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Abstract

Deep Metric Learning (DML) is a prominent subfield of machine learning with extensive
practical applications in learning visual similarities. However, DML systems are vulner-
able to input distributions during inference that differ from the training data, such as
adversarial examples (AXs). In this paper, we introduce MDProp, a framework that en-
hances the clean data performance and adversarial robustness of DML models by gener-
ating novel Multi-Targeted AXs and Unadversarial Examples, in addition to conventional
single-targeted AXs, in the feature space. To handle the input distribution shift caused
by the generated novel input distributions, MDProp scales the separate batch normal-
ization layer strategy. Our comprehensive experimental analysis demonstrates that MD-
Prop outperforms current state-of-the-art convolutional neural networks by up to 2.95%
in terms of RQ1 scores for clean data, while simultaneously improving adversarial robust-
ness by up to 2.12 times. Additionally, MDProp achieves state-of-the-art results in data-
scarce setting while utilizing only half of the training data. Implementation is available at
https://github.com/intherejeet/MDProp.

Keywords: Deep Metric Learning; Image Retrieval; Adversarial Example; Adversarial
Robustness.

1. Introduction

Deep Metric Learning (DML) has received significant attention recently due to its preva-
lent practical applications in establishing similarities between objects by learning distance
metrics in the feature space of deep neural networks (DNNs). Despite recent advances
in improving DML performance through model architecture, loss function, and data aug-
mentation, little attention has been paid to improving DML performance using adversarial
examples (AXs). These carefully crafted instances with small perturbations can reduce the
performance and uncover the limited generalization ability of DML models (Su et al. (2019);
Madry et al. (2017); Goodfellow et al. (2014); Kurakin et al. (2018b); Sharif et al. (2019);
Singh et al. (2022, 2021)).

While some initial studies have focused on using adversarial examples directly as training
data to improve the generalization of DNNs for adversarial inputs, this technique, called
adversarial training (Goodfellow et al. (2014); Kurakin et al. (2018b); Madry et al. (2017);
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Figure 1: (a) Outline of the MDProp framework, which generates novel data distributions
during the training of DML models in a disentangled learning framework with
multiple BN layers. MDProp uses MTAXs and unadversarial examples in addition
to STAXs, enhancing both accuracy and adversarial robustness of trained DML
models. (b) Feature space of the DML models trained using only STAXs. STAXs
are not designed to target the overlapped regions, leaving the overlap unresolved.
(¢) MTAXSs in MDProp regularize the feature space overlap (region ‘O’) in DML
models, resulting in improved generalization of the trained DML models.

Xie et al. (2019)), resulted in the degradation of clean data performance, which was later
demonstrated as an inevitable accuracy-robustness tradeoff (Zhang et al. (2019)). However,
Xie et al. (2020) challenged this tradeoff and proposed using separate batch normalization
(BN) layers for adversarial data to improve clean data performance. Nonetheless, their
method was limited to the conventional AXs in non-DML end-to-end classification DNNs
only, and they did not focus on improving the adversarial robustness. We hypothesize that
in DML, there is a scope for the generation of the novel kinds of adversarial and non-
adversarial data in a first of its kind generalized framework to simultaneously enhance clean
data performance and adversarial robustness.

In this paper, we introduce the Multi-Distribution Propagation (MDProp) framework
(Fig. 1(a)) to enhance the image retrieval performance of DML models on inputs with dif-
ferent adversarial and non-adversarial distributions. MDProp develops novel Multi- Targeted
AXs (MTAXs) and Unadversarial Examples, along with conventional single-targeted AXs
(STAXs), in the feature space of a DML model, with each type of data following a distinct
distribution that is different from the clean training data. The generated MTAXs simul-
taneously mimic the deep representations of multiple target classes, implying that they
are situated inside multi-class overlap regions in the feature space. The use of MTAXs in
training regularizes these overlapped feature space regions, as depicted in (b) and (c) of
Fig. 1. The generated unadversarial examples following a different distribution expose the
training model to novel intra-class input feature combinations, providing additional training
data information, enabling improved generalization. To handle the input distribution shift,
MDProp scales the separate BN layer strategy followed by AdvProp (Xie et al. (2020)).
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When MDProp employs only conventional feature space STAX during training, it serves as
a natural DML extension of the AdvProp.

