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Abstract

The discrete logarithm problem is a fundamental challenge in number theory with signifi-
cant implications for cryptographic protocols. In this paper, we investigate the limitations
of gradient-based methods for learning the parity bit of the discrete logarithm in finite cyclic
groups of prime order. Our main result, supported by theoretical analysis and empirical
verification, reveals the concentration of the gradient of the loss function around a fixed
point, independent of the logarithm’s base used. This concentration property leads to a re-
stricted ability to learn the parity bit efficiently using gradient-based methods, irrespective
of the complexity of the network architecture being trained.

Our proof relies on Boas-Bellman inequality in inner product spaces and it involves
establishing approximate orthogonality of discrete logarithm’s parity bit functions through
the spectral norm of certain matrices. Empirical experiments using a neural network-
based approach further verify the limitations of gradient-based learning, demonstrating
the decreasing success rate in predicting the parity bit as the group order increases.
Keywords: Discrete Logarithm, Gradient-based Learning, Cryptographic Protocols.

1. Introduction

Today, artificial intelligence is able to solve problems that seemed extremely difficult for
machines 10 years ago. The most famous success stories include the victory of the machine
over a professional Go player (Silver et al., 2016); prediction of the spatial structure of
a protein with high accuracy (Jumper et al., 2021); a chatbot capable of working in a
conversational mode, supporting requests in natural languages (OpenAl, 2022). Since all
these stories are based on deep neural networks trained by gradient-based methods, it may
seem that at this pace there will soon be no problems that would be beyond the capacity
of gradient-based learning.
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However, Shalev-Shwartz et al. (2017) showed the failure of gradient-based methods to
learn some rather simple functions such as the parity function. In this paper, we give an
example of another simple function that gradient-based methods provably cannot learn.
This function is a parity bit of the discrete logarithm in the additive group of integers
modulo p. It is known that with the help of the extended Euclidean algorithm, the discrete
logarithm in this group can be computed in O(n) operations, where n is the bitlength of
p (see Section 2 for details). So there is a Boolean circuit with complexity O(n?), which
implements a parity bit of the discrete logarithm (with a fixed base). Since each logic gate
can be implemented by a small number of neurons and weights, this circuit can be converted
into a compact neural network with poly(n) parameters. However, we prove formally that
gradient-based methods cannot efficiently train such a network.

In fact, we have obtained a more general result (Theorem 1) which says that when trying
to learn the parity bit of the discrete logarithm in any finite cyclic group of prime order, and
not only in (Z,, +), the gradient carries negligible information about the target function.
It has long been known in cryptography that the discrete logarithm problem (DLP) in a
carefully chosen cyclic group (for example, in the group of points on an elliptic curve (Miller,
1985)) is hard in the sense that at the moment there is no poly(n) algorithm for solving the
DLP in general case. The intractability of the DLP in such groups forms the basis for various
cryptographic protocols, including public-key encryption, digital signatures (Gamal, 1985),
and key exchange (Diffie and Hellman, 1976). From this point of view, our result is the
provable security of DLP-based cryptosystems against gradient-based attacks.

1.1. Related Work

The main source of inspiration for us is the work of Shalev-Shwartz et al. (2017), which,
among other things, shows the intractability of learning a class of orthogonal functions using
gradient-based methods. We emphasize that their result is not directly applicable to the
class of functions that we consider in this paper (the parity bit of the discrete logarithm),
since these functions are not orthogonal with respect to a uniform distribution over the
domain. However, they are approximately pairwise orthogonal, and the proof of this fact
is the core of our work (Section 5). In addition, our adaptation of the proof method by
Shalev-Shwartz et al. (2017) using the Boas-Bellman inequality (Section 5.3) deserves special
attention, as it allows us to extend the failure of gradient-based learning to a wider class of
approximately orthogonal functions.

