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Abstract

Counterfactual analysis is intuitively performed by humans on a daily basis eg. ”What should
I have done differently to get the loan approved?”. Such counterfactual questions also steer
the formulation of scientific hypotheses. More formally it provides insights about potential
improvements of a system by inferring the effects of hypothetical interventions into a past
observation of the system’s behaviour which plays a prominent role in a variety of industrial
applications. Due to the hypothetical nature of such analysis, counterfactual distributions
are inherently ambiguous. This ambiguity is particularly challenging in continuous settings
in which a continuum of explanations exist for the same observation. In this paper, we
address this problem by following a hierarchical Bayesian approach which explicitly models
such uncertainty. In particular, we derive counterfactual distributions for a Bayesian Warped
Gaussian Process thereby allowing for non-Gaussian distributions and non-additive noise.
We illustrate the properties of our approach on a synthetic and on a semi-synthetic example
and show its performance when used within an algorithmic recourse downstream task.

Keywords: Uncertainty quantification, Counterfactual analysis, Algorithmic recourse

1. Introduction

Forming new hypotheses is at the heart of science. Counterfactual analysis provides essential
insights for this task, but also plays an important role in industrial applications. It aims
to infer the effects of hypothetical interventions into a past observation of the system’s
behaviour. Optimizing these interventions for complex decision processes is a key application
of counterfactual analysis and is referred to as algorithmic recourse (Karimi et al., 2021b).
Similarly, such questions are also essential in root-cause analysis (Tonekaboni et al., 2020;
Budhathoki et al., 2022) as well as in offline reinforcement learning settings where a control
policy needs to be learned only by means of passive observations (Buesing et al., 2018).
However, the graph of the causal dependencies between variables is often not sufficient to
perform the necessary optimizations. The analytical or at least computational expressions
of functional couplings of the Structural Causal Model (SCM) (Pearl et al., 2009; Peters
et al., 2017) are required. Although these functional couplings can be learnt, they cannot
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be uniquely identified, due to limited data or intrinsic degrees of freedom of the modelling
choices of the functional couplings (see Sec. 3 for a particular example). To account for
the limited knowledge, Bayesian regression techniques are ideal to keep track of these
uncertainties (Gal and Ghahramani, 2016; Titsias and Lawrence, 2010). When applying
causal reasoning, one is often interested in predicting the effect of interventions onto the
SCM. This in turn results in queries to the uncertain structural equations with query-points
potentially far outside of the training regime. Therefore, using calibrated uncertainties is
important for making decisions that are robust under limited knowledge. Here, Gaussian
Processes (Rasmussen and Williams, 2006) offer a natural choice to provide calibrated
out-of-distribution uncertainties. When using counterfactual distributions to devise recourse
actions (Karimi et al., 2021b; Ustun et al., 2019), rendering counterfactual explanations
more robust against uncertainties, is an active field of research. For example uncertainties
of functional couplings within a fixed SCM have been analysed by Upadhyay et al. (2021);
Dominguez-Olmedo et al. (2021); Tsirtsis et al. (2021); Dutta et al. (2022). Similarly, (Bui
et al., 2021; Dutta et al., 2022) investigated uncertainties within the classifier. Uncertainty
from a disparity between the causal graphs of the data-generating process and the prediction
process has been studied by König et al. (2021) and outside of the algorithmic recourse
setting by Lorch et al. (2021), Geffner et al. (2022) and Pawlowski et al. (2020). For a recent
survey on this topic, refer to Karimi et al. (2021a).

Within the setting of counterfactual reasoning, however, there is another inherent
uncertainty due to different SCMs featuring disparate parametrization of the stochastic
influences yet yielding the same observational as well as interventional distributions (see
Figure 1). Although this non-identifiability of counterfactual distributions can be avoided by
imposing additional assumptions onto the underlying structural equation and the exogenous
noise distributions (Pearl, 2009; Shpitser and Pearl, 2007), these additional assumptions are
inherently non-testable and specific modelling assumptions are currently only available for
discrete variables within the structural causal model (Oberst and Sontag, 2019). Alternatively,
identifiability of discrete variable SCMs has been addressed by Chickering and Pearl (1996);
Imbens and Rubin (1997); Richardson et al. (2011) and Zhang et al. (2022) by treating the
counterfactual distribution directly as Bayesian variable. However, these approaches are
concerned with a discrete setting which allows for direct Bayesian modelling of the resulting
counterfactual distributions but do not readily transfer to the continuous setting, which we
investigate in this paper.