To the best of our knowledge, this work represents the first successful attempt in DML to
stmultaneously enhance model performance on different types of input distributions, by uti-
lizing combinations of STAXs, MTAXs, and unadversarial examples. We thoroughly evalu-
ated the effectiveness of MDProp on standard DML benchmarks, including CUB200 (Wah
et al. (2011)), CARS196 (Krause et al. (2013)), and SOP (Oh Song et al. (2016)), across
multiple ResNet architectures (He et al. (2016)), as well as state-of-the-art distillation-based
Convolutional Neural Networks (CNNs) from the S2SD method (Roth et al. (2021)), and
various DML loss functions. Our results show that MDProp outperforms current state-
of-the-art CNN-based methods by up to 2.95% in terms of RQ@1 scores for clean data,
while simultaneously improving adversarial robustness by up to 39.09%, thereby establish-
ing CNNs trained using MDProp as state-of-the-art in DML. Moreover, MDProp achieves
state-of-the-art results in data-scarce setting while utilizing only half of the training data,
owing to its local Lipschitzness enhancing capabilities and robust generalization abilities.

2. Preliminaries

DML. DML aims to find a distance metric dg : 1) x ) — R on the feature space ¢ C R”
of images X' that best satisfy ranking losses (Wang et al. (2019); Wu et al. (2017); Deng
et al. (2019); Roth et al. (2020)) defined for class labels ). An adversary can conveniently
create AXs to significantly affect a DML model’s job by designing AXs at feature-sapce
(Sabour et al. (2015); Rozsa et al. (2017); Zhou et al. (2020); Tolias et al. (2019); Zhou
et al. (2021)).

AX Data Augmentation And Adversarial Training. AXs added with adversarial
noise § bring additional features that help training DNN’s parameters 6. learn meaningful
data representations (Tsipras et al. (2018)). Adversarial training (Goodfellow et al. (2014);
Kurakin et al. (2018b); Madry et al. (2017); Shafahi et al. (2019); Andriushchenko and
Flammarion (2020)) is a straightforward strategy that incorporates AXs during training to
make DNNs robust against AXs and noisy inputs (Yin et al. (2019); Zhang and Zhu (2019)),
solving the following saddle point objective with a loss L:

I%in E(w,y)wﬂ) Tgleagﬁﬁ (907 T + 9, y) > (1)

where (z,y) ~ D is the clean training data. ¢ is often crafted using first-order gradient-based
methods (Madry et al. (2017); Goodfellow et al. (2014)).

AdvProp. Toenhance image recognition accuracy in end-to-end classification DL setting,
AdvProp (Xie et al. (2020)) proposed the use of AXs with separate BN layers to enable
the disentangled learning. It was found that the input distribution shift due to AXs was
causing a reduced clean data accuracy in adversarial training because BN is based on the
single input distribution assumption (Ioffe and Szegedy (2015)). For a DL classifier with
parameters 6., AdvProp optimized the following objective:

arg min E(:c,y)N]D) L (907 €L, y) + m?X L (66, z + 0, y) ) (2)
b
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where (z,y) is a clean data with distribution D, £ is classification loss function, and ¢ is
STAXSs’ noise.

Multi-targeted AXs. An AX generated to fool a target DML model by simultaneously
imitating the deep features of multiple other identities, is called MTAX (Amada et al.
(2021)). Let f : RN — RP be the DML model with parameters §. For MTAX generation,
we craft the adversarial noise 5?‘ as

57 = argmin | 7 3 |17t +8) — F@)ll| 3)

[[0]]cc <e ISR

where 2! is the clean sample with identity I, Sg is the batch sampled from training data
Xirain and contains images of target identities such that j # 1 V&’ € Sg, T is the number
of impersonation targets, € is the [,-norm constraint on the size of adversarial noise ¢ to
achieve the imperceptibility objective. Finally, the crafted 5? is added to the clean sample

z! and fools the target model f while holding Eq. 4.

d(f(a' + 1), f(27)) < d(f(a'), f(al)) Val €, (4)

where xi is a gallery sample with same identity [ as z!, d is a distance metric, and S C Sp

with |S| > 1.

Unadversarial Examples. Unadversarial examples (UXs), as opposed to AXs, are gen-
erated with the aim of increasing the model’s confidence in the true class of the instance.
Salman et al. (2021) first generated UXs for classification models using patches. However, a
methodology to generate and leverage UXs to improve DML model training does not exist.

3. Method

We present MDProp, a generalized framework for enhancing the performance of DML mod-
els in image retrieval tasks with multiple input distributions. MDProp achieves this by gen-
erating MTAXs and unadversarial examples along with STAXSs as training data that follow
diverse distributions. The framework incorporates the idea of deep disentangled learning
(Xie et al. (2020)) through multiple BN layers for each type of generated training data to
effectively handle distribution shifts.