It should be noted that the relationship between orthogonal functions and hardness of
learning is not new and has been established in the context of statistical query (SQ) learning
model of Kearns (1993). Moreover, this relationship was characterized by Blum et al. (1994)
in terms of the statistical dimension of the function class, which essentially corresponds to
the largest possible set of functions in the class which are all approrimately pairwise or-
thogonal. The hardness of learning a class of boolean functions in an SQ model is usually
proven through a lower bound on the statistical dimension of the class. It is noteworthy that
gradient-based learning with an approximate gradient oracle can be implemented through
the SQ algorithm (Feldman et al., 2017), which means that our result on the approximate
orthogonality of the considered class of functions (Lemma 12) immediately gives the hard-
ness of learning this class with gradient-based methods. Nevertheless, we believe that the
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proof of this result directly (without resorting to the SQ proxy) deserves attention, since it
allows us to establish that the low information content of the gradient is the very reason
why gradient learning fails.

Theorem 1 of Liu et al. (2021) states that assuming the classical hardness of the DLP,
no efficient classical algorithm can learn the concept class constructed by the authors. Thus
their result, although applicable to all classical learning algorithms, is conditioned by a
strong assumption. In our paper, we show the unconditional hardness of learning the
parity bit of a discrete logarithm by any gradient-based method (e.g., SGD, RMSProp,
Adam, etc.), i.e. we do not make any assumptions on the hardness of the DLP itself.

1.2. Notation

Bold-faced lowercase letters (x) denote vectors, bold-faced uppercase letters (A) denote
matrices. Regular lowercase letters (z) denote scalars (or set elements), and regular upper-
case letters (X) denote random variables (or random elements). || - || denotes the Euclidean
norm: ||x|| := vVx'x. For x € C", conjugate transpose is denoted by x!. For any finite set
S, sampling X uniformly from § is denoted by X ~ S. For two functions f, g on a finite
set S, let (f,9) = Ex~s[f(X)-¢(X)] and ||f]| := +/(f, f). For a matrix A € R™*"  its
spectral norm is denoted by ||A]|.

We use Vinogradov notation, i.e. given f: R — R and g : R — R, we write f < g if
there exist zg, @ € Ry such that for all > z¢ we have |f(x)| < ag(z). When f: R — R,
we write f < g if f < g and g < f. For x > 0, we write f = poly(z) if there exists k € N
such that f < zF. We write f = O(g) if f < gIn* g for some k > 0. Similarly, f = Q(g)
means that gIn* g < f for some k > 0.

Zp is the set {0,1,...,p — 1}, equipped with two operations, + and x, which work as
usual addition and multiplication, except that the results are reduced modulo p. Z; denotes
the set of elements in Z, that are relatively prime to p. We are mainly interested in the
case when p is a prime number greater than 2. In this case Z;, = {1,...,p—1}. By abuse of
notation, we sometimes treat elements of Z,, (and of Zy) as integers in Z. Given two positive
integers a and p, a mod p is the remainder of the Euclidean division of a by p, where a is
the dividend and p is the divisor.

2. The Discrete Logarithm Problem

Let (G,0) be a finite group, a € G an element of order p, and =z € (a), where (a) :=
{acao...0aq: 0<k<p-—1}isthe cyclic group generated by a. The discrete logarithm
~—

k times

problem (DLP) is finding the integer k, 0 < k < p — 1, such that

aocao...oaq=1x.
N—_——

k times

This integer k is called the discrete logarithm of x to the base a, and we will denote it by
log, x.

It is important to understand that there are finite groups in which the DLP is not hard
(computationally). As an example, consider the additive group of integers modulo prime.
For example, if we take p = 11, (Z11,+) is a finite cyclic group in which every non-zero
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1

element is primitive." Here, for example, is how the element a = 2 generates the entire

group:

k]0O 1.2 3 4 5 6 7 8 9 10
keal0O 2 4 6 8 10 1 3 5 7 9

Table 1: Generating the group (Zi1,+) from a = 2.

Suppose we want to solve the DLP for the element z = 3, that is, we want to find an
integer k such that
242+...+2=3mod 11.
k times

This can be done as follows. Even though the group operation is addition, we can express
the relationship between x, k, and the discrete logarithm using multiplication:

k-2 =3 mod 11 (1)
To solve the equation (1) for k, we just need to find the (multiplicative) inverse for a = 2:
k=2"'-3mod11.

Using, for example, the extended Euclidean algorithm, we can compute 27! = 6 mod 11
and so the value of the discrete logarithm is

k=2"1.3=7mod11.

Table 1 confirms the correctness of the found value.

