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Abstract

Alzheimer disease is one of the most common neuro-degenerative diseases, with an esti-
mated 6.2 million cases in the United States. This research article investigates the poten-
tial of Transformer-based deep learning techniques to accelerate the processing of diffusion
tensor imaging (DTI) measures and improve the early diagnosis of Alzheimer disease (AD)
using sparse data. Diffusion Weighted Imaging (DWI) is a time-consuming process, with
each diffusion direction taking between 2-5 minutes, and at least 40 diffusion directions are
needed for routine clinical diagnosis, which needs scanning duration exceeding 3 hours for
each patient. By leveraging the attention mechanism, our proposed model generates quanti-
tative measures of fractional anisotropy (FA), axial diffusivity (AxD), and mean diffusivity
(MD) using 5 and 21 diffusion directions, making it useful for clinical diagnosis through re-
duced scanning time of more than half. Our experimental results on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed model outperforms
the traditional linear least square method, achieving accurate quantitative measurement
of FA, AxD, and MD scores for early diagnosis of AD patients from healthy controls us-
ing sparse diffusion directions. Our analysis highlights the potential of Swin-Transformer
attention-based deep learning framework to improve the early diagnosis and treatment
of Alzheimer’s disease. A repositories for our research work at https://github.com/

AbhishekTiwari101/ACML2023-Early-Diagnosis-of-Alzheimer-via-Deep-Learning

https://github.com/reachananya/Early-diagnosis-of-Alzheimer-via-DL

**Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at:ADNI Acknowledgement List
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1. Introduction

Millions of people worldwide are affected by Alzheimer disease (AD), which is a type of neu-
rodegenerative disorder Kolahkaj et al. (2023); Qu et al. (2021). Routine clinical diagnosis
of AD involves DWI, which is a time-consuming process, with each diffusion direction taking
between 2-5 minutes, and at least 40 diffusion directions are needed. Consequently, each
patient’s scanning duration exceeds three hours Scherrer and Warfield (2012). The effective
treatment and management of AD rely heavily on early and accurate diagnosis Marzban
et al. (2020); Gao and Lima (2022). A powerful neuroimaging technique called diffusion
tensor imaging (DTI) can provide valuable information on the microstructural integrity of
the brain’s white matter, which is often altered in Mild Cognitive Impairment (MCI), an
early stage of AD Nir et al. (2013); Zhan et al. (2014); Demirhan et al. (2015). However,
the traditional linear least square method used for DTI processing requires a large number
of diffusion directions, making it challenging for both the patient and the diagnostic lab.

Recent advances in deep learning Aja-Fernández et al. (2023); Liu et al. (2022); Tiwari
and Singh (2022); Aderghal et al. (2020) have shown tremendous potential in accelerat-
ing the processing of DTI measures and improving the quantitative measure of MCI and
AD diagnosis. Attention-based Karimi and Gholipour (2022) deep learning is a power-
ful technique that can focuses on relevant regions of interest in the brain and extracts
diffusion tensor imaging quantitative measures viz fractional anisotropy (FA), axial diffu-
sivity (AxD), and mean diffusivity (MD). By leveraging the attention mechanism Karimi
and Gholipour (2022), it is possible to process DTI measures more efficiently and accu-
rately, even with six diffusion directions. The utilization of the multi-head self-attention
mechanism, as introduced in Vaswani et al. work on attention Vaswani et al. (2017), is
employed by Transformer-DTI Karimi and Gholipour (2022) to leverage the spatial corre-
lation present in diffusion tensor parameters and diffusion signals across adjacent slices and
voxels. Despite the immense promise of transformer models, their scalability becomes a
concern when dealing with a larger number of diffusion directions. This is primarily due to
the increase in trainable parameters, resulting in longer training times and higher memory
requirements. Consequently, training a single model capable of handling multiple diffusion
directional signals becomes a challenging task. However, the Swin Transformer model has
garnered significant attention for its exceptional ability to handle larger input sizes, setting
it apart from traditional transformer models Liu et al. (2021). This deep neural network
architecture has recently emerged and demonstrated impressive performance across var-
ious computer vision tasks, such as semantic segmentation, object detection, and image
classification. Unlike conventional transformer models that process input data sequentially
Vaswani et al. (2017), the Swin Transformer adopts a hierarchical structure.