Let fy be a conventional DML model with trainable parameters 6 = {6, 0}, where 6,
denotes the BN parameters and 6,, represents the remaining parameters. MDProp modifies
the model architecture by incorporating additional BN layers to generate novel data with
different distribution. During the forward training pass, we pass the generated data through
the added BN layers while keeping the initial main BN layer reserved for the clean data
pass.

Suppose the original training data follows distribution D;. MDProp generates (K — 1)
sets of data following distributions Dy, Ds, ... Dk, using a model f(?nﬂ;,@f,..ﬂf with (K — 1)

additional BN layers. The clean data is processed through f with the parameter set {6,,, 0;},
while the generated data with Dy, distribution is generated and trained with the parameter
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Algorithm 1 Multi-Distribution Propagation Framework for K input distributions

IHPUt: Training data (Xtrainu ytrain)u femoi,egmgg{’ B’ ¢nu ¢b7 ["
K
{’yk, generator® AF Tk [k }k—z’
Initialize parameters of f as 6, 0;, 9?...95 S Dy Oy O+ V2, oy + YK
for each training step do
Sample batch (X,Y) € (Xirain, Virain) with batch size B;
for k=2 to K do
for batch (X,Y) do
Select target identity set Y* = {Y{,YQI...YT/} s.t. y; # y; and (y; € Yil,yj €Y),
Vie {1,2.. T}, Vj e {1,2..B};

! T ! /
Sample XF = {XZ} . s.t. Vie {1,2..T}, X;’s has labels Y} ’s;
1=
Generate X* = {z; + (5;”}?:1 = generatork(femeg,ﬁk,X, Y, XF AF); > Eq. 3, 4

end

end
_ 1 K k .
ComPUte loss = Z%EX L(ena eb7mia yl) + Zk}:Q ineX’V [’(ena eb y Li, y1)7

Yi€Y Y €Y
> While using separate BNs

Minimize loss by performing back-propagation to {Hn, 9;, 9%...95( }

i

end
Output: Trained Network f with Parameters {Hn, 05,«92...95}.

set {6, 95 }, for all k € 2,3,..K. Finally, MDProp optimizes the training objective Z; as

Za= argmin By oo ) [£({n 8} 20) ®

where (z,y) is the training data, £ is the DML training loss. MDProp is compatible with all
popular DML loss functions. During inference, the auxiliary BN parameters {6%,6;...01}
are no longer required, and we only use ;% = {6,,,0} parameters.

3.1. Multi-Distribution Data in MDProp

MDProp employs a distinct data generation process to produce data with varying dis-
tributions. Specifically, it generates MTAXs, unadversarial examples, and STAXs using
first-order gradient-based optimization methods. MDProp crafts the perturbation 6 for
each clean image x for each type of generated data in the feature space of DML models.
The clean images with their respective crafted noise d; enable the distribution shift while
achieving the generation objective. MDProp is also compatible with conventional data
augmentation methods (Cubuk et al. (2018); Lim et al. (2019)).

3.1.1. MTAX GENERATION

MDProp generates adversarial noise 5}” for the MTAX objective specified in Eq. 3 using
first-order gradient-based optimization. Furthermore, we use separate BN layer models,
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f0n,9,} and f,gm@g, to extract the features of x7 and (x! 4 §), respectively. The different
generation objectives of STAXs and MTAXs lead to distinct distributions, thus requiring
separate BN layers. In our results section, we will demonstrate that MDProp achieves the
best image retrieval performance when we use all three separate BN layers to train with
MTAXs, STAXs, and clean data.

3.1.2. WHY MTAXSs?

DML models may suffer from feature space overlap (region ‘O’ in Fig. 1(b)) if a proper
regularizer is not utilized during training, causing a reduction in test time performance.
Feature space of a subset B of classes C is defined as having an overlap if a sample ]
satisfies:

dg(f(mf),f(i’k))gT VkeB & k4. (6)

with z"¥ as the class center for class k and 7 as the classification threshold, deep features
f(z]) of an unperturbed input x with identity j result in false ranking predictions from
DML models if they lie within the overlapped region, as given by Eq. 6 and Eq. 7.

