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Abstract

As the most commonly used quantization techniques for deep neural networks, the int-only
quantization methods use scale factor to linearly approximate the weights or activation of
each layer. However, when passing activation data between layers, such int-only quantiza-
tion methods require extra Scale Factor Conversion (SFC) operations, resulting in compu-
tational overhead. In this paper, we propose a Group-Wise Quantization framework, called
GWQ, to reduce computational consumption during the activation data pass process by
allowing multiple layers share one scale factor in SFC operations. Specifically, in the GWQ
framework, we propose two algorithms for network layers grouping and model training. For
the grouping of network layers, we propose a grouping algorithm based on the similarity of
data numerical distribution. Then, the network layers divided into the same group will be
quantified using the same common scale factor to reduce the computational consumption.
Considering the additional performance loss caused by sharing scale factors among multiple
layers, we propose a training algorithm to optimize these shared scale factors and model
parameters, by designing a learnable power-of-two scaling parameter for each layer. Ex-
tensive experiments demonstrate that the proposed GWQ framework is able to effectively
reduce the computational burden during inference, while maintaining model performance
with negligible impact.

Keywords: Int-Only Quantization; Scale Factor Conversion; Quantization-Aware-Training;
Deep Neural Networks; Grouping-Wise Algorithm

1. Introdution

Benefiting from the rapid development of computing power and storage technology in re-
cent years, deep learning models with a vast number of parameters are designed to han-
dle increasingly complex tasks. However, running these models often consumes significant
computational resources. Those expensive costs hinder the deployment of deep learning
in industry, agriculture, and vehicle areas. How to design high-efficiency deep learning

∗ corresponding authors

© 2023 J. Yang, C. Tang, C. Yu & J. Lv.



Yang Tang Yu Lv

models that satisfy hardware limitations has become the most critical step in deployment.
Current model compression techniques are mainly classified into quantization (Zafrir et al.,
2019), pruning (Hoefler et al., 2021; Vadera and Ameen, 2022), Neural Architecture Search
(NAS) (Sun et al., 2019), and knowledge distillation (Gou et al., 2021; Menghani, 2021).

Quantization is a model compression technique tightly integrated with hardware by com-
pressing the precision stored in the weight and the data representation (e.g., from 32-bit
floating-point numbers to 4-bit integers). Quantized models can be computed in Digital
Signal Processor (DSP), Field Programmable Gate Arrays (FPGA) as well as other hard-
ware platforms optimized for integer operations (Qiu et al., 2016; Courbariaux et al., 2016).
Compared to the full precision model, the quantized model is faster and consumes less
energy during inference.

The most common quantization technique currently used is the int-only quantization (Gho-
lami et al., 2021). Int-only quantization computes a scale factor vector for the entire layer,
and then affinely maps the float-point data to a finite range of integers (Jacob et al.,
2018; Nagel et al., 2021). The mapped values can be accelerated in hardware. However,
this approach requires an SFC operation for each layer to be designed in order to transfer
activations between layers. SFC operation involves element-wise INT32 multiplication and
bit-shifting, resulting in significant additional computational overhead.

The computational cost of model inference can be reduced by reducing the frequency of SFC
usage. To achieve this, our key idea is to group the layers in a network, and multiple layers
that are assigned to the same group share a common scale factor. Thus the frequency of SFC
operations will be reduced and the computational complexity is reduced. In this paper, we
propose a Group-Wise Quantization framework, called GWQ. The GWQ framework allows
multiple layers share one scale factor, thus reducing the frequency of SFC operation usage.