Instead of imposing non-testable assumptions on the model structure, we propose to follow
a hierarchical Bayesian approach which assigns a prior on different parametrizations that leads
to potentially different counterfactual distributions and infers the corresponding posterior
from observations. By averaging across different parametrizations, we effectively account
for all possible counterfactual distributions consistent with the observations. We equip the
established Gaussian Process with random transformations by placing a Normalizing Flow on
the likelihood function (Maroñas et al., 2021). Such a transformation would not only allow
for non-Gaussian distributed descendent node variables, but also provide a means to assess
possibly different SCMs with the same observational distribution by assigning a probability
distribution to different effects of the exogenous noise variable onto the functional coupling.
Using this extended setting, we derive the corresponding counterfactual distribution and
show that the resulting distribution over counterfactual estimates can account for non-
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uniqueness of counterfactual distributions due to ambiguous parametrizations. To evaluate
the proposed method in are more realistic setting, we apply it on an established algorithmic
recourse benchmark (Karimi et al., 2021b), thereby assessing the impact of the counterfactual
distribution on the downstream task as making accurate decisions in such settings based
on quantitative results requires handling uncertainties effectively. Our contributions can be
summarized as follows: We present a method which allows us to (i) capture uncertainty about
the parametrization of an SCM additionally to the uncertainty in the functional couplings
and exogenous noise uncertainty about continuous variables; (ii) derive a counterfactual
distribution in this extended setting and (iii) investigate the impact of modelling additional
uncertainties on an important downstream task of algorithmic recourse.

2. Background and notation

In this section, we recap relevant concepts of the causal inference literature, including
structural causal models, counterfactuals and algorithmic recourse.

Definition 1 (Structural causal model(Pearl, 2009)) A structural causal model M =
(S, PU ,G) is defined via structural equations Sr, r = 1 . . . , d:

Sr : Xr = fr(Xpa(r), Ur)

describing the functional relationship between observational variables Xr, for r = 1, . . . , d.
The dependence structure of these variables is defined via an acyclic graph G determining
the parents pa(r) of a node r. Within the structural equations, exogenous noise variables Ur

influence the stochastic assignment of the observational variables and in turn are distributed
independently according to Ur ∼ PUr .

Throughout the paper, we assume that there is no latent confounder influencing multiple
observational variables, reflected by the independence assumption of PU =

∏
r PUr of the

exogenous variables Ur. For a given SCM, observations X = (X1, .., Xd) can be generated
by sampling Ur ∼ PUr and subsequently applying the functional couplings. To incorporate
imperfect knowledge into the notation of an SCM, we extend Definition 1 to allow functional
couplings to be subject to further uncertainty:

Definition 2 (Uncertain SCM) An uncertain structural causal model M = (S, PF , PU ,G)
additionally contains a distribution PF which allows for specifying independent distributions
over functional couplings within an SCM M:

Sr : Xr = fr(Xpa(r), Ur), Ur ∼ PUr , fr ∼ PFr

Note that, within the above definition, we introduced an additional distribution over
functional couplings fr without increasing the expressiveness of the SCM, however, it allows
us to separately interpret different random effects: exogenous noise and imperfect knowledge
of functional mappings. To estimate interventional distributions, we would average across
both random influences, whereas for counterfactual analysis, we fix the exogenous noise
influence and only average across our imperfect knowledge of the functional mappings. With
a slight abuse of notation, we do not distinguish between uncertain and deterministic SCMs as
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deterministic SCMs are a special case of uncertain SCMs by defining a point mass distribution
PF on the deterministic functional couplings. Within an SCM, we denote interventions using
the do-operator. That is, when intervening on a set of variables XI = (XI1 , . . . XIa) to set
values θ explicitly for these variables, we substitute the corresponding structural equations by
SIi : XIi = θi and denote the corresponding derived SCM with M[do(XI = θ)]. With PM
we denote the data-generating distribution from which observations X can be generated by
propagating samples of Xpa(r) to Xr via sampling Ur and applying the functional mapping.

Counterfactuals Counterfactual analysis estimates hypothetical alternative outcomes
that would arise if an individual had made a different decision. It is therefore directly
linked to a particular observation XF generated from the underlying SCM (see Definition 1).
To perform this kind of analysis, in a first abduction step (Pearl, 2009), a noise posterior
distribution PU |XF is calculated. This noise posterior distribution restricts the exogenous

noise influences to the ones which are consistent with the given factum XF within the
functional couplings of a given SCM M. Consequently, for a given SCM M and factum XF ,
we denote the adapted counterfactual SCM M|XF = (S, PU |XF ,G). Calculating the noise
posterior depends on both the functional coupling fr and the noise distribution PU , which
is particularly challenging when functional couplings are also considered to be probabilistic,
i.e., fr ∼ Pfr . Within this paper we rely on available results for calculating noise posterior
distribution for the case in which functional couplings and noise distributions are modelled
with Gaussian distributions, which we state in the following:

Proposition 3 (Noise posterior of a Gaussian Process (Karimi et al., 2021b)) Let
a node r of an uncertain SCM in which the functional couplings are distributed according to
a Gaussian Process with kernel kr and additive noise Ur be given by:

Xr = fr(Xpa(r)) + Ur; fr ∼ GP(0, kr);Ur ∼ N (0, σ2
r )

For an observed factum XF with xFr , x
F
pa(r) containing descendent and parent observations

according to the graph G and training data Xr = {xir}i,Xpa(r) = {Xi
pa(r)}i, the noise posterior

PU |XF is given by:

P (Ur|XF ) = N (µr,Σr), with µr = σ2
r

((
Kr + σ2

r1
)−1 (

Xr, x
F
r

))
iF

,

Σr = σ2
r

(
1− σ2

r

(
Kr + σ2

r1
)−1

)
iF ,iF

, Kr = kr

((
Xpa(r), x

F
pa(r)

)
,
(
Xpa(r), x

F
pa(r)

))
where iF indicates the index of the factum, i.e. the last entry, as training data and factum
are concatenated.

Algorithmic recourse The algorithmic recourse setting aims at finding a counterfactual
explanation(Wachter et al., 2017), which would have led to a more desirable outcome for
a particular individual represented by observations XF . This can be translated into an
optimization problem in which the outcome is characterized by a given classifier h : X → [0, 1]
from which the outcome of an observation, e.g., getting a loan approved, can be predicted
by thresholding h(x) ≥ 0.5 or alternatively sampled according to the probability h(x). In
turn, the recourse problem can be formulated as a constrained optimization problem which
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minimizes the costs for performing an intervention under the constrain that it would have
led to an alternative (more desirable) outcome. The costs are typically associated with the
distance of the action of setting a particular value to the factum for which one would like to
obtain a different outcome, as performing such action would require to change the individual
or its properties. In Karimi et al. (2021b), it is extended to also account for the uncertainty
within the functional couplings resulting to the following algorithmic recourse formulation:

min
a=do(XI)

cost(a,XF ) s.t.PM[a]|XF
(h(X)) ≥ 1− δ (1)

Eq. 1 minimizes the cost of an action a (performing interventions on an intervention
set I) for an individual XF (one observation, ”negatively” classified) such that the found
counterfactual sample X reaches the ”positive” side after being applied to a classifier h
under the counterfactual distribution (PM[a]|XF ). Herein δ specifies the residual risk that
one is willing to accept for not achieving the desired outcome. The constraint therefore
measures the minimal probability which can be stated as a threshold on the expectation of
the classifier. Note that the constraint in the above optimization problem is specified in terms
of the counterfactual distribution. In this paper, however, instead of requiring a high success
rate under a single counterfactual SCM, we additionally average across possible SCMs, i.e.

replacing the constraint in Eq. 1 by Pr

(
PMϕ[a]|XF

(h(X))
)
≥ 1 − δ. Here, Pr represents

the distribution over possible ϕ-parametrized SCMs Mϕ that are all consistent with the
observations. By introducing additional uncertainty which only affects the counterfactual
distribution, we expect a more uncertain classification outcome under the counterfactual
distribution and hence also expect more robust recourse actions.

3. Method

The interventional or observational distribution of an SCM are determined by the conditional
distributions p(Xr|Xpa(r)). These distributions, however, can be realized with different com-
binations of functional coupling and exogenous noise influences. The chosen representation
determines the counterfactual distribution in which the exogenous noise influence is kept fixed.
To illustrate this effect of different parametrizations of the noise influence and functional
coupling, consider the following adapted example from Peters et al. (2017). We construct a
family of SCMs Mϕ with ϕ ∈ [0, 1), over two observational variables X1, X2. All members
of the family give rise to the same observational and interventional distributions, but each
leads to different counterfactual distributions. Specifically, these SCMs are constructed using
the following relationship between X1, X2 and the corresponding noise influences U1, U2:

X1 = U1, U1 ∼ U [0, 1]; X2 = 1X1<0.5U2X1 + 1X1≥0.5ζϕ(U2) U2 ∼ U [0, 1]
ζϕ(u) = 1u+ϕ≥1(u+ ϕ− 1) + 1u+ϕ<1(u+ ϕ) (2)

Here, ζϕ modifies a uniform distribution U [0, 1] by shifting its support by ϕ and re-mapping
it to [0, 1] by cutting off all values larger than 1 and mapping them to [0, ϕ]. Consequently,
the resulting random variable shares the same cumulative distribution function as U [0, 1].
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However, solving for a particular realization u for a given factual observation (x1, x2) results
in the following dependence on ϕ:

u1 = x1; u2 =

{ x2
x1

x1 < 0.5
x2
x1

− ϕ+ 1x2<ϕx1 x1 ≥ 0.5

That is, depending on the value of x1 we either observe a reparametrized version of u2
or u2 directly. In particular, if x1 < 0.5 is observed, the noise posterior is independent
of the parametrization, yet different parametrization will lead to different interventional
predictions when intervention are applied in the x1 > 0.5 regime. Due to this depen-
dence, all these SCMs have different counterfactual distributions, as illustrated in Fig. 1.
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Figure 1: Illustration of the SCM in Eq.2