. . . ,
(5 () () 20 (1 (). () ;
ke B & k#j.
Here :cg is the gallery or reference image with identity j. Overlapped regions in the repre-
sentation space are caused by high similarity between instances of different classes due to
limited training data complexity and low discriminative power of the trained DML model.
MDProp leverages MTAXs as additional training data, with successful MTAXs gener-
ated during training residing in the overlapped regions. If computational budget restricts
the attack generation, the generated MTAXs may be closer to these regions. The effective
use of MTAXs in MDProp induces regularization, transforming the deep representation
space to reduce or eliminate overlapped regions (Fig. 1), thereby improving generalization
in the trained DML model.

3.1.3. UNADVERSARIAL EXAMPLES

We define an unadversarial example, x,,, for a DML model f ( f for the model different
BN layer) at the i*" training iteration as z,, = z + 0%". 0%" is optimized based on the
following objective.

p=argmin | = 3 (1f(a'+8) = £ ()l Q

[[0]]cc <e I €Sty

where Sy « {xl s 2t € Xipain, b # $§,yxz =y}, Sy > 1, first-order gradient-based
J

optimization is used in our experiments.

The generation of unadversarial examples arises from the interpolation performed in the
feature space due to the crafted noise introduced through the first-order optimization pro-
cess for the unadversarial objective, at the input space. This feature space objective induces
an indirect mizring of intra-identity features at the input space, which are subsequently uti-
lized in the model’s training process through the use of separate batch normalization layers,
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thereby rendering the transformation homomorphic in nature with regards to intra-identity
feature mixzing. As a result, this transformation introduces novel feature combinations dur-
ing training, leading to an enhancement of generalization through the increased input data
diversity.

3.1.4. ADvPROP EXTENSION

When utilizing a single additional BN layer and STAXs, MDProp represents AdvProp-D,
the DML extension of the AdvProp method (Xie et al. (2020)). AdvProp-D generates AXs
at the embedding space of the training model, where DML metrics are calculated. The
training objective is optimized through Eq. 5.

3.2. Working of MDProp

We present MDProp in Algorithm 1 pseudo-code. It requires training data (Xirain, Virain),
a DML model fen,eg,ag...ef with default hyperparameters, training batch size B, and pre-
trained parameters {¢,, ¢y} for transfer learning. Additionally, MDProp uses noise set -y
for initializing 0,’)“’8, a set T of impersonation targets, a data generation recipe generate®
with hyperparameters A, and loss functions £ for training and data generation. The hy-
perparameters A determine the adversarial noise strength, the number of gradient update
steps, and L size constraints in the adversarial data generation process.

MDProp starts by initializing the model parameters with ¢,,, ¢p. It optionally uses noise
~ while enabling transfer learning for the additional BN layers. A batch of clean data (X,Y)
is sampled in each training step, followed by the generation of K — 1 data batches using
separate generator®’s and BN layers. Finally, the loss £ is calculated for all data batches
and the process is repeated until a termination condition is met.

4. Experimental Setting

We perform a comprehensive assessment of MDProp’s performance using current baselines,
DML architectures, benchmark datasets, and loss functions. Our datasets are CUB200
(Wah et al. (2011)), CARS196 (Krause et al. (2013)), and Stanford Online Product (SOP)
(Oh Song et al. (2016)). We use ResNet50 (He et al. (2016)), ResNet18 (He et al. (2016)),
and ResNet152 (He et al. (2016)) architectures with pre-trained ImageNet (Deng et al.
(2009)) parameters, and state-of-the-art S2SD method (Roth et al. (2021)), while main-
taining an embedding size of 128. We use the Multisimilarity (Wang et al. (2019)) and
ArcFace (Deng et al. (2019)) losses and keep hyperparameters consistent with Roth et al.
(2021). For adversarial training, we use PGD (Madry et al. (2017)) and BIM (Kurakin
et al. (2018a)) with different numbers of attack targets and set € to 0.01 and 0.1. Our
evaluation metrics are Recall@K (Jegou et al. (2010)), NMI (Manning et al. (2010)), and
Tratio (Roth et al. (2021)). To evaluate robustness, we generate single-targeted white-box
AXs using PGD-20 (Madry et al. (2017)) with e = 0.01. The results for ¢ = 0.1 are in
the supplementary material along with more elaborate experimental details. Experiments
were conducted on multiple NVIDIA Tesla V100 and Titan V GPUs in distributed training
setting.
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Met-

CUB200 Data

CARS196 Data

hod T Multisimilarity Loss ArcFace Loss Multisimilarity Loss ArcFace Loss
R@l R@4 NMI 740, R@Q@Q1 R@4 NMI 744, RQ@Q1 R@4 NMI 74, RQ1 R@Q4 NMI g0