The above technique can be used for any group (Zp,+) and any non-zero elements
a,r € Z,. Accordingly, the DLP is a computationally easy problem over (Zy,+). Such
groups cannot be used for cryptography. However, our subsequent analysis will show that
even in them, learning just a single bit of the discrete logarithm is intractable for gradient-
based methods.

One may wonder why the discrete logarithm over (Z,,+) is easy, but over a general
finite cyclic (G, o) of order p—which is isomorphic to (Z,, +)—may be hard. The reason is
that an isomorphism between (Z,,+) and (G, o) is established through the correspondence
k<> gagoao...oa, where k € Z, and a is an arbitrary non-identity element of G. But it is

k times
widely believed that this isomorphism itself is a one-way function? for sufficiently complex

groups (like elliptic ones).

We note that the best classical methods for solving the DLP in general case—Baby-step
Giant-step (Daniel, 1971) and Pollard’s rho (Pollard, 1975)—require O(,/p) computational
steps, where p is the group order, i.e. they are exponential in the bitlength of p.

1. An element a of a cyclic group (G,o) is called primitive if every element z € G can be written as
r=aoao...oaqa for some k, i.e. a generates the entire group.
N————

k times
2. Informally, a one-way function is a function that is easy to compute on every input, but hard to invert

given the image of a random input.
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3. Main Result

Let (G,0) be a finite cyclic group of prime order p, and a € G \ {1}. Consider a function

ha(z) :=

(—1)loEas — {—1 if log, * = 1 mod 2, v e\ {1} @)

+1 if log, * =0 mod 2,

which is essentially a parity bit of the discrete logarithm log, z. Suppose we want to learn
he(z) using a gradient-based method (e.g., deep learning). For this, consider the stochastic
optimization problem

Lo(w) = B [l(fw(X), he(X))] = min, 3)

X~G\{1}

where £ is a loss function, X are the random inputs (from G \ {1}), and fy is some model
parametrized by a parameter vector w (e.g. a neural network of a certain architecture).
We assume that L,(w) is differentiable with respect to w. We are interested in studying
the variance of the gradient of L4 when A is drawn uniformly at random from G\ {1}. The
following theorem bounds this variance term.

Theorem 1 Suppose that fw(x) is differentiable w.r.t. w, and for some scalar d(w), sat-
isfies Exg\ (1} Ma%fw(X)HQ] < d(w)2. Let the loss function ¢ in (3) be either the square

(
loss £(§,y) = 3(§ — y)? or a classification loss of the form ((§,y) = s(§ - y) for some
1-Lipschitz function s. Then

E  [[VLa(w)— p(w)|? < c-d(w)*Inp

< : (4)
A~G\(1) VP

where p(w) :=E.g\{1) VLa(W), and c is an absolute constant.

Remark 2 Theorem 1 says that the gradient of L,(wW) at any point w is extremely concen-
trated around a fived point independent of the base a.> Using this one can show (Shamir,
2018, Theorem 10) that a gradient-based method will likely fail in returning a reasonable
predictor of the discrete logarithm’s parity bit unless the number of iterations is exponen-
tially large in the bitlength n of p. This provides strong evidence that gradient-based methods
cannot learn even a single bit of the discrete logarithm in poly(n) time. The result holds re-
gardless of which class of predictors we use (e.g. arbitrarily complex neural networks)
— the problem lies in using gradient-based method to train them.

Proof Idea. Our result is an extension of the work of Shalev-Shwartz et al. (2017)
which shows that the gradient is not informative when learning a class of orthogonal func-
tions (see their Theorem 1). In their proof, they rely on the Bessel inequality, which
is valid for an orthonormal sequence in the inner-product space. Unfortunately, their
result cannot be applied to the parity bit of the discrete logarithm, because the func-
tions {hq(z) | @ € G\ {1}}, where hq(x) is defined by (2), are not orthogonal, i.e.