Here, the graphical causal
model on the left con-
tains a free parameter ϕ
that characterizes the way
the exogenous noise in-
fluence affects the SCM.
The parametrization is
chosen such that each
evaluation of such a rep-
resentational parameter
ϕ1, ϕ2, ϕ3 leads to the
same observational dis-
tribution of X1, X2 (top
row in Fig.. 1) when
marginalizing out U1, U2.
The conditional of this
observational distribution
p(X2|X1) coincides with
the interventional distri-
bution p(x2|do(X1) = x1)
due to the simple gener-
ating SCM in which X1

corresponds to the root-
node. For the three different observations indicated by the markers in the top row, we
constructed the counterfactual distributions (three lines, bottom row) for three different
representational parameters ϕ1, ϕ2, ϕ3. Although the observational distributions are identical,
the bottom row shows different counterfactual distributions corresponding to the 3 SCMs.
As the observational distributions are identical across all parametrizations, the exact SCM
cannot be recovered even if infinite amount of data were available. In practice, this is further
complicated as only a limited amount of data can be obtained, from which the functional
couplings and interaction with the exogenous noise distributions would have to be estimated.

To this end, consider i = 1, . . . , N observations (xr)i,Xr = {(xr)i}i=1...,N from a node r
as well as the corresponding observations Xpa(r) = {(xpa(r))i}i=1,...,N , (xpa(r))i ∈ Rdim(pa(r))
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from the parent nodes pa(r). To model their relationship, we use the following generative
model:

Definition 4 (Bayesian Warped GP (BW-GP)) Given kernel parameter θ and a dis-
tribution over parametrizations pϕ, we refer to the following as a Bayesian Warped GP:

Xr = g−1
ϕ (f(Xpa(r)) + Ur, Xpa(r)), f ∼ GP(µGP , kθr), Ur ∼ N (0, σr), ϕ ∼ pϕ (3)

Here, gϕ is a parametrized mapping, in this paper modeled by a Normalizing flow, which is
bijective w.r.t. Xr for all Xpa(r). This renders the model similar to the post-nonlinear causal
model (Zhang and Hyvärinen, 2009). The possible parametrizations within the model are
represented by the Bayesian belief pϕ.

Note that a BW-GP is equivalent to a transformed Gaussian Process with G = I,T = gϕ
within the notation of Maroñas et al. (2021). By inverting the bijective mapping gϕ w.r.t. its
first argument we transform the likelihood (not the prior) of a Gaussian Process. As gϕ is non-
linear Xr = g−1

ϕ (f(Xpa(r)) + Ur, Xpa(r)) is non-Gaussian with non-additive noise (Maroñas
et al., 2021). By allowing for a non-linear warping using a Normalizing flow, this Gaussian
distribution can be mapped to any other distribution of the same dimension arbitrarily well
(under some mild regularity assumption see (Koehler et al., 2020)), provided that the neural
network is sufficiently flexible. To learn such a model, we employ mean field variational
inference. More precisely, using qϕ = N (m,diag(s)) as a variational approximation to the
true posterior pϕ(·|Xpa(r),Xr, θ), we optimize the following stochastic approximation (using
S samples) to the evidence lower bound (ELBO) (Maroñas et al., 2021):

L(m, s, θ) = Eqϕ

[
log

(
p(Xr|Xpa(r), ϕ, θ)

)]
−KL [qϕ||pϕ]

≈ 1

S

∑
ϕi∼qϕ

log
(
p(Xr|Xpa(r), ϕi, θ)

)
−KL [qϕ||pϕ] (4)

Here, the marginal likelihood for a fixed transformation gϕ is given by (see also (Snelson
et al., 2004)):

log
(
p(Xr|Xpa(r), ϕ, θ)

)
=

1

2
log |Kθ|+

1

2
z⊤Kθ

−1z−
∑
i

log

∣∣∣∣∂gϕ∂xr

(
xr
i ,x

pa(r)
i

)∣∣∣∣+ N

2
log(2π),

with Kθr =
(
kθ

(
Xpa(r),Xpa(r)

)
+ σ1

)
; z =

(
gϕ

(
Xr,Xpa(r)

)
− µGP

(
Xpa(r)