ST - 62.80 83.70 68.55 1.007 62.22 83.18 67.79 0.726 81.68 93.47 69.43 1.129 79.17 92.23 66.99 0.661
[£0.70] [£0.54] [+0.38] [£0.01] [£0.23] [£0.42] [£0.19] [£0.27] [£0.38] [£0.73] [£0.21] [£0.04]

AT 1 61.73 83.20 68.04 1001 60.18 82.?1 67.75 0.721 80.02 92.59 68.56 1.082 76.43 91.14 67.14 0.686
[£0.71] [40.07] [£0.51] [£0.22] [£0.31] [£0.05] [£0.42] [0.09] [£0.06] [£0.11] [40.06] [£0.04]

AP 1 63.69 84.47 69.15 0.985 63.23 84.1} 69.83 0.723 82.37 93.54 70.10 1074 79.62 92.63 69.31 0.681
[£0.13] [£0.36] [0.27] [40.09] [0.05] [+0.50] [40.96] [+0.51] [+1.13] [4£0.23] [£0.18] [+0.59]

MP 3 64.71 84.45 69.73 0.962 63.77 84.6? 69.90 0.718 83.13 93.81 70.64 1.056 80.69 93.12 70.38 0.689
[£0.41] [£0.25] [£0.14] [40.04] [£0.45] [40.89] [40.22] [+0.16] [£0.24] [£0.16] [+0.06] [£0.30]

MP” 15 65.75 85.23 70.43 0.974 64.07 84.7_8 70.32 0.703 83.81 94.31 71.59 1.056 82.02 93.65 72.43 0.697
[£0.28] [£0.21] [£0.04] [£0.11] [£0.15] [£0.06] [£0.50] [£0.26] [£0.56] [£0.36] [£0.30] [£0.18]

For Adversarial CUB200 Data For Adversarial CARS196 Data
|4 |4 14

ST - 32.96 64.40 54.38 1.429 38.45 67.62 55.92 0.761 51.98 79.99 54.29 = 34.82 64.43 42.85 0.943
[£0.32] [£0.35] [£0.45] [£1.19] [£1.66] [+0.46] [40.91] [0.80] [0.74] [£1.14] [£0.19] [£0.20]

AT 1 38.8.8 70.67 58.33 1.087 39.44 70.04 58.68 0.743 52.42 81.13 56.?2 1.939 36.84 67.?7 45.99 0.829
[40.60] [£0.18] [+0.21] [£1.80] [£0.51] [£0.44] [£0.11] [£0.15] [£0.60] [£0.80] [£0.62] [£0.56]

AP 1 58.80 83.38 62.21 0.921 51.24 77.81 63.33 0.712 79.11 93.05 70.87 0.978 65.67 87.11 62.01 0.723
[£2.15] [40.08] [£0.29] [£0.96] [£0.09] [£1.04] [£1.35] [£0.43] [£0.99] [£1.24] [+0.83] [£0.57]

/ . . . . . . 5 . . . .

MP 3 57.06 81.42 67.03 0.838 50.96 77.84 62.73 0.705 78.18 92.55 71.21 0.896 64.76 86.88 62.38 0.726
[£1.15] [£0.80] [+0.68] [£0.28] [£0.42] [+0.36] [£0.52] [£0.38] [£0.52] [£0.71] [£0.31] [£0.25]

MP” 15 57.27 82.21 68.06 0.836 51.93 80.15 66.28 0.645 80.25 93.50 72.37 0.899 73.91 91.28 69.01 0.688

[£1.90] [£0.84] [£0.61]

[£0.32] [£0.27] [£0.02]

[£0.19] [£0.01] [£0.06]

[£0.07] [£0.08] [1.13]

Table 1: Image retrieval performance for Standard Training (ST), Adversarial Training
(AT), AdvProp-D (AP"), and MDProp (MP) with one (MP') and two (MP") ad-
ditional BN layers, on clean and STAX inputs from CUB200 (Wah et al. (2011))
and CARS196 (Krause et al. (2013)) datasets. Embedding dimensions were
kept 128, and T denotes the number of MTAX targets. Adversarial datasets
were generated using single-targeted white-box PGD-20 attacks with € = 0.01 on
the test sets. Best and second best results per setup are denoted in bluebold and

bold, respectively.

To assess improved generalization, we combined 7,4+, With performance against MTAXs.
In the data-scarce evaluation setting, we generated three training subsets per dataset by
uniform class-wise sampling, creating subsets with fractions of 0.25, 0.50, and 0.75 of the
original training data. We considered 2, 3, and 4 separate BN layers in MDProp, and used
only the main BN layer during inference.