3. Using our result and Chebyshev’s inequality, one can show that the gradient deviates in 2-norm from a
fixed point p(w) by more than Q(27™/¢) with probability at most O(27"/%), where n is the bit length
of p (group order).
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(hayhe) = Ex~g\f1} [ha(X) - hp(X)] # 0O for some a,b € G\ {1}, a # b. However, we
can show that, on average over a and b, the inner product (hg,hp) is small (Lemma 12).
More precisely, it satisfies

2 In?p
A,B%\{l} [(ha, h)"] < p )
A#B
Further, using the Boas-Bellman inequality (Lemma 10) instead of the Bessel inequality in
the proof of Shalev-Shwartz et al. (2017), we can get the bound (4).
We note that in order to prove (5), we have established some intermediate results that
may be of independent interest. Namely, we have shown that for the matrix

& = {(—1)* mOdp}j,kGZ;7

the spectral norm ||®'|| < \/plnp (Lemma 9). Using this fact, we proved that for Y ~ Z7
a random variable

JO) = B [(-1)% (- X medr], (6)
X~
is concentrated around its mean E[f(Y)] = 0 with a variance Var[f(Y)] < %. And this,
in turn, implies (5), as is shown in Lemma 12.
The proof of Theorem 1 is given in Section 5.

4. Empirical Verification
Our code is available at https://github.com/armanbolatov/hardness_of_learning.

Concentration of the Gradient. As mentioned earlier, Theorem 1 is true for any finite
cyclic group of prime order, including the additive group (Z,, +). Let us verify empirically
the statement of the theorem for this group. Let fw(x) be a neural network* that we
may want to train to learn the mapping® x (—l)logax , & € Z,, where w € R? are all
parameters of the neural network. Let VL,(w) be the gradient of the binary cross-entropy
loss function at w. We sample w1, ..., woo from R? using the default PyTorch initializer®,

and for each w;, we compute

2
U(WZ) = K ) (7)

AN

VLA (Wz) — A’IEZ* VLA/ (Wz)
P

2

0
C{)iwa(X)

g(wi) = (8)

E
X~

According to Theorem 1, the values ;Ez’g should be of order O (%) Thus we plot
v(w;)

Eiq1,.. 20} [g(w) . \/ﬁ} against p in Figure 1. As we can see, this expression is bounded

4. 3-layer dense neural network with 1000 neurons on each hidden layer, sigmoid activation, binary cross-
entropy loss.

5. We remind the reader that for prime p, in (Zp,+) we have log, z = a 'z mod p, where a~! is the
multiplicative inverse of a (see Section 5.2).

6. For each dense layer of shape din X dout, PyTorch initializes its parameters uniformly at random from
the interval [—1/\/%7 1/%@]7 where diy is the size of the input, and dout is the size of the output.
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Figure 1: Verifying the statement of Theo-

rem 1. For prime numbers p in
[300, 3000], we plot the left-hand
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squared norm of the neural net-
work’s gradient (8) and multiplied
by /p. The resulting curve is of
order O(1). Moreover, it even de-
creases.

Test Accuracy
o o o o y
()] ~ [e2] [te] o

I
wn

| MR eASS i

bit length
16
18
20
22
24
26

0

750 1000 1250 1500 1750 2000
Epochs

250 500

Figure 2: Learning the parity bit of the dis-

crete logarithm in (Z,,+) with
a 3-layer width-1000 dense net-
work. Darker shades correspond
to longer bitlengths. For each
bitlength n, the group order
p is chosen randomly from the
prime numbers in the interval
[27—1 2 —1].

as p grows, which confirms the statement of the theorem. In fact, it is not only bounded
but actually decreases, suggesting that our upperbound (4) can be improved.

Failure of Gradient-Based Learning. According to Remark 2, any gradient-based
method most likely will fail to learn the parity bit of a discrete logarithm. To test this
claim, we generated a labeled sample

(IE1, (_1)loga xl): R (l’m, (_1)loga wm)

where z1,...,2y,, and a are taken randomly from Zj. Using this sample, we trained a
dense 3-layer neural network with 1000 neurons in each hidden layer. We used Adam with
a learning rate of 0.001 (default), m = 5000, a 70/30 split between training and test sets,
batch size 100, and we trained for 2000 epochs. The results for different bitlengths n are
shown in Figure 2. The group order p for each bitlength n was taken randomly from the
prime numbers in the interval [2"~1, 2" —1]. We can see that as the bitlength increases, the

chances of successful learning decrease, as predicted by our theory.