It is worth noting that in the proposed GWQ framework, there are three issues that need
to be addressed, i.e., 1) how to group the network layers? 2) how to choose the number of
groupings? 3) how to training the model of group-wise quantization is better? For the first
problem, we propose a grouping algorithm for layers based on similarity evaluation of data
numerical distribution. For the second problem, we propose an algorithm for determining
the optimal number of groupings using the elbow method. The combination of these two
algorithms can provide a reference optimal grouping plan for a particular network. For the
third problem, we provide a training method to optimize these shared scale factors as well
as the model parameters. We design a learnable power-of-two scaling parameter for each
layer. This parameter can reduce the discrepancy in quantized values due to the shared
scale factor in one group. Our method can improve the convergence speed and stability for
group quantization training without introducing additional multiplication operations. Our
contributions can be summarized as follows:

1. We extend the granularity of int-only quantization from the traditional layer-wise
or channel-wise to group-wise. The reduced granularity of quantization reduces the
additional computational overhead due to SFC operations. We also demonstrate
through experiments that well-designed group quantization has almost no effect on
the performance of the model.
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2. We propose a novel method to evaluate the similarity of the numerical distribution
between two network layer weights or activations. In addition, we propose a method
for the determination of the optimal number of groups based on the elbow method.
These two methods can provide a reference grouping plan in group-wise quantization.

3. We propose a novel training method for grouping quantization. Since multiple layers
in a group share a common scale factor, this leads to a reduction in training stability.
We design a learnable power-of-2 scaling parameter for each layer. This method can
increase the speed of model training convergence and stability without introducing
additional multiplication computations.

2. Related Works
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Figure 1: Comparison of two different quantization methods in inference process. Block
is layer with weights, e.g., fully-connected layer, convolutional layer, block con-
nected by skip connections from multiple layers. SFC is Scale Factor Conversion.

Retrain or not Retrain Depending on whether an additional retraining step is required,
current quantization methods can be categorized into Post-Training Quantization (PTQ)
and Quantization-Aware training (QAT) (Gholami et al., 2021). PTQ is directly quantize
a trained model without retraining (Chikin and Antiukh, 2022; Nagel et al., 2019). The
research of PTQ focuses on how to adjust the distribution of weights and activation values
in the trained model so that the model can better tolerate the numerical errors caused by
quantization. In contrast, QAT will Fine-tune the quantized model using Straight Through
Estimator (STE) (Bengio et al., 2013) Or other gradient estimators (J. Lee, 2021). In most
cases, QAT will obtain a higher performance than PTQ because of the extra fine-tuning
procedure. Our work belongs to the category of QAT.

Int-only Quantization Int-only quantification is the most widely used quantization method
today. Part of the recent work in int-only quantization has focused on how to obtain better
Scale Factor parameters. For example, LSQ (Esser et al., 2019), TQT (Jain et al., 2020),
CSQ (Asim et al.), these methods obtain performance close to that of a full precision model
at 4bits by considering the Scale factor in integer-only as a trainable parameter in the
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QAT process, so that the Scale Factor and model parameters can be trained simultaneously
by gradient descent methods. Other works, Alizadeh et al. (2020) and Han et al. (2021)
improve the performance of the quantized model by introducing additional constraints in
QAT to make the model weights more adaptive to the adverse effects of quantization er-
rors. There is also work on introducing new activation functions, such as PACT (Choi
et al., 2018), where the authors add a maximum pass-through threshold to the Rectified
Linear Unit (ReLU) activation function, which reduces the range of values represented and
effectively improves the performance of the low bit-width model. However, an unavoidable
disadvantage of aforementioned int-only quantization technologies is that it involves the
SFC operations for each layers, which results in extra energy cost and higher latency. Our
work is dedicated to eliminating unnecessary SFC operations.

3. Methodology

In this section, we first review the basic process of common neural network inference and
describe our motivation. Second, we detail the three methods included in our proposed
GWQ. Finally, we will detail the operational steps of GWQ.

