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Abstract

We study regret minimization in an average-reward and communicating Markov Decision
Process (MDP) with known dynamics, but unknown reward function. Although learning
in such MDPs is a priori easier than in fully unknown ones, they are still largely chal-
lenging as they include as special cases large classes of problems such as combinatorial
semi-bandits. Leveraging the knowledge on transition function in regret minimization, in
a statistically efficient way, appears largely unexplored. As it is conjectured that achiev-
ing exact optimality in generic MDPs is NP-hard, even with known transitions, we focus
on a computationally efficient relaxation, at the cost of achieving order-optimal logarith-
mic regret instead of exact optimality. We contribute to filling this gap by introducing
a novel algorithm based on the popular Indexed Minimum Empirical Divergence strategy
for bandits. A key component of the proposed algorithm is a carefully designed stopping
criterion leveraging the recurrent classes induced by stationary policies. We derive a non-
asymptotic, problem-dependent, and logarithmic regret bound for this algorithm, which
relies on a novel regret decomposition leveraging the structure. We further provide an
efficient implementation and experiments illustrating its promising empirical performance.

Keywords: Average-reward Markov decision process, regret minimization, logarithmic
regret, Markov chain, recurrent classes

1. Introduction

In Reinforcement learning (RL), a learning agent (henceforth, learner) interacts with an
environment that is often modeled using a Markov Decision Process (MDP), and her goal
is to optimize a notion of reward (Puterman, 1994; Sutton and Barto, 2018). The learner
does not fully know the underlying MDP, and tries to learn a near-optimal behavior quickly
from the experience collected via interaction. In the average-reward setting, the learner’s
performance is often measured in terms of regret, which compares her cumulative reward to
that of an optimal policy (Jaksch et al., 2010); equivalently, the learner’s goal is to minimize
regret. A standard assumption in most settings in RL is that the environment’s dynamics
is unknown, while the reward function may be known. This assumption is justified since
state dynamics are not controlled by the learner, but is also in line with the argument that
the main challenge in RL stems from unknown dynamics rather than unknown rewards.
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Consequently, the vast majority of existing regret minimizing algorithms have some key
ingredient, in design or analysis, to tackle unknown transition probabilities. In model-based
algorithms (e.g., Jaksch et al. (2010); Filippi et al. (2010); Burnetas and Katehakis (1997)),
this is featured in the form of confidence sets around the empirical transition distributions.

In contrast, in some applications of RL, the learner has some prior knowledge on the
transition function; for example, she may know the associated support sets, some transition
probabilities, or even the entire transition function up to some small deviation error. This
could arise, for example, when the learner has access to an accurate estimate of the tran-
sition function via data collected while performing another task on the same environment
(but with a different reward function). For instance, in the context of personalized recom-
mendation, where the rewards are given by a user based on her internal evaluation of the
recommendations, and where the task (hence transitions) is fixed across users, it is natural
to assume that based on previous interactions, the transitions of the system are perfectly
known, but the rewards associated to the current user are unknown. Note that although
rewards are provided by a user, this does not mean they are known, as evaluation at a
point in time can be subjective and noisy. Another scenario could arise in learning tasks
where the dynamics are governed by some physical phenomena that are perfectly known
to the learner. In such scenarios, the following question arises naturally: What is the most
statistically efficient way to perform exploration when the dynamics are known?

While any form of prior knowledge on the transition function do not appear directly
advantageous to model-free algorithms, which is in line with their design principle, model-
based algorithms can benefit directly from it. In the case of perfectly known dynamics, most
off-the-shelf algorithms can simply remove the relevant confidence sets, which would lead
to improved exploration, and hence, smaller regret bounds.1 Despite such straightforward
modifications of model-based algorithms, it still remains open as to what the best way is
to incorporate such prior knowledge into algorithm design in a non-trivial manner, and
whether it could lead to instance-dependent (and logarithmic) regret bounds. To our best
knowledge, existing literature on learning in MDPs, albeit rich, fails to provide algorithmic
ideas to leverage such prior knowledge in a statistically efficient way, and the potential gains
thereof in terms of regret or sample complexity remain largely unexplored.