5. Proofs

5.1. Some Statistical Properties of Z,

The goal of this subsection is to study the distribution of the random variable f(Y), defined
by (6), where Y is sampled uniformly at random from Z7. Our key result is the following
theorem that will be crucial for our further analysis of the discrete logarithm’s parity bit in
Section 5.2.
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Theorem 3 Let f(Y) be a random variable defined by (6), where Y ~ Zy. Then

2
E[f(Y)] =0, VMUWM<Cﬁp,

where ¢ 1s some universal constant.

Let us denote ¢(X,Y) = (=1)X - (=1)YXmodP and assume that X is also sampled
uniformly from Zj. Then, f(Y) = Ex[¢(X,Y)]. Let us first study the distribution of the
random variable ¢(X,Y’). Our significant finding is the following lemma.

Lemma 4 Ey[¢(x,Y)] =0 for any z € Zj,.
Proof Direct computation gives

Ey[o(z.¥)] = (~1)F = 3 (~1# ety = (-7 3 ()Y =,

—1 —1
p yEZy, p y' €L

due to the fact that {yz mod p | y € Zy} = Z;, and |Z;| is even. [ |

From Lemma 4 we conclude that

Ey[f(Y)] = Exy[¢(X,Y)] = 0. (9)

Thus, f(Y) is distributed around its mean 0 and the first statement of Theorem 3 is proved.
Let us now study its variance. The following lemma shows that the spectral norm of the

matrix ® = [¢(z, y)] (2 y)ezs)? € R(P=Dx(P=1) hounds the variance.

o1 (4’)2
(r—-1)%-

Proof Formula (9) implies that the variance is equal to the second moment, therefore

Lemma 5 Var[f(Y)] <

2

Var[f(Y)] = E[f(Y)?] = — Z(p_ll)Q > o)

yeL: z€L,

= Y el =t Y (@),

(y,z.a')e(Zy)?

= ! Z (q)q)T)w,x’fwga:’y

—1)2
P =1 Aty
where £ € RP! satisfies & = \/%,i € Z,. The latter quadratic form is bounded by the
largest eigenvalue of the symmetric matrix ®® ', i.e.
1 1
Var[f(Y)] =E[f(Y)?] < — 5\ (@) = )2

Our next goal will be to study the spectral norm of ®. The following lemma simplifies
our task.
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Lemma 6 Let ®' = [(—1)¥ mod Playey)z- Then we have oo(®) = 0y(P'), L € Zy,

Proof Let 1 € RP~! be a vector with all components equal to 1 and £ € RP~! be such
that & = (—1)®. Since ®,, = (—1)%(—~1)¥*™4? we have ® = (1€') © ® where © is
the Hadamard product. Let us consider the singular value decomposition (SVD) of @', i.e.
=37 10’4(@’)ugve Then, we have

=(1tHod = Zaz (1) © (upv)) Zag YL Ou)(Eove)'.

Since {1 ©uy | £ € [p— 1]} and {£ ©® v, | £ € [p— 1]} are both orthonormal systems of
vectors, the latter expression is an SVD of ®. Therefore, oy(®) = o/(P'). [ |

A final result concerning the largest singular value of ®’ requires some additional lem-
2mi
mas. Let us denote the vector [(—1)*]zcz, € RP by a. Let w = e » be a primitive pth
root of unity. Other primitive roots of unity are ws, - ,w,—1 where wy, = wh 0 > 0. Let
ik . 1 . . 1 . .
U, = [wz ]j,kezpa then the matrix %Ug is unitary for ¢ € Z;. In fact, ﬁUl is a discrete

Fourier transform (DFT) matrix. From unitarity, we obtain ||U,|| = \/p. Let us denote
Uy = [bg, -+ ,bp_1].

Lemma 7 The vector a can be decomposed as a = 2 Ze 0 1+3J_[ by.

p—1
Proof From unitarity, we conclude that {eg = %bg}g . is an orthonormal basis in CP.

Therefore, a = ]lf:é (eza)eg. After computation

T 1 —xl x 1 —\x 1 17(75‘} )p 2 1
ea) = — w 1) = — —w - .-\ = J _ - . ,

we conclude that

Corollary 8 The matriz ®' can be represented as ®' = Z?;g 120 1+w—‘394’ where y is a

submatriz of Uy obtained after deletion of the first row and the first column.