3.1. Preliminaries

The in-layer operations of common DNN can be summarized as a series of matrix addition
and multiplication, for example, the operations of a fully connected layer can be written as:

α = σ(wx+ b), (1)

where w and b represent the weight and bias respectively, σ is an element-wise nonlinear
activation function (e.g., ReLU), x represents the input data, and y represents the output
result. The step wx, which occupies the main computing time in the inference phase, can
be expanded as:

yi,k =
N∑
j=1

wi,jxj,i, (2)

where y represents the intermediate result of matrix multiplication and wx has a time
complexity of O(n3). which means that a large number of floating-point multiplication
and addition operations are invoked. The quantization technique strives to transform this
process into a low bit-width integer operation.

The process of integer-only quantization can be expressed mathematically as shown in
Equation 3, wherein the weights w or inputs x are symbolized as r. The quantized value
is represented by q, while s and z respectively indicate the scale factor and the zero point.
Additionally, the subscripts min and max specify the minimum and maximum values that
the parameter is required to represent.

q = clip (round(r/S), qmin, qmax) ,

S = (rmax − rmin)/(qmax − qmin),

z = round(qmax − rmax/S).

(3)
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Transforming the input x and weight w into quantized values qx and qw, respectively,
through Equation 3. The computation process of the quantized value qy of output y can be
expressed as follows:

qi,ky =
SxSw

Sy

 N∑
j=1

qi,jx qj,kw −
N∑
j=1

qi,jx zw −
N∑
j=1

qj,kw zx +
N∑
j=1

zxzw

+ zy. (4)

Symmetric quantization is commonly used in engineering to reduce the complexity of infer-
ence hardware, by setting the values of zx, zw, and zy to 0. As a result, the computation
process of the quantized value qy can be simplified as follows:

qi,ky =
SxSw

Sy

 N∑
j=1

qi,jx qj,kw

 . (5)

In Equation 5, all operations within the parentheses can be performed on low bit-width
integers. The step of SxSw/Sy can be decomposed into a 32-bit fixed-point multiplication
followed by an integer shift operation, as shown in Equation 6, where M represents a 32-
bit fixed-point number and 2d represents the shift operation with d denoting the bit-shift
step. The bit-shift operation consumes minimal computational resources, but the fixed-
point multiplication involved is an element-wise FP32 operation, which greatly slows down
the inference speed. We refer to this operation as the Scale Factor Conversion (SFC).

SxSw/Sy = M · 2d. (6)

Our motivation and goal is to eliminate unnecessary SFC operations from the computational
process and further accelerate quantized inference. The difference in quantization methods
during inference can be seen in Figure 1(a) and Figure 1(b).

3.2. Block similarity evaluation and grouping plan generation

Our first task is to group the connected blocks that have similar weight or activation value
distributions. A variety of previous research has pointed out that the numerical distribution
of the quantized model data and the numerical distribution of the full-precision model data
is strongly correlated (Jin et al., 2022; Hou et al., 2019; Zhou et al., 2017). It means that
the more similar the numerical distribution of two blocks in the full-precision model is, the
less it affects the numerical representation of both blocks even if they use the same scale
factor in the quantization. We directly used the weights of the full-precision model and the
activation values as the basis for the evaluation of our grouping algorithm.

To quantify the similarity of weight values for each block, we can assume that the weights of
any two blocks are represented as setsW1 andW2. Based on previous research (Huang et al.,
2021), W1 and W2 can be treated as two approximate Gaussian distributions. Therefore, we
can use the Gaussian distribution representation of the numerical values of the two blocks
to calculate the KL-Divergence (KLD). The magnitude of KLD can measure whether two
blocks should be grouped together. The formula for computing the similarity of weight
value distributions between two layers is:
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KLD(Bi∥Bj) = log
σj
σi

+
σ2
i + (µi − µj)

2

2σ2
j

− 1

2
, (7)

where σi, σj , µ2
i , and µ2

j represent the mean and variance of the weight or activation
values of the i-th and j-th blocks, respectively. It should be noted that the values of i
and j should be adjacent, i.e., j = i + 1 or j = i − 1. As the KLD is asymmetric, i.e.,
KLD(Bi|Bj) ̸= KLD(Bj |Bi), where i ̸= j, this results in some unnecessary recalculations
in the subsequent steps. Therefore, we can replace KLD with symmetric JS-Divergence
(JSD). Its formula is expressed as:

JSDpair(Bi∥Bj) =
1

2
(KLD(Bi∥Bj) + KLD(Bj∥Bi)). (8)

This formula can be extended to evaluate the similarity among N blocks:

JSDgroup(B1, B2, · · · , Bn) =

{∑N−1
i=1 JSDpair(Bi∥Bi+1), N >= 2,

0, N < 2.
(9)

A smaller value of the formula indicates a higher degree of similarity in weight or activation
value distribution among the layers within a group. The grouping plan for a neural network
layer consists of multiple groups. To obtain an overall evaluation score for the plan, the
JSD of each group is calculated separately and then summed as follows:

Group Score(T ) =
G∑
i=1

JSDgroup(Ti), (10)

where T is the overall plan, Ti is the i -th group in T , which contains several adjacent
blocks. The parameter G represents the number of groups. With the above tools, we can
evaluate different sub-graph partitioning results given the number of groups. Figure 2 is an
example of how to determine the optimal grouping plan by calculating the group scores.
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Figure 2: Example of grouping strategy: In a neural network with 4 blocks, setting the
number of groups G = 2. There are three possible grouping results: Plan1 has
the lowest Group Score, thus it is selected as the grouping plan for G = 2.
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Algorithm 1 Generate optimal Group Plans

Input: the number of layers N and the number of groups G
Output: A list representing the optimal group plan and the corresponding Group Score.
// Assign Block IDs from 0 to N-1. For instance, if there are 4 Blocks, they will be

encoded as 0 to 3. Suppose Block 0 and Block 1 are grouped together, as well as Block 2

and Block 3, then the final output result will be [[0,1],[2,3]].

group plans← [];
stack ← [([x | x ∈ range(N)], G, [])];
while stack is not empty do

l, g, pre← stack.pop();
if g == 1 then

pre.append(l);
group plans.append(pre);

end
else

for i← 1 to len(l)− 1 do
pre.append(l[: i]);
if len(l) ≥ 2 then

stack.append((l[i :], G− 1, pre[:]));
end
pre.pop();

end

end

end
// Compute the Group Score for each group plan using Equation 10 and identify the minimum

value among them.

group scores← GroupScore(group plans);
i← argmin(group scores);
return group plans[i], group scores[i];

The grouping plan can be generated by a Depth-First-Search (DFS) algorithm, as shown in
Algorithm 1. All the grouping plans are evaluated by Equation 10. The optimal grouping
plan is the one with the smallest group score.

3.3. Optimal number of groups

By the method introduced in the previous section, we can obtain the optimal grouping result
under the condition of manually setting the parameter G. However, how to choose a better
parameter G is a noteworthy issue. If G is set too small, the gradients of layers with many
parameters will dominate the scale factor during the tuning process, making it difficult to
train, and the network’s accuracy cannot be guaranteed due to large differences between
different blocks being forced to use the same scale factor. When G is too large, for example,
when G is set to be equal to the number of layers in the network, each group contains
only one layer, and GWQ degenerates into Int-only quantization, facing the problem of a
significant increase in computational complexity.
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When using K-means clustering, the number of clusters, K, needs to be specified manually.
The elbow method is a technique used to determine the optimal number of clusters in a K-
means (Sammouda et al., 2021; Nainggolan et al., 2019; Syakur et al., 2018). This method
works by plotting the Sum of the Squared Error (SSE) against the number of clusters and
identifying the ”elbow” point, which is the point of inflection in the curve. The idea is
that the elbow point represents the point at which the addition of more clusters does not
significantly improve the model’s performance.