))
The ELBO in Eq. 4 is a lower bound on the observational data distribution as a function

of the parameters m, s, θ, where m and s are the mean and variance of the variational
approximation q, ϕ whereas θ summarizes parameters from the Gaussian process and
therefore enter the first likelihood term only. Once we have obtained an approximate
posterior distribution qϕ and kernel parameters θ by optimizing the ELBO Eq. 4, we can
also perform predictions using the generative model Eq. 3. Specifically, as the generative
model is a Gaussian Process for any fixed transformation within the transformed space, we
first sample parameters ϕ ∼ qϕ. Using this fixed transformation, we can sample a function
and noise values on any given test input and transform the sampled observation back into
the original space (Snelson et al., 2004).
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The resulting process is a hierarchical Bayesian model in which the distribution qϕ
determines the different noise-parametrizations and conditioned on this transformation,
the residual uncertainty associated with limited amount of data is captured by a Gaussian
Process. In Karimi et al. (2021b) Gaussian Processes have also been used to model an
SCM under imperfect knowledge. This allows for calculating counterfactual distributions
and hence enables to analyse the potential outcome of a different decisions even when the
functional couplings between the causal variables are not fully known. However, Gaussian
Processes fail to model non-Gaussian exogenous noise distributions for transitions between
two causally linked variables X → Y .

In contrast, Normalizing Flows (Papamakarios et al., 2021) offer an alternative which
can model complex densities while maintaining analytical tractability for density evaluation
and sampling. Combining Gaussian Process with normalizing flow has already been pursued
in Maroñas et al. (2021). However, they have not previously been used for the purpose of
calculating counterfactual distributions. Exploiting the Gaussian Process property for a
fixed transformation in the hierarchical Bayesian model, we can use and extend the result
Prop. 3 on calculating counterfactual SCMs for GPs to derive a sampling procedure for the
counterfactual distribution of a Bayesian warped GP.

Proposition 5 (Noise posterior distribution of a BW-GP) Let M be an uncertain
SCM in which the functional couplings are distributed according to a BW-GP.

For an observed factum XF with xFr , x
F
pa(r) containing descendent and parent observations

according to the graph G, training data Xr,Xpa(r), the noise posterior is given by:

P (Ur|XF ) =

∫
ϕ
N (µr(ϕ), sr(ϕ))qϕ(ϕ)dϕ, with

µr(ϕ) = σ2
r (Kr (gϕ(Y,X)− µGP(X))N+1 ; sr(ϕ) = σ2

r

(
1− σ2

rKr

)
N+1,N+1

Kr =
(
kθr(X,X) + σ2

r1
)−1

; X = (Xpa(r), xpa(r)
F );Y = (Xr, xr

F )

(5)

where N + 1 is the last entry, i.e., the index of the factum when concatenated with the
training data Xpa(r),Xr.

Proof The statement follows from the fact that for a given transformation, which is speci-
fied by ϕ, gϕ((Xr, xr

F ), (Xpa(r), xpa(r)
F ))− µGP ((Xpa(r), xpa(r)

F )) is distributed according

to a zero-mean Gaussian with covariance given by kθr((Xpa(r), xpa(r)
F ), (Xpa(r), xpa(r)

F )).
The rest follows by applying Prop. 3.

Equation(5) also directly gives us a way to approximate the noise posterior by first
sampling ϕ from the variational approximation qϕ and subsequently sampling a latent function
and corresponding observational noise. To sample from the counterfactual distribution,
similarly to Karimi et al. (2021b), we average across latent functions, but also across different
parametrizations as modelled by p(ϕ). Specifically, by exploiting p(fr(x

∗), Ur|ϕ, x∗, XF ) =
p(fr(x

∗)|ϕ, x∗, XF )p(Ur|ϕ,XF ), we can first sample from the predictive distribution of the
BW-GP and add a sample from the noise distribution according to Eq.(5) in order to get
a sample from the counterfactual distribution in which we intervened on the parent node
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of r and estimate its effect for the observed factum XF . Note, that the noise posterior
depends on the transformation ϕ only via the transformed values for the descendant nodes.
Consequently, the variance and especially the inverse of the kernel matrix can be computed
beforehand and independently for all samples of the counterfactual distribution. Calculating
the counterfactual distribution for the BW-GP only requires averaging across additional
samples for the parameters of the normalizing flow for which also the training data has to be
transformed. Consequently, although most causal reasoning methods, including algorithmic
recourse do not scale well due to the large number of possible intervention sets, the present
method only adds linear computation effort compared to the GP-SCM due to the additional
samples of different parametrizations.

4. Experiments

In the following, we evaluate our Bayesian Warped GP model (Eq .3) on the illustrative
example (Eq. 2) as well as on a algorithmic recourse benchmark. In these experiments, we
represent the bijective mapping gϕ by a neural spline flow with element-wise (referred to as
bins) rational conditional spline functions (Durkan et al., 2019; Dolatabadi et al., 2020) and
use an independent normal prior pϕ on the network weights.