Proof Unfolded component-wise, the corollary is equivalent to

p—1
2Lk
—00
P 1+w

(71)jkmod P _

Y
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for any j, k € Z,. After setting s = jkmod p and using Lemma 7 we conclude

p—1 p—1
(_1)jkm0dp — (a)s — g . 71 (bZ)s — g . 1 wfs
—p 1+wt p 14+wt
p—1 p—1
N2 L kmedyy N2 L
- P 1+wt” N P 1+w 2
=0 £=0
which concludes the proof. |

Now it remains to bound oy (®’).

1/2

Lemma 9 o1(®') < ¢;p'/*Inp where ¢; is some universal constant.

Proof Using Corollary 8 we conlcude

p—1 p—1

2 1 2

P'|| = - —Qy|| < —
121 = 30 | <X ol

The spectral norm of every submatrix is not greater than that of the matrix, therefore,
192]] < [|Ug|| = v/P- Thus,

1
‘IJ < .
j#/| pr —
Now it remains to bound the sum Y5~} %m =yr %|1+le|' Let 6 = 2%5_ Note that

6 € [0,27) and

114w =1+ ¢ = (24 2cos(h))/? =2

Let us denote 2¢) = 6 — 7. Thus, |1 +w’| = 2 cos<
Note that ¢ € [ 1 4] if and only if —7 < %“

2 1
E I E
1,3 p |1 + w£| B 1,3
te[p,3p|nz, tel3p,2p|nz,
2
N [p/2]

<=> -~ <np
T

\V)

(2)

)lzzysm )| > [ylifv e [-F, 5]

or %p <k< Zp. Thus, we have

<

I~

us
2

1 4 5 1
il o |2£—p|

s
P3| T eeltndaon,

SR

Since |1+ w’| = 2[sin(y)| > 1if ¢ € [-F — Z] U [Z, 5], then
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Thus, the total sum satisfies
E 2 1 <1
—_—— np.
‘
%%pH+WI

Proof of Theorem 3. Using Lemma 5 we have Var[f(Y)] < ?;S‘Il)))z . Lemma 6 additionally

gives us Var[f(Y)] < U(;)(_(I‘ll));. Finally, using Lemma 9 we conlude that Var[f(Y)] < %. [ |

5.2. Near Orthogonality of Discrete Logarithm’s Parity Bits

As mentioned in Section 3, the main tool for adapting the proof of Shalev-Shwartz et al.
(2017) to our needs is the Boas-Bellman inequality, which we present below.

Lemma 10 (Boas-Bellman inequality) Let hy,..., hy,g be elements of an inner prod-
uct space. Then

m

S hir0)? < gl | max ol + (37 (heohy)?
i—1 itj
Proof Can be found in the works of Boas (1941) and Bellman (1944). [ |

As we can see, this inequality turns into Bessel’s inequality for an orthonormal sequence
{h;}. In our case, the functions h,(x) given by (2) are not pairwise orthogonal. However,
it can be shown that they are approximately pairwise orthogonal. This is what we will do
in this subsection. First, we derive the distribution of log, B when A and B are sampled
uniformly at random from G\ {1}.

Lemma 11 Let (G,0) be a finite cyclic group of prime order p > 2. Let A,B ~ G\ {1}.
Then the distribution of logg A is uniform over {1,...,p — 1}.

Proof For any y € {1,...,p — 1}, we have

P 1 A= = E I(1 A=
apmyleesd=vl= B [logsd=y)
1 1
= Illogya =yl = ——5 Z: E:H%&azm
—1)2 Z —1)2
r-1 a,beg\{1} (p—1) beG\{1} a€G\(1} | oty
1 1
—r 2 -
-1 oy P1

Now we are ready to prove the advertised bound (5).
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Lemma 12 Let (G,0) be a finite cyclic group of prime order p > 2. Let a € G\ {1}.
Consider a function hq(z) defined in (2). Then

> Eha(X) - hy(X)]? < copln®p
a,beG\{1}
a#b
for some universal constant cs.