Contributions We focus on regret minimization in communicating MDPs with known
dynamics but unknown reward functions, and introduce a class of strategies called rarely-
switching algorithms, which provide a principled way to leverage the connectivity structure
in the MDP through viewing the problem as a multi-policy Multi-Armed Bandit (MAB),
thanks to the prior knowledge on the dynamics. The novel design of these strategies con-
siders recurrent classes induced by stationary policies as well as a carefully designed stop-
ping criterion based on the said classes. For these strategies, we present a generic regret
bound, which relies on a novel regret decomposition leveraging the structure, which could
be of independent interest for learning in MDPs in general. Then, we instantiate a spe-
cific rarely-switching algorithm called IMED-KD, which uses the popular Indexed Minimum
Empirical Divergence (IMED) strategy for MABs (Honda and Takemura, 2015). IMED

1. For example, it is straightforward to show that UCRL2 (Jaksch et al., 2010), when equipped with

the knowledge on dynamics, attains a regret bound of Õ(
√

(SA+D)T ) with high probability, in any

communicating MDP with S states, A actions, and diameter D, where Õ(·) hides log(T ) terms and

universal constants. In contrast, without prior knowledge, UCRL2 achieves a regret of Õ(DS
√
AT ).



Regret in communicating MDPs with known dynamics

offers an interesting alternative to optimistic strategies such as UCB or KL-UCB, and to
Bayesian strategies such as Thompson sampling. Owing to its form directly inspired by the
constraints of the optimization problem appearing in asymptotic regret lower bounds, it has
been shown to yield optimal regret performance, like KL-UCB or Thompson Sampling. We
stress that a key departure from existing IMED-style algorithms for MDPs (e.g., IMED-RL
(Pesquerel and Maillard, 2022)) is to exploit the intrinsic structure of the problem via use
of a rarely-switching algorithm. Under some standard assumption on the reward function
and MDP regularity, as well as a mild assumption on the involved hitting times (Assump-
tion 5), we derive a non-asymptotic, problem-dependent, and logarithmic regret bound for
IMED-KD, whose proof relies on the generic properties of rarely-switching algorithms as well
as proof machinery of IMED-style indices adapted to MDPs. We further provide an efficient
implementation and experiments illustrating its promising empirical performance. To the
best of our knowledge, IMED-KD is the first algorithm specifically designed to leverage the
structure in MDPs with known dynamics.

Related work There is a rich literature on regret minimization in average-reward MDPs.
Early papers like (Burnetas and Katehakis, 1997; Graves and Lai, 1997) mostly presented
regret bounds for ergodic MDPs and with an asymptotic flavour, whereas more recent
literature, e.g., (Jaksch et al., 2010; Filippi et al., 2010; Talebi and Maillard, 2018; Fruit
et al., 2018; Zhang and Ji, 2019; Wei et al., 2020; Bourel et al., 2020; Pesquerel and Maillard,
2022), reported non-asymptotic regret guarantees and, often, for the bigger of class of
(weakly) communicating MDPs. The majority of recent literature on learning in MDPs,
following Jaksch et al. (2010), report worst-case regret bounds growing as Õ(

√
T ) after

T steps. In contrast, comparatively there exists little work that present logarithmic and
instance-dependent regret bounds for average-reward MDPs. The most notable exceptions
include (Jaksch et al., 2010), which reports a logarithmic regret bound for UCRL2 (albeit
with a large mixing-time related additive term), and more recent papers (Gopalan and
Mannor, 2015; Pesquerel and Maillard, 2022), which only consider ergodic MDPs. We also
mention the logarithmic regret bounds derived in (Ortner, 2009; Tranos and Proutiere,
2021) for the much simpler setting of MDPs with deterministic transitions.

We also mention that some studies consider regret minimization in MDPs in the episodic
setting, with a fixed and known horizon; see, e.g., Osband et al. (2013); Azar et al. (2017);
Simchowitz and Jamieson (2019), where the latter work presents a problem-dependent,
logarithmic regret bound. However, the proof machinery used in episodic RL often fails
to work in average-reward RL due to relying on the fixed episode length and resetting
of the state. Finally, it is worth remarking that an MDP with known transitions but
unknown rewards may be viewed as a MAB instance with highly structured actions (one
action corresponding to a policy), in a way which is reminiscent of combinatorial MABs
(Chen et al., 2013; Combes et al., 2015). Despite such resemblance, the problem is more
challenging as the learner is traversing an MDP without a resetting device. As a result,
algorithmic ideas for combinatorial MABs or those with generic structure (Combes et al.,
2017; Saber et al., 2020) do not directly carry over to MDPs with known dynamics.