In the Swin Transformer, input feature maps are divided into non-overlapping patches,
and these patches are simultaneously processed using multiple transformer layers. This
approach enables efficient parallelization and reduces the computational cost of the self-
attention mechanism. Consequently, the number of parameters is reduced, which is crucial
for developing a more generalized model capable of handling multiple diffusion directional
signals. In the context, we propose a novel Swin-Transformer attention-based deep learning
model that can extract quantitative measures such as FA, AxD, and MD, to accurately
diagnose early incidence of AD. To evaluate the effectiveness of our proposed model, we
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employ the openly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
We compare our model performance with a traditional linear least square method Koay
et al. (2006) for 41 diffusion directions. Furthermore, for 21 and 5 diffusion directions, we
compare our model with both the traditional linear least square method Koay et al. (2006)
and Transformer-DTI Karimi and Gholipour (2022). Through these comparisons, we aim
to demonstrate the superiority of our proposed model in accurately diagnosing AD at its
early stage.

The main contributions of this article are:

• Efficient learning of spatial correlation in neighboring voxels to enhance robustness
of diffusion tensor imaging parameters through a unique training strategy involving
shifting window with overlapping strides.

• Accelerated estimation of DTI parameters using sparse measurements facilitated by
the proposed method.

• Demonstrated capability to quantify diffusion parameters and detect early-stage Alzheimer’s
disease using the proposed model.

The rest of the paper is organized as follows. In Section 2, we describe our proposed
method and its architecture in detail. In Section 3, we present the experimental results
and analysis, and in Section 4, we conclude the paper with a summary of our findings and
future research directions.

2. METHOD

A DWI image is characterized by four dimensions, where the first three dimensions corre-
spond to spatial measurements, and the fourth dimension represents the measurement of
water diffusivity across multiple diffusion directions. DTI being specific type of DWI, can
capture diffusion anisotropy, by considering diffusivity as a function of orientation through
a Gaussian model Le Bihan et al. (2001); Basser et al. (1994). This orientation function is
characterized with 3 × 3 symmetric matrix D as represented in equation 1.

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1)

The tensor D represents the magnitude of diffusivity on an ellipsoid’s surface. Its eigen-
vectors and eigenvalues correspond to the directions and lengths of the ellipsoid’s axes,
respectively. Diffusion signal inside each 3D voxel is a N dimensional vector represented as
s = [s1, s2, ..., sN ]. According to DTI formulation Le Bihan et al. (2001), as represented in
equation 2, we want to extract diffusion tensor D from signal s.

si = s0e
(−bxxDxx−byyDyy−bzzDzz−2bxyDxy−2bxzDxz−2byzDyz) (2)

Here, bjk, for j, k = x, y, z, represents function of diffusion directions g = {gi}Ni=1, where
each gi = [gix, giy, giz] is a unit direction vector.Along with that s0 represents zero dif-
fusion signal. Using simplified assumption of the b-matrix as given in Le Bihan et al.
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Figure 1: The proposed model architecture for training and prediction of the neural net-
work.
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Figure 2: Comparing outcomes from ground truth, the proposed method, and LLS fitting
Koay et al. (2006), we note that the Proposed method demonstrates comparability
with both the ground truth and LLS fitting Koay et al. (2006) for 41 diffusion
directions.
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Figure 3: Comparing outcomes from ground truth, the proposed method, LLS fitting Koay
et al. (2006) and Transformer-DTI Karimi and Gholipour (2022), we note that
the Proposed method demonstrates comparability with the ground truth and
surpasses both LLS fitting Koay et al. (2006) and Transformer-DTI Karimi and
Gholipour (2022) for 21 diffusion directions.