Our problem is similar to the K-means described above. So, we can use the group score in
Equation 10 as a metric for evaluating the within-group similarity instead of SSE. As the
value of G increases, the group score will continuously decrease, and when it decreases to a
certain value, the rate of decrease will slow down and eventually converge to 0. The curve
drawn by the elbow method can guide us in selecting an appropriate value for parameter
G. As shown in Figure 3(a), we first plot the mean and variance of each layer’s parameters
of a trained VGG-19BN network. We then use our proposed group score as the distance
metric replace for SSE and plot the resulting group scores under multiple values of G. As
illustrated in Figure 3(b), we can find the elbow point in the chart, which is G=6.
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Figure 3: A toy experiment: determining the value of G in GWQ using the elbow method.

In practice, we use the above mentioned grouping method and the optimal number of
groups determination algorithm to calculate the optimal grouping plan for the weights and
activation separately. The final grouping plan we use for retraining is the intersection of
these two optimal grouping plans.

3.4. Retrain Method

The quantization process can lead to imprecise numerical representation, resulting in sig-
nificant performance drop for models quantized to lower bit-widths. QAT is a common
approach to restore model performance. In QAT, the process described in Equation 3 is
introduced into forward propagation. Since the numerical perturbations introduced by the
quantization process directly affect the magnitude of the loss, we can use the gradient de-
scent algorithm to optimize the parameters of the original model to adapt to the impact
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of the quantization process. However, a problem arises in that the round function cannot
provide effective gradient information for the backward propagation process.

STE (Bengio et al., 2013) is one solution to address the aforementioned issue. It set the
derivative of the round to 1:

∂round(x)

∂x
= 1. (11)

This approach enables the gradient to be directly propagated to the FP32 weights during
back-propagation, facilitating the training of quantized weights and activations. Although
the modified gradient deviates from the true gradient, the practical success of this method
demonstrates its effectiveness.

Our proposed GWQ framework can be combined with many QAT methods. In this paper,
we have selected Learned Step Size Quantization (LSQ) (Esser et al., 2019), one of the
currently most successful methods, as our optimization method.

The LSQ involves incorporating the scale factor S into the training optimization process,
instead of computing it based on the statistical values of the data. In LSQ, the scale factor
is represented by a learnable scalar parameter and dynamically adjusted during training to
fit the data distribution. The gradient calculation process of S can be represented by the
following equation:

∂r̂

∂S
=


−r/S + round(r/S), if qmin < r/S < qmax,
qmin, if r/S ≤ qmin,
qmax, if r/S ≥ qmax.

(12)

To ensure the stability of the optimization process, the author scaled the gradient of S
based on the number of elements in terms of weight or activation value. The gradient
scaling factor g is given by:

g = 1/
√

Nwqmax, (13)

Nw represents the number of elements in terms of data that need to be quantize.

We found that the training performance was not satisfactory when we used LSQ training
directly. Our analysis is attributed to the fact that there is still a small unavoidable dif-
ference in the distribution of values between blocks in the same group. This difference,
although small, still affects the stability of the training.

To address this issue, we introduce an additional power-of-2 scaling parameter L to LSQ.
This parameter provides independent variability to each layer, thereby increasing the sta-
bility of the training process. We modify the S parameter in Equation 12 to the following
form:

S = L× Ŝ,

L = sign(L̂)× 2round(log2 abs(L̂)),
(14)

where Ŝ serves as the scale factor for each group, L is the scaling parameter for each layer,
and L̂ is a floating-point number. L is the most approximate power-of-2 value of L̂. In the
inference phase, the computation of L is replaced with a cheap shift operation. We term
this approach Bit-shift based Layer Adaption (BLA).
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3.5. Group-wise Quantization Framework

Combining the methods described in the previous sections, we can obtain a complete frame-
work for group-wise quantization. The running process of this framework is shown in Fig-
ure 4.
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Figure 4: GWQ framework schematic diagram

The steps for running our framework are as follows:

1. The user submits a pre-trained full-precision neural network model and specifies the
desired quantization precision. The precision should be determined according to the
actual hardware resource requirements.