5. Results and Discussions

Clean Data Performance Gains.

Tab. 1 presents results for the CUB200 (Wah et al.

(2011)) and CARS196 (Krause et al. (2013)) datasets using Multisimilarity (Wang et al.
(2019)) and ArcFace (Deng et al. (2019)) loss functions. Our proposed method, MDProp,
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outperforms standard and adversarial training baselines as well as AdvProp-D, with the
highest image retrieval performance achieved using clean, STAX, and MTAX inputs and
three BN layers. MDProp also outperforms AdvProp-D when trained using only MTAXs
and clean data. Similar performance gains are observed with four separate BN layers
(Sec. 4.4 in supplemental). The lower 7,40 Scores for MDProp wvalidate our hypothesis
of regularization in DML models due to MTAXs. MDProp also shows better performance
against MTAX inputs during inference.

For larger SOP data (Oh Song et al. (2016)), MDProp trained with a mix of STAXs,
MTAXs, and clean data achieves the best performance for clean inputs (Tab. 3). The
relatively lower gains on SOP data may be due to the presence of a large number of classes
with already low 7,4, scores for vanilla training baselines, leading to ineffective adversarial
target selection during the MTAX generation process in MDProp.

Adversarial Robustness Gains. MDProp not only boosts image retrieval performance
on unperturbed inputs but also significantly strengthens the robustness of DML models
against white-box adversarial attacks. Tab. 1, 2, and 3 reveal up to 86% higher recall
scores, 47% higher NMI scores, and a 41% decrease in m,qz, scores compared to baselines
for the adversarial inputs. Using both STAXs and MTAXs with two extra BN layers
during training yields the most robust models, surpassing even the AdvProp-D case. The
robustness improvement remains consistent even for the four separate BNs, highlighting the
generalization benefit from incorporating MTAXs with additional BN layers.

Performance With Unadversarial Examples. The combination of unadversarial ex-
amples and clean data in MDProp with two separate BN layers improved the clean data
R@1 score to 63.56% (Tab. 8 in supplemental) for the Multisimilarity loss setting used for
Tab. 1, with modest improvement in 7,4, scores compared to the MTAX case. No further
performance gains were observed with the combination of unadversarial examples and ad-
versarial data in the MDProp setting, possibly due to incompatibility with adversarial data
or overlap with the combination of clean and adversarial data during training. This issue
remains an open research question.

No improvement was achieved using clean data augmentation techniques such as stan-
dard crop and affine transformations when separate BN layers were used. In some cases,
separate BN layers even resulted in performance reduction on clean data.

Data-Scarce Setting Performance Gains. To investigate the superior generalization
capability of MDProp, we compared it to the baseline Standard Training in the data-
scarce setting on the CUB200 (Wah et al. (2011)) and CARS196 (Krause et al. (2013))
datasets. Fig. 2 presents a plot of the performance of MDProp and the baseline approach,
with horizontal lines indicating MDProp’s performance at 50% data usage. Our results
demonstrate that MDProp matches conventional DML training performance while using
only half of the training data, suggesting the usefulness of MDProp in practical scenarios
where data availability is limited.

Performance Across Architectures. MDProp demonstrates exceptional clean data
performance and adversarial robustness, as demonstrated in Tab. 2. This superiority is
consistent across DL architectures of varying depth and even when combined with the
S2SD method (Roth et al. (2021)). Notably, MDProp in the S2SD setting for the CUB200
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Figure 2: Performance comparison of MDProp and Standard Training in data-scarce set-
ting evaluation on CUB200 (Wah et al. (2011)) and CARS196 (Krause et al.
(2013)) datasets. The plot shows that MDProp achieves similar performance to
conventional DML training while using only 50% of the training data, as indi-
cated by the horizontal lines. This suggests that MDProp has the potential to
improve the generalization abilities of DML models.

dataset outperforms the state-of-the-art distillation-based CNN training method (Roth et al.
(2021)) by a significant margin of 1.39% on R@1 score, and also in NMI and 7,44, scores.

Evaluating Feature Space Overlap. Our results, summarized in Tab. 1, 2, and 3,
demonstrate decreased 7,4 scores for MDProp in the majority of cases (also shown in the
t-SNE plot of Fig. 2 in supplemental). The decreased 7, qtio Scores mean increased feature
space sparseness contributing to improved performance that can be attributed to the use
of MTAXSs, as evidenced by our evaluation of the trained model’s performance on MTAX
inputs. We find that the optimal performance is achieved when MDProp is trained using
a combination of both STAXs and MTAXs (see Section 4.1 in Supplemental), followed by
MDProp trained using MTAXs and STAXSs, respectively.