Early Diagnosis of Alzheimer through Swin-Transformer-Based Deep Learning Framework

Figure 4: Comparing outcomes from ground truth, the proposed method, LLS fitting Koay
et al. (2006), and Transformer-DTI Karimi and Gholipour (2022), we observe that
the Proposed method achieves comparability with the ground truth and surpasses
LLS fitting Koay et al. (2006) and Transformer-DTI Karimi and Gholipour (2022)
for 5 diffusion directions.
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Figure 5: Six diffusion component of diffusion tensor for 5 diffusion directions

Figure 6: Six diffusion component of diffusion tensor for 21 diffusion directions
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Figure 7: Axial brain slice representing the Cingulum region, highlighted with p-value of
two sample t-test(df=22). Green color: hypothesis testing tstat1 - Healthy CN
> MCI, Red color: hypothesis testing tstat2 - Healthy CN < MCI.

Figure 8: Coronal brain slice representing the Uncinate fasciculus region, highlighted with
p-value of two sample t-test(df=22). Green color: hypothesis testing tstat1 -
Healthy CN > MCI, Red color: hypothesis testing tstat2 - Healthy CN < MCI.
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(2001), we obtained equation si/s0 = e−bgTi Dgi which provides best accuracy of diffusion
coefficient D. The apparent diffusion coefficient Ki with respect to each gi can be cal-
culated as Ki = gTi Dgi = (−1/b) ln(si/s0). The design matrix α = [α1, ..., αN ]T rep-
resents linear mapping between diffusion tensor D and apparent diffusion coefficient es-
timates K = [K1, ...,KN ]T using K = αD̄, where D̄ = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]

T

and αi = [g2ix, g
2
iy, g

2
iz, 2gixgiy, 2gixgiz, 2giygiz]T . Traditional linear least fitting (LLS) Koay

et al. (2006) method uses D̄ = (αTα)−1αTK, which is susceptible to noisy and sparse
measurements. For sparse measurements, instead of solving using linear model, we pro-
posed to solve for D directly using equation 2 as inverse map D̄ = F (X,g), where input
X = [s1/s0, ..., sN/s0] per voxel. We have formulated our F using Swin-transformer based
neural network Liu et al. (2021).Our modeling framework is more generic framework, where
single model is sufficient to learn from diffusion signal with different number of diffusion di-
rections. We have experimented with {41, 21, 5} number of diffusion directions. In practical
applications, multiple attention heads are commonly used to learn diverse representations
of the input. To capture pixel relationships in the vicinity, a softmax function is applied
to the logits computed in that particular neighborhood. The Transformer-DTI Karimi and
Gholipour (2022) model employed multi-head self-attention to estimate diffusion tensor
imaging parameters using only six diffusion-weighted images.

In our proposed model, we introduce a modified version of window self-attention to
enhance non-linearity and decrease the number of parameters. The window self-attention
mechanism in our model offers several advantages over traditional self-attention mecha-
nisms, making it a crucial component. Instead of integrating the diffusion direction using
learned weights, we concatenate the direction vector as part of the input signal. This
enhancement improves the model’s non-linearity and enables it to capture more intricate
relationships within the input data. Traditionally, self-attention applies distinct triplets of
(query, key, value) to each position in the input. However, in our proposed model, we employ
window self-attention, where the same triplets are applied to all windows within the same
patch. This patch-based method, divides the input image into patches and independently
applies spatial relative attention to each patch. This strategy reduces the computational
burden of spatial relative attention and allows for the modeling of long-range spatial rela-
tionships in large images.

2.1. Data Preprocessing and Model Training

We developed an algorithm to preprocess the DWI images from the ADNI dataset, creating
three preprocessed training datasets: ADNI − 41, ADNI − 21, and ADNI − 5. The
algorithm is outlined in Algorithm 1.

Our neural network was trained on a dataset consisting of 1 million tuples per image
obtained from three different datasets: ADNI − 41, ADNI − 21, and ADNI − 5. These
tuples were derived from a subset of 10 DWI images, which were pre-processed using Algo-
rithm 1. The architecture of our neural network is illustrated in Figure 1, where we employ
a Swin-transformer block known for its ability to capture correlations within input signals.
In our case, the input signals consist of diffusion signals along with diffusion directions, and
our model considers the diffusion signals within a neighboring 5 × 5 × 5 patch along with
the current voxel diffusion signal.
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Algorithm 1 Data preprocessing of proposed model

Output: Algorithm for preprocessing DWI images of ADNI dataset, creating preprocessed
training datasets ADNI − 41, ADNI − 21, and ADNI − 5.