Proof
1

(p— 1)

Yo > Elha(X) - hy(X))?

acG\{1} beG\{1}
E [ha(X)- @(X)P]

= E
A,B~G\{1} | X~G\{1}
|:(_1)1ogAX . (_1)logB Xi| 2:|

= E E |:(_1)10gAX - (—1)loss A-logAXmodp] 2}
A,B~G\{1} [ X~G\{1}

= E E
A,B~G\{1} | X~G\{1}

— E E [(71)X . (71)log3 A-X mod p}Q
A,B~G\{1} | X~Z;
Thm. 3 In? p

[0 x| = v oy T

Lené 11 |: E
YNZ;‘, XNZ;;

Therefore, 3 cq\ 113 2opeg (1} Elha(X) - hy(X))? < pln? p and

> Eha(X) - (X)) < espln’p — (p— 1) < pln®p.
ab

5.3. Proof of Theorem 1

Proof We prove the result for the squared loss ¢(y,y) = %(gj —y)2. The classification loss

is handled analogously. Define the vector-valued function

8(r) = 5 folo),

and let g(z) = (g1(x), g2(x), . .., g4(x)) for real-valued functions g, ..., gq. Then we have

pw)i= | B ViAW) = E B U (X) = ha(X))g(X)]
= (B g0 - B {g(X) LE f X]}
= — . _1\¥1 =
= KOs - B8 EICDT = R (08X

0
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Thus,
B IVLa(w) = pw)|?
— A~éE\{1} Xwg\{u[(fw(X) — ha(X))g(X)] - X~g\{1}[fw(X)g(X)] i
- B e sl - {l}jil (B 00000
= Awg\{l}gmgﬁ 10)

From Lemmas 10 and 12, we have

1
E hAag 2= —— haag 2
ANQ\{1}< ) p—1 aegz\{1}< )

2 1 1
<IN s a2+ [ S (a2 | < ) ( YD “p) (1)
p—1 1 acg\{1} e p—1 p—1

a#b
From (10) and (11), we have

E
A~G\{1}

VAW - B (O8N

2 d
1 cplnp> :
< + g5
(25 + 45 >l

:( 1 +\/@lnp> E ||g(X)||2§<p1 +\/@mp)d(vv)2

p—1 " p—-1 ) x~6\{1} -1 p-1
Inp 2
<L —=d(w)*“.
7 (w)
The proof for the classification loss ¢(9,y) = s(J - y) can be reduced to the proof for the
squared loss as it is done in Theorem 1 of Shalev-Shwartz et al. (2017). [ |

6. Additional Experiments

Here we present the results of experiments that extend the scope of the paper. Namely, we
are empirically investigating the learnability of the discrete logarithm itself and of all its
bits, not just one bit.

Low correlation of discrete logarithms. We computed the mean squared covariance

2
E Cov |l X1 X 12
W ((Goy o X 1oes X1 12)
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Figure 3: Mean squared covariance between two logarithms, log, X and log; X, when X is
a random variable uniformly distributed on Z;.

for prime numbers in the interval [3,500]. The results are shown in Figure 3. As we can
see, the expression (12) fits the curve p — 0.015 -p? - (Inp)®*2 well. This suggests that
Covx~zsllog, X, log, X] = O(p®/?) on average over a,b € Zy. Since the variance of the
discrete logarithm is

-1 = 2 2 p
Var [loga = Z < 3 Zk) =13 8= O(p2)

k: k=1
we can conjecture that the average correlation is

/1
Corr|[log, X,log, X| =0 — | . 13
Gorrllog, X.1ogy X] = 0 - (13)

Thus, using this estimate in the Boas-Bellman inequality for the class of “standardized”
discrete logarithms { fo () | @ € Zy}, where

log, z — &

falz) = a272, T € Z,,
P2 _p
12 6

we can show that this class is also hard to learn by gradient-based methods. The only thing
missing is a rigorous proof of the bound (13). We leave it to our future work.

Failure to learn all bits of the discrete logarithm. Here we follow the experimental
setup from Section 4 with the difference that the output of the neural network is not only
the parity bit, but all the bits of the discrete logarithm. As a loss function, we use the sum
of the cross-entropies for each bit. The results for two different bit lengths are shown in
Figure 4. As in the case of one bit, we see that for a longer bit length, the gradient method
is not able to learn all the bits of the discrete logarithm. Note that in both cases, the more
significant bits are learned better than the less significant ones. We leave the study of this
phenomenon to our future work.
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Figure 4: Test Accuracies when learning all bits of the discrete logarithm in (Z,, +) with
a single neural network. Bitlengths of p: 20 (left) and 40 (right).
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