Scalability For Different Attack Target Counts. Our experiments with T values of
1, 2, 3, 5, and 10 reveal that increasing 1" improves performance on clean data up to a point
where the hyperparameters of the predefined generation recipe provide enough semantic
capability to the attack generation process. This results in the embedding space positions
of the generated MTAXSs shifting to the overlapping regions of the DML model during
training (Sec. 4 in supplemental). MDProp using clean data and MTAXs achieved the best
performance for T' = 3, and MDProp using clean data, STAXs, and MTAXs performed best
for T' = 5. Smaller values T' = 2 results in lesser performance improvements due to the
reduced likelihood of finding highly overlapping embedding space regions.

BN Layer Separation Impact. In Tab. 1 and 2, we demonstrate that adversarial train-
ing, which does not utilize separate BN layers, increases adversarial robustness compared
to standard training. However, this approach sacrifices performance on clean data. Exper-
imenting with a DML model trained on a mix of clean and MTAX data, without separate
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Met- ResNet50+52SD Method ResNet18 ResNet152

hod r Clean CUB200 Data Adversarial CUB200 Data Clean CUB200 Data Clean CUB200 Data
R@1 RQ@4 NMI 7e0 R@1 R@4 NMI 7paie RQ1 R@4 NMI 7o RQL R@Q4 NMI maio

|4

ST ) 67.69 86.32 71.46 1123 47.35 76.98 60.26 1.393 58.81 81.34 66.12 1131 65.11 84.64 69.70 0.967
[40.13] [£0.08] [£0.13] [£1.24] [£0.64] [40.40] [£0.52] [£0.33] [£0.45] [40.28] [£0.10] [+0.02]

AT 66.46 85.63 70.78 1.092 45.13 75.40 60.89 1416 5&3?’) 81.15 65.54 1.093 64.98 84.8% 70.56 0.896
[£0.59] [40.12] [£0.40] [£1.09] [0.40] [£0.25] [£0.13] [£0.11] [£0.31] [£0.47] [40.46] [£0.14]

’ . . . . . . . 5 r. .

AP 68.14 86.45 71.18 1.091 62.47 84.18 69.64 1.102 60.91 82.52 66.52 1.028 66.95 85.88 71.72 0.916
[+£0.16] [40.05] [£0.10] [£1.37) [£0.59] [£0.11] [£0.47) [£0.44] [£0.57] [£0.04] [0.23] [£0.21]

MP’ 68.76 86.47 71.78 1.106 62.47 84.66 69.62 1.109 60.92 82.82 66.56 1.024 66.66 85.77 71.73 0.910
[£0.24] [£0.27] [£0.29] [£0.13] [£0.84] [£0.86] [£0.18] [£0.11] [£0.30] [£0.24] [£0.03] [£0.35]

MP” 15 69.08 87.19 71.98 1.959 65.01 86.60 71.13 1.034 61.67 82.75 67.38 1.091 67.63 86.20 72.61 0.902

[£0.23] [£0.19] [+£0.17]

[£0.02] [£0.08] [£0.21]

[+£0.47] [£0.17] [£0.47]

[£0.16] [£0.06] [£0.01]

Table 2: Comparison of AdvProp-D (AP') and MDProp (MP) methods with Standard
Training (ST) and Adversarial Training (AT) on ResNet18, ResNet50 with S25D
(Roth et al. (2021)), and ResNet152 architectures for image retrieval performance
on CUB200 (Wah et al. (2011)) dataset. The acronyms and other settings were
identical to those in Tab. 1.

BNs, shows that this approach does not improve clean data performance and maintains
similar robustness as adversarial training. This supports the hypothesis from AdvProp (Xie
et al. (2020)) that separate BN layers are crucial in handling input distribution shifts.

Input Distribution Shifts By MTAXs. Gradient descent during MTAX generation
is restricted to the overlapping embedding spaces of the model, while STAX generation
benefits from a larger feasible solution space, leading to lower optimization complexity. Our
hypothesis is that the unique generation process of MTAXs results in a distinct distribution
compared to STAXs and clean data.

