


	Introduction
	Related Work
	Stroke Classification for Online Handwritten Documents
	Graph Neural Networks

	Proposed Method
	Graph Building
	CPool Layer and UCPool Layer
	Long-Range Graph U-Nets

	Experiment
	Datasets
	Training
	Experiments and Analysis

	Conclusion