2. The optimal grouping plan and its corresponding grouping score are calculated for
each parameter G using Algorithm 1.

3. The group score curve for each parameter G is plotted, and the optimal grouping size
is determined using the elbow method. The reference optimal grouping plan generated
in step 2. The user can directly adopt this grouping plan or manually assign a grouping
plan.

4. The model is retrained using the BLA method and finally deployed to the inference
device.

4. Experiment

In this section, we extensively evaluated the performance of GWQ under multiple experi-
mental settings.



GWQ: Group-Wise Quantization Framework for Neural Networks

4.1. Experimental Setting

Datasets: The datasets used in our experiments are ImageNet (ILSVRC12) (Russakovsky
et al., 2015) and Cifar-100 (Krizhevsky et al., 2009). The ImageNet is a large-scale image
classification dataset, consisting of a training set with one million images and a validation
set with 50,000 images. The Cifar-100 is a relatively small-scale image classification dataset,
consisting of 100 categories, each containing 500 32×32 pixel color images. Among them,
50,000 images are used for training, and 10,000 images are used for testing.

Network Structures: We conducted tests on six commonly used network structures,
including the ResNet series (ResNet18, ResNet34, ResNet50) (He et al., 2016), the VGG
series (VGG13 BN, VGG16 BN) (Simonyan and Zisserman, 2015), and the MobileNet series
with MobileNetV2 (Sandler et al., 2019).

Evaluation Metric: We employ the classification TOP-1 accuracy of the model as the
primary evaluation metric. In addition, the size and computational complexity of the model
are equally important indicators we pay close attention to. For measuring the computational
complexity, we use the number of BOPs (Bit operations)(Baskin et al., 2019) required for
one-time inference with batch size = 1 as our primary indicator. The formula for BOPs
can be generalized as the product of the number of computations and the bit width of the
parameters involved in the computation. For instance, the formula for calculating BOPs in
a convolutional layer is expressed as follows:

BOPs ≈ FhFwmnk2babw, (15)

where Fh and Fw are the height and width of the output feature map, m and n are the
number of input and output channels, k is the kernel size, and ba and bw are the bit width
of input and weight. It should be noted that we ignore the impact of shift operations as
they have a negligible effect compared to multiplication and accumulation operations.

4.2. Performance and Computational Complexity

We conducted comparative experiments on performance and computational complexity us-
ing the ImageNet dataset across the all six network architectures. We train the full-precision
model ourselves from scratch, using Stochastic Gradient Descent (SGD) optimizer, with 0.9
momentum, cosine learning rate decay (Loshchilov and Hutter, 2016) without restarts, and
the initial learning rate of 0.1 and 10 − 4 weight decay. In the retraining process, we use
the same setup except the learning rate is modified to 0.01. The models are retrained for
90 epochs. The previous state-of-the art int-only quantization methods we compared are:
PACT (Choi et al., 2018), LQ-Net (Zhang et al., 2018), LSQ (Esser et al., 2019), CSQ (Asim
et al.). For a fair comparison, same as LSQ, we set the precision of the first and last layers
to 8 bits. All our code is implemented using PyTorch 1.

Table 1 shows the comparison of our proposed method with a variety of mainstream int-only
quantization methods for Top1-accuracy with both weights and activation values quantized
to 4 bits. Our method can meet or exceed the current state-of-the-art int-only quantiza-
tion methods. We calculate the computational complexity of the int-only quantization and

1. https://pytorch.org/
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Table 1: A comparison of ImageNet Top-1 accuracy (%) classification performance for 4-bit
quantization (both weights and activation). Marked with ⋆ are int-only quanti-
zation methods. The baseline models are 32-bit full precision.