4.1. Illustrative example

First, we analyse our proposed hierarchical Bayesian model w.r.t. its ability to cope
with the inherent ambiguity of different parametrizations leading to the same interven-
tional but different counterfactual distributions by learning a BW-GP on data arising
from the SCM of Eq. 2 (see also Fig. 1). To also account for probing the learned
model in not well covered regimes of the training data, we selected 174 training points
all of which lying within [0, 0.6] but tested the model also in the regime [0.6, 1]. On
these training datapoints, we fitted both a BW-GP as well as a Gaussian Process. To
assess the quality of the modelled SCM, we generated 1000 samples of X1 uniformly
across the range [0, 1] and draw one sample from the modelled interventional distribu-
tion. The resulting predictive distribution of the BW-GP and GP are illustrated in

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X 2

Training x-location

0.0 0.2 0.4 0.6 0.8 1.0
0

25

0 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) BW-GP
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Figure 2: Comparison of the modeled interventional distribution.

Fig. 2a and Fig. 2b
respectively. Both
models are trained
on points between
0 and 0.6, ren-
dering the range
between 0.6 and
1 as extrapolation
regime. The blue
points in the back-
ground show the
observational dis-
tribution of the
SCM Fig .2, the or-
ange points corre-
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spond to samples
of the interventional distribution of (a) our BW-GP and (b) a GP. Blue points in the
background indicate samples from the ground truth model of Eq. 2 (see Fig. 1). As can
be seen from Fig. 2, the BW-GP provides a close fit to the ground truth observational
distribution whereas a GP is not able to fit the observational data as accurately, due to
the non-stationary noise distribution. This heteroscedasticity of the noise distribution also
forces the plain GP to explain the data using non-zero functional coupling uncertainty. The
BW-GP model, however nicely adjusts for such uncertainty by allowing for non-stationary
distributions over functional couplings.
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Figure 3: Illustration of the modeled counterfactual distribution.

Second, we also
evaluate the coun-
terfactual distribu-
tion for both a
Gaussian Process
without parametriza-
tion uncertainty and
our BW-GP which
includes such un-
certainty. In Fig. 3,
we plot the re-
sulting counterfa-
cutal distribution
estimates when in-
tervening on X1

and using the noise-
posterior of the observation XF

1 = 0.22, XF
2 = 0.08 (marked by an orange square in Fig. 1)

and compare them against counterfactual distributions arising from different parametrization
in Eq. 2. Here, the blue points in the background show samples of the true counterfac-
tual distribution constructed from the factum (orange box) and varying parametrizations
ϕ. The purple points represent a sample drawn of the counterfactual distribution of (a)
our BW-GP and (b) a GP. The interventional distribution of the counterfactual SCM (as
shown in Fig. 3) is forced to recover the observation that it is conditioned on, if we would
intervene on X1 forcing the variable to have the same value as observed (orange marker
in Fig. 3). While this property is recovered by both BW-GP and GP (by construction of
the counterfactual SCM), stationarity assumption of the noise of the GP results in larger
uncertainty around the observation in the counterfactual. Despite the non-stationarity of the
noise of the BW-GP, it seems to also cover the uncertainty of counterfactual distribution in
the out-of-training data regime. We focus on isolating the impact of uncertainties stemming
from the inherent ambiguity of different parametrizations of the same observational and
interventional distribution.

4.2. Benchmark Experiments

Besides the illustrative example we evaluated the BW-GP on an important downstream
task of a counterfactual distribution to assess the impact of the BW-GP on a more realistic
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decision making processes. To this end, we compare our model (BW-GP) against other
baseline methods within algorithmic recourse benchmark of Karimi et al. (2020), including
a standard GP, a linear regressor and a conditional variational autoencoder (CVAE). For
the CVAE, we use the implementation of Karimi et al. (2021b), yet it can be regarded as
a non-amortized version of the CVAE by Pawlowski et al. (2020). Analogously to Karimi
et al. (2020), we compared both the counterfactual model (denoted by M<model>) as well as
the interventional variants of the different models (denoted by CATE<model>).

Table 1: Experimental results of a three variable causal model in a recourse setting with 100
individuals. We compare our model (MBW-GP) against the reproduced baselines
LIN, GP, CVAE of Karimi et al. (2020).