Step 1: Apply the DTI model fit from the DIPY Python package Garyfallidis et al. (2014)
to each DWI image individually, resulting in six diffusion components: Dxx, Dxy, Dyy,
Dxz, Dyz, and Dzz of the diffusion tensor.
Step 2: Select 100, 000 voxels from each DWI image based on their fractional anisotropy
(FA) score, excluding zero, uniformly distributed within the range (0, 1).
Step 3: Obtain 100, 000 tuples of (input, ground-truth), where each tuple consists of an
input 5 × 5 × 5 voxel patch with 41 diffusion directions per voxel, and the ground-truth is
a 5 × 5 × 5 voxel patch with a 6 × 1 vector per voxel, representing the corresponding six
diffusion components of the diffusion tensor.
Step 4: Concatenate the diffusion signals of the neighboring 5 × 5 × 5 patch to form a
125 × 41 matrix per input voxel.
Step 5: Concatenate the diffusion directions (3 × 41) with the diffusion signal to obtain
a 128 × 41 matrix per input voxel.
Step 6: Zero-pad the input of each tuple to create a 128 × 100 matrix, while the ground
truth is represented as a 125 × 6 matrix. This resulting training dataset is denoted as
ADNI − 41.
Step 7: Perform Qball-based interpolation Tuch (2004); Garyfallidis et al. (2014) on the
41-directional input of the ADNI − 41 dataset to obtain 41-directional, 21-directional,
and 5-directional diffusion signals, using the DIPY package.
Step 8: Concatenate the diffusion directions with the diffusion signals of each tuple to
create inputs of size 125 × 41, 125 × 21, and 125 × 5 vectors, and a ground truth of size
125 × 6 matrix.
Step 9: Zero-pad the input of each tuple to create a 128 × 100 matrix.
Step 10: The resulting training datasets are referred to as ADNI − 41, ADNI − 21, and
ADNI − 5, corresponding to the respective diffusion directions = 41, 21, 5.
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3. Results and Discussions

For our experiments, we utilized 40 DWI images of individuals in the ADNI dataset. Among
these images, 20 are from the Cognitively Normal (CN) group and the remaining 20 are
from the Mild Cognitive Impairment (MCI) group. To train our model, we selected 5 CN
and 5 MCI images, while 3 CN and 3 MCI images were used for validation. Finally, we
reserved 12 CN and 12 MCI images for testing. For our experiments, we have considered the
output of LLS fitting over ADNI − 41 as ground truth. To assess the performance of our
proposed method, we compared the results with LLS fitting and Transformer-DTI. Figure 2
illustrates comparisons of ground truth, proposed method, and LLS fitting for 41 diffusion
directions. The results demonstrate that the proposed method is equally comparable LLS
fitting. These findings indicate that the proposed method provides an accurate estimation
of diffusion tensor. The results presented in figure 3 compare the diffusion measures of 21
diffusion directional signal using proposed method, LLS fitting and Transformer-DTI. The
results presented in figure 4 of compare the diffusion measure of 5 diffusion directional signal
using proposed method, LLS fitting, and Transformer-DTI. Notable, our proposed method
demonstrates comparable performance to LLS fitting Koay et al. (2006) and outperforms
Transformer-DTI Karimi and Gholipour (2022) for diffusion directions of 21 as mentioned
in figures 3 and 6. For 5 diffusion directional, our proposed model outperforms both LLS
fitting Koay et al. (2006) and Transformer-DTI Karimi and Gholipour (2022), as per men-
tioned figures 4 and 5. These results highlight the effectiveness of our method in accurately
estimating diffusion measures, particularly for a lower number of diffusion directions. The
results presented in figures 5 and 6 demonstrates the error plots of six diffusion components
D̄ for 5 and 21 diffusion directional signal, respectively.