Network Baseline PACT⋆ LQ-Nets⋆ LSQ⋆ CSQ⋆ GWQ

ResNet-18 70.58 69.20 69.30 70.52 70.53 70.52
ResNet-34 73.31 - - 73.12 73.01 73.27
ResNet-50 76.12 74.21 74.72 75.83 - 75.84
VGG13 BN 71.58 68.70 69.12 69.56 - 69.56
VGG16 BN 73.37 71.58 71.60 72.40 - 72.41
MobileNet-v2 71.88 - - 66.82 66.98 65.79

Table 2: The computational complexity (GBOPs) comparison of the int-only method and
the GWQ method using different bit widths for quantization on ImageNet.

Network
Int-only
(4bits)

GWQ
(4bits)

Int-only
(8bits)

GWQ
(8bits)

ResNet-18 31.57 29.03 (-8.06%) 118.65 116.10 (-2.14%)
ResNet-34 62.45 58.62 (-6.13%) 238.31 234.48 (-1.16%)
ResNet-50 76.81 65.43 (-14.82%) 273.09 261.71 (-4.17%)
VGG13 BN 193.48 180.94 (-6.48%) 736.29 723.74 (-1.70%)
VGG16 BN 261.41 247.52 (-5.31%) 1003.98 990.10 (-1.38%)

MobileNet-V2 11.32 4.42 (-60.42%) 24.76 17.92 (-27.62%)

our proposed method for different network structures in Table 2. Combining Table 1 and
Table 2, we can observe that our method is not the best compared to the SOTA quanti-
zation methods, but our method outperforms the current int-only quantization in terms of
computational complexity across the board. In particular, our method on MobileNet-v2 is
almost 2 percentage points lower in performance compared to LSQ (Esser et al., 2019) and
CSQ (Asim et al.) quantization methods, but our computational complexity is more than
60 percentage points lower compared to these two methods. In a real scenario, we believe
this trade-off is worthwhile.

4.3. Ablation Study

To validate the effectiveness of the group quantization strategy, we conducted experiments
on group quantization using the Cifar-100 dataset on the ResNet-18 network. Furthermore,
to demonstrate the effectiveness of our proposed training method, we performed stability
experiments on training using LSQ and BLA on the VGG13 BN network with the same
dataset. In both of these experiments, we used the recipe from this repository 2 to train
the FP32 model for these two networks. We use the same hyperparameter settings as for
the ImageNet experiments, except that the retrain epoch is decreased to 30.

In the first experiment, we tested the performance of the 4-bit quantized ResNet-18 model
after retraining by manually set different number of groups. As shown in Figure 5(a), we

2. https://github.com/weiaicunzai/pytorch-cifar100
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observe that when all layers of the entire network share one scale factor, i.e., setting G = 1,
the performance of the quantized model decreases significantly even after retraining. As the
number of groupings increases, the performance of the retrained quantized model gradually
increases. When G increases to 4, the performance of the quantized model is close to the
performance of the full precision model. When the number of groups is larger than 4, the
performance does not improve greatly. This inflection point coincides with the optimal
number of groups determined by the grouping algorithm (shown by the red arrow in the
figure).

In the second experiment, we tested the performance comparison between using the LSQ
method and our proposed BLA method under several G settings. The results are shown in
Figure 5(b). We can observe that BLA has more stable training convergence compared to
LSQ. For example, when setting G = 1, LSQ is unable to converge, while BLA shows better
training stability. In addition, we can find that the performance of the model retrained by
the BLA method is superior across the board compared to LSQ.
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Figure 5: Ablation experiment in Cifar-100

5. Conclusion

In this paper, we propose a group-wise quantization framework and demonstrate the effec-
tiveness of the proposed framework through comprehensive experiments. Our work shows
that the use of the same quantization scale factor between neighboring neural network lay-
ers with similar numerical distributions does not significantly affect the performance of the
network, which means that the balance between computational cost and model performance
can be achieved by controlling the granularity of quantization reasonably. Our study gives
more opportunities for the research of model quantization techniques.
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