Linear SCM NON LINEAR SCM NON ADDITIVE SCM

Valid(%) Cost(%) MMD Valid(%) Cost(%) MMD Valid(%) Cost(%) MMD

M∗ 100 11.2 ± 7.4 - 100 19.7 ± 12.3 - 100 10.3 ± 8.6 -
MLIN 100 12.0 ± 8.0 0.019 ± 2.37 · 10−5 67 20.6 ± 10.8 0.202 ± 0.006 100 10.1 ± 8.3 0.383 ± 0.027
MGP 100 13.3 ± 9.7 0.043 ± 0.001 100 22.0 ± 13.5 0.036 ± 0.001 98 10.3 ± 8.5 0.369 ± 0.019
MCVAE 100 12.7 ± 8.2 0.031 ± 0.001 91 25.4 ± 14.3 0.139 ± 0.002 97 10.1 ± 8.1 0.146 ± 0.013
MBW-GP 100 13.0 ± 9.0 0.069 ± 0.002 99 22.3 ± 14.7 0.043 ± 0.001 99 10.2 ± 9.1 0.120 ± 0.009
CATE∗ 88 12.4 ± 9.6 - 99 28.1 ± 28.9 - 100 10.1 ± 8.2 -
CATEGP 90 12.6 ± 8.5 0.044 97 27.4 ± 17.8 0.043 94 9.6 ± 8.5 0.261
CATECVAE 87 12.8 ± 10.5 0.066 99 33.4 ± 25.0 0.069 100 10.1 ± 8.3 0.064
CATEBW-GP 93 12.8 ± 9.0 0.073 98 29.8 ± 19.4 0.039 98 9.7 ± 7.9 0.089

Table 2: Experimental results of a seven variable semi synthetic causal model on 100 facta
in a recourse setting.

LINEAR LOG. REGR. NON-LINEAR LOG. REGR. RANDOM FOREST

Valid∗(%) Cost(%) MMD Valid∗(%) Cost(%) MMD Valid∗(%) Cost(%) MMD

M∗ 100 17.4 ± 8.0 - 100 15.8 ± 9.3 - 100 19.3 ± 9.1 -
MLIN 100 18.0 ± 8.3 0.121 ± 0.007 96 16.2 ± 9.5 0.101 ± 0.009 94 19.5 ± 9.4 0.094 ± 0.007
MGP 100 22.0 ± 8.7 0.128 ± 0.004 100 18.6 ± 10.4 0.042 ± 0.001 100 21.2 ± 9.4 0.040 ± 0.001
MBW-GP 100 22.3 ± 9.3 0.050 ± 0.002 100 19.6 ± 12.1 0.053 ± 0.002 99 20.7 ± 9.2 0.049 ± 0.002
CATE∗ 88 25.7 ± 9.3 - 89 21.4 ± 14.2 - 92 23.9 ± 9.0 -
CATEGP 91 26.6 ± 9.5 0.082 93 22.3 ± 14.8 0.088 98 24.5 ± 9.5 0.086
CATEBW-GP 95 28.1 ± 11.1 0.090 94 22.5 ± 14.4 0.087 98 24.6 ± 9.4 0.077

In this algorithmic recourse benchmark setting, the goal is to find both the optimal nodes
for an intervention as well as the optimal intervention value in relation to the cost (Eq. 1).
We report validity and cost of Karimi et al. (2020), where the validity defines the percentage
of individuals with a beneficial outcome after a counterfactual sample is drawn. The cost
is the L2-norm between the factum XF and the intervention, normalised by the range of
each training variable. To assess the quality with which we represent the counterfactual
distribution, not just the algorithmic recourse task, we additionally, evaluate the maximum
mean discrepancy (MMD) (Gretton et al., 2012) between the modelled counterfactual
distribution and the counterfactual distribution of the ground truth model (denoted as M∗).
As both depend on the observed factum, we average the obtained MMD values across 100
facta. More precisely, to generate a sample of the modeled counterfactual distribution, we
first calculate the posterior noise distribution and then perform a soft intervention on the
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root node by sampling values for the root node from the ground truth distribution. Using
this sampling process, we obtain one counterfactual sample per factum. The same sampling
process is used to evaluate the quality of the modeled interventional distribution in terms of
MMD value, however, the noise prior is used instead of the noise posterior per factum to
generate a sample. To generate samples from counterfactual distribution of the ground truth
SCM, we stored the noise variables U that generated a particular XF in the test data and
substituting it in the structural equations of the SCM after performing an intervention. In
order to use the same MMD metric across different models, we used a squared exponential
kernel and used two independent samples of the ground truth distribution to estimate
hyperparameters of the kernel according to the median heuristic (Garreau et al., 2017).