Our hypothesis was verified by reproducing the methodology of Xie et al. (2020). Specif-
ically, we trained a ResNetb0 model with Multisimilarity loss in the MDProp framework,
using two additional BN layers for STAXs and MTAXs. Upon evaluation, we observed a
decrease of 0.7% and 1.8% in R@Q1 scores for clean data when BN layers utilized for STAXs
and MTAXs during training were used for inference in the model, respectively.

Additionally, Fig. 3 illustrates a clear and significant pairwise variation in the learned
and - parameters of the BN layers used for different types of training data in MDProp. This
difference in learned parameters further confirms that MTAXSs follow a distinct distribution,
requiring additional BN layers during training to mitigate input distribution shifts.

Training and Inference Complexities. The computational complexity of MDProp is
twofold. During training, the complexity is O(Attack Iterations x (K — 1) x N) 4+ O(K x
N), accounting for K — 1 additional data sets generated via PGD attacks and K batch
normalization layers. During inference, since MDProp uses BN layer used for the original
training data only, the complexity remains O(NN), analogous to standard models, meaning
no additional computational costs.
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Method T Clean Data Adversarial Data
RQ@Q1 R@4 NMI 70 RQ1 RQ@4 NMI mpqti0

ST - 78.09 86.55 89.98 0.469 54.60 66.09 84.96 0.636

AP’ 1 77.36 86.17 89.98 0.410 71.96 82.86 88.57 0.422

MP' 3 T7.73 86.98 89.99 0.475 72.95 83.90 88.82 0.456
MP’ 1,56 78.70 87.19 90.27 0.452 71.89 83.00 88.62 0.438

Table 3: Results for the SOP (Oh Song et al. (2016)) dataset while using ResNet50 with
Multisimilarity (Wang et al. (2019)) loss. Other acronyms and settings were the
same as in Tab. 1.
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Figure 3: Visualization of layer-wise variations in the learned parameters of BN layers for
various inputs in MDProp. The x-axis labels denote the weight (W) and bias
(B) parameters, followed with numbers 1, 2, and 3 indicating the respective BN
layers used for clean, STAX, and MTAX inputs. Differences are depicted at equal
relative levels. The plot shows that every pair of BN layers exhibit significant
differences among significant number of their learned parameters, indicating their
adaptation to diverse input distributions.

6. Related Work

DML. Our work pushes the boundaries of standard DML techniques by leveraging adver-
sarial data in a disentangled learning environment to achieve improved performance across
multiple input distributions. The conventional DML approach focuses on ranking losses,
data sampling, and data augmentation.

MDProp Advancement. Adversarial training has long been known to compromise clean
data performance in DL models (Kurakin et al. (2018b); Madry et al. (2017); Xie et al.
(2019); Shafahi et al. (2019); Andriushchenko and Flammarion (2020)). AdvProp (Xie et al.
(2020)) and FastAdvProp (Mei et al. (2022)) have made strides in using separate BN layers
for clean and adversarial data to improve clean data accuracy for end-to-end classification
models. Raghunathan et al. (2020) proposed RST for semi-supervised learning. However,
no prior work (Jiang et al. (2020); Ho and Nvasconcelos (2020); Chen et al. (2021); Mei et al.
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(2022); Raghunathan et al. (2020)) has addressed the challenge of simultaneously improving
clean and adversarial data performance for DML models in the image retrieval task.

This paper presents a unique approach to improve the image retrieval performance of
DML models on both clean and adversarial data. Our MDProp framework generates and
leverages novel adversarial data and unadversarial examples in the DML domain, leading to
improved performance. By scaling the number of separate BN layers, MDProp outperforms
state-of-the-art CNNs while using only half the training data in the data-scarce setting,
demonstrating superior generalization. Furthermore, we present an efficient transfer learn-
ing approach for the auxiliary BN layers that effectively utilizes the pre-trained parameters
of conventional architectures, reducing computational complexity. Our contributions rep-
resent a significant advancement in the field of DML.

7. Conclusion

In this paper, we introduced the MDProp framework to enhance the generalization of DML
models in image retrieval tasks by generating and utilizing MTAXs, Unadversarial Exam-
ples, and conventional STAXs. Our evaluations show that MDProp outperforms state-of-
the-art CNN-based methods by up to 2.95% in terms of RQ1 scores for clean data and
improves adversarial robustness by up to 2.12 times. Additionally, we demonstrate that
MDProp achieves state-of-the-art results in data-scarce setting, making it a promising ap-
proach for scenarios where labeled data is limited. MDProp is a general framework that can
be integrated into different DML architectures, loss functions, and distillation-based meth-
ods. Our work opens up opportunities for further research to enhance the performance and
robustness of DML models.
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