To further assess the statistical significance of our results, we conducted a t-test analysis
using tract-based spatial statistics (TBSS) pipeline Smith et al. (2006) to perform a statis-
tical analysis comparing two groups (Healthy CN and MCI) based on fractional anisotropy
(FA) metrics. FA images were non-linearly registered to the FMRIB-58 template in the
Montreal Neurological Institute (MNI) space, which includes averaged FA maps, using the
FNIRT tool from FSL Rueckert et al. (1999). The white matter skeleton was defined by
thinning a mean FA image generated with an FA threshold of 0.2 to differentiate white mat-
ter from gray matter. This rigorous approach allowed for reliable statistical interpretation
of the data and facilitated a comprehensive comparison of the two groups. In figure 7, an
axial brain slice representing the Cingulum region is highlighted with a p-value obtained
from a two sample t-test with 22 degrees of freedom. Similarly, in Figure 8, a coronal brain
slice representing the Uncinate fasciculus region is highlighted with a p-value obtained from
a two sample t-test with 22 degrees of freedom. These figures provide valuable information
about the regions of the brain that may be affected by the experimental conditions and can
be further discussed in the context of the research question or hypothesis of the study.

The results of the studies conducted by Fani et al. (2014); Duncan (2010) demonstrate
a significant association between the development of Alzheimer’s disease and the Cingulum
and Uncinate fasciculus. Figure 7 and figure 8 demonstrate similar relationship using our
proposed framework with sparse data, thereby reducing scanning time significantly. The
Cingulum and Uncinate fasciculus are essential white matter tracts in the brain that play a
critical role in diverse cognitive processes, including memory, emotional control, and social
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Table 1: Number of pixels with p-Value outside Confidence Intervals (95% and 99%) for
t-statistics (tstat1 and tstat2) in Proposed Model, LLS fitting, and Transformer-
DTI. Hypothesis tstat1: Healthy CN > MCI, hypothesis tstat2: Healthy CN <
MCI.

P-Value Ground Truth Proposed Model LLS fitting Transformer-DTI

5 Diff. 21 Diff. 5 Diff. 21 Diff. 5 Diff. 21 Diff.

tstat1, 95 C.I. 3775 3246 3146 4024 5568 5311 4646
tstat2, 95 C.I. 7586 8154 7188 7836 5683 5259 7228
tstat1, 99 C.I. 618 505 485 741 981 960 860
tstat2, 99 C.I. 1352 1693 1330 1578 917 1012 1184

behavior. Recent research suggests that modifications in the microstructural integrity of
these tracts may be linked to the onset of Alzheimer’s disease. Table 1 provides number
of pixels with p-values outside confidence intervals. It exhibits the outcomes for different
diffusion directions, namely 5 Diff. and 21 Diff. It provides confidence intervals at both
95% (95 C.I.) and 99% (99 C.I.) confidence levels. The results in Table 1 demonstrate that
the proposed method preserves an equal number of pixels with significant differences in two
groups compared to the ground truth. In contrast, the LLS fitting and Transformer-DTI
methods yield a number of pixels with significant differences in two groups, deviating further
from the ground truth.

4. CONCLUSION

In conclusion, the proposed Swin-Transformer-based deep learning framework that incor-
porates sparse diffusion measures is a promising approach for early diagnosis of Alzheimer
disease. The use of sparse diffusion measures in the proposed framework provided an ef-
fective way to capture the underlying structural connectivity of the brain, which is a key
feature in Alzheimer disease. In our proposed model, built upon the foundation of Swin
Transformer architecture, we introduced a strategic manipulation of neighboring windows
through a designated stride. This deliberate adjustment resulted in regions of overlap be-
tween adjacent windows. This intentional overlapping had the specific purpose of enhancing
inter-token attention. This enhancement allowed tokens to establish meaningful connections
even when they exist within separate windows. This dynamic interplay between tokens in-
troduced a broader range of possibilities for mutual influence, thus fostering the creation of
more intricate and complex representations.

The Swin-Transformer-based deep learning framework was able to effectively learn the
neighboring patterns which inherently represent complex relationships between brain con-
nectivity and disease status, thereby enabling accurate diagnosis of Alzheimer disease at
an early stage. Further research can be done to explore the potential of this framework in
large-scale clinical trials and to investigate its effectiveness in detecting Alzheimer disease
in different populations.
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