Synthetic three variable causal model First of all we evaluate our model on three
SCMs, a linear and a non-linear both with additive noise and a nonlinear with non-additive
noise. Each SCM has the same underlying causal graph consisting of three variables yet differs
in the functional couplings being either linear, non-linear or exhibiting non-additive noise.
Since the ground truth is known of this artificial, we can generate data from it. Analogously
to Karimi et al. (2020), we trained each model on 250 such samples from observational
distribution and evaluated on 100 facta sampled from the observational distribution which
are found to be negatively classified according to a logistic regression, see Tab. 1. Here,
CATE∗ refers to the optimization process in which interventions are evaluated w.r.t. the
interventional SCM rather than the counterfactual SCM within Eq. 1 (in the constraint
set), see (Karimi et al., 2020). Therefore, interventions found by CATE∗ in Tab. 1,2 are
not necessarily achieving 100 percent validity when checked with the counterfactual ground
truth SCM. To set hyperparameters of our model (number of bins in the spline and size of
the neural network), we performed a Bayesian optimization on a validation set (details can
be found in the suppl. material). Although the BW-GP performs comparably in terms of
costs and validity as the other best models, on the non-additive SCM we show a significantly
smaller MMD than the GP in the counterfactual and interventional (CATE) task. This
could be due to the fact that the normalizing flow is able to learn multimodal distributions
well. Nevertheless the GP achieves high validity and comparable loss, which means that the
learned conditional distributions do not have a strong impact on the recourse task itself.
The conditional variational autoencover (CVAE) performs similarly well on the non additive
SCM but operates considerably worse on the non linear SCM counterfactual task. As noted
by Karimi et al. (2020) samples of MCVAE are ”pseudo-counterfactual” possible amounting
to a reduced accuracy.

In the linear SCM experiment, we observe that the BW-GP performed slightly worse
than the GP in terms of the MMD, yet without significant impact on validity or costs. Note,
however, that the costs and validity are computed based on a counterfactual distribution
which is constructed from a single ground truth SCM and hence does not include the
additional uncertainty of potentially different parametrizations. We argue that the slight
drop in performance of the MMD can therefore be attributed to the additional uncertainties
accounted for by the BW-GP. Therefore, we additionally measured the variance of the
counterfactual distribution samples over the different facta to assess a potential increase in
the overall uncertainty of the counterfactual distribution modeled by the different methods.
Indeed, we observed that our model has the highest variance (2.9907) across counterfactual
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distribution samples followed by the GP (2.9531), the linear model (2.9271) the CVAE
(2.9189).

Semi synthetic seven variable causal model The semi synthetic seven variable system
is inspired by the German Credit UCI dataset as it features relevant variables such as age,
savings, gender etc. as well as a labelling mechanism representing the loan-approval. Based
on data generated from this constructed SCM, different classifiers are trained: linear and
non-linear logistic regression, and a random forest. Similarly to the three-variable model we
used the same benchmark setting, models and computation as in Karimi et al. (2020) and
performed a hyper-parameter optimization on a validation set. Also in this more realistic and
higher dimensional setting, we observe a more accurate characterization of the counterfactual
distribution as indicated by significantly lower MMD scores without sacrificing validity (see
Tab. 2)1. While the BW-GP performs slightly worse than the GP in terms of accuracy
of the interventional distribution for the logistic regression setting, it still achieves better
validity. Similarly to the evaluation within the three-variable model, each method is only
evaluated against a single SCM assumed to be the ground truth. However, the BW-GP
additionally accounts for the uncertainty in the parametrization leading to larger spread of
counterfactual costs as indicated by the standard errors, yet without sacrificing validity.

5. Conclusion

In this paper, we proposed a hierarchical Bayesian model to account for ambiguities in the
underlying SCM as well as for the uncertainties arising from imperfect knowledge of functional
couplings due to limited observational data. By using a Bayesian Warped GP, we were able
to not only allow for non-Gaussian distribution at descendent nodes, but also non-stationary
noise distributions. This seems to be particularly beneficial for counterfactual distributions
(see Figure 3). Although we introduced an additional source of uncertainty about the
parametrization, this resulted in a more accurate fit of the counterfactual distribution also
in more realistic settings (see Table. 12).

The gained expressiveness of the model also leads to robust recourse actions in terms of
the achieved validity without an increase in costs due to the additional uncertainty within
considered SCMs. In fact, our BW-GP 3 theoretically provides a sufficiently flexible model to
capture any conditional distribution p(Xr|Xpa(r)). However, in practice the flexibility of the
neural network as well as the amount of observational data is limited. In this limited case,
the ground truth models of sec.(4) will not be exactly matched by our model. Therefore,
our experiments can be considered as evaluation results under model misspecification. The
proposed method can also be used in settings with unobserved confounders by introducing
additional, yet unobserved nodes within the SCM and integrating out their values during the
training phase. However, when falsely assuming potential hidden confounders by introducing
latent variables, each of which are associated with a flexible probability distribution, predictive
power is likely to decline. Although we have shown that the proposed model can account for
these ambiguities to a certain degree, it still contains hard and soft assumptions one can
relax. For example, in this research we assumed that the graphical structure between the

1. Note that the results for the variational autoencoder could not be reproduced with the provided source
code.
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static modeled variables is known. By imposing yet another probability distribution on the
graphical structure, such a hard assumption can be relaxed with the downside of additional
computational complexity to learn these models (von Kügelgen et al., 2019).
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