Notations For an integer n ∈ N∪{0}, we denote [n] = {0, . . . , n}. For a Boolean event A,
I{A} ∈ {0, 1} denotes the indicator function of A. For a sequence (ht)t∈N, and t1< t2∈N,
ht1:t2 := (ht)t∈{t1,...,t2} denotes the sub-sequence of elements indexed in between t1 and t2.
Last, for a set A, P(A) denotes the set of probability distributions over A.
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2. Problem formulation

We consider an average-reward Markov Decision ProcessM = (S,A,p, r), where S is the set
of states with cardinality S, and A = (As)s∈S , where As specifies the set of actions available
in s ∈ S. For convenience, we introduce the set of pairs C = {(s, a) : s ∈ S, a ∈ As}. Further,
p : C → P(S) denotes the transition function, and r : C → P(R) the reward function. We
denote the corresponding mean reward function by m : C → R.
Policies Each stationary policy π : S → P(A) acting on M induces a Markov chain on
C, with corresponding transition probability pπ : C2 → P(C), defined by pπ(s, a)(s

′, a′) =
p(s′|s, a)π(a′|s′). We denote by pπ : C2 → P(C) the Cesaro-average of pπ; formally, pπ =

lim
T→∞

1
T

T∑
t=1

pt−1
π , where pπ(c1, c) captures the frequency of reaching the pair c ∈ C under

policy π starting in pair c1 ∈ C. This enables to introduce the gain of policy π, when starting
from state-action pair c1 = (s1, a1), defined by gc1,π := (pπm)(c1) =

∑
c∈C pπ(c1, c) ·m(c),

where we recall that m(c) is the mean reward of pair c. Given a finite set of stationary
policies Π, we define g⋆

c = max
π∈Π

gc,π the optimal gain starting from c, and Π⋆
c = {π ∈ Π :

gc,π = g⋆
c} the set of policies achieving the optimal gain.

Cycles The set of (positive) recurrent state-action pairs (i.e., pairs with finite return
times) under π is defined as C+

π = {c ∈ C : pπ(c)(c) > 0}. Further, the relation ∼π such
that c ∼π c′ ⇔ pπ(c)(c

′) ·pπ(c
′)(c) > 0, is an equivalence relation on C+

π . Denoting [c]π
the class of c ∈ C+

π for relation ∼π, the asymptotic cycles under policy π are defined as

Xπ = C+
π /∼π=

{
[c]π : c ∈ C+

π

}
. Distinct elements of Xπ correspond to disjoint cycles. A

policy π with |Xπ| = 1 is called a unichain policy.

Remark 1 A remarkable property is that for a unichain policy π and recurrent c′ ∈ C+
π ,

pπ(c)(c
′) is independent of the starting pair c and equals 1/τπ(c

′, c′), where τπ(c
′, c′) is the

expected hitting time of c′ when starting from c′ and following policy π; see (Puterman,
1994). As a consequence, gc,π also does not depend on c.

We consider the two following assumptions on MDP regularity and the reward function:

Assumption 1 (MDP) M is communicating, that is, ∀c, c′,∃π, t∈N : pt
π(c)(c

′)>0. Also,
Π is proper, that is, the Cesaro-average pπ of pπ exists for each π ∈ Π. There is a unique
gain-optimal policy π⋆ ∈

⋂
c∈C

Π⋆
c that is unichain (i.e., it has a unique asymptotic cycle).

Assumption 2 (Reward function) For each c ∈ C, the reward distribution r(c) is sup-
ported on [0, 1] (in particular, it is 1/2-sub-Gaussian), with bounded mean m(c) ∈ [0, 1).

In particular, under Assumption 2, ∀c ∈ C, π ∈ Π, the gain is bounded: gc,π ∈ [0, 1). To gain
insight into the motivations behind this assumption, we refer to discussion in Appendix F.

Local monotony Finally, a key property of unichain MDPs is that there always exists a
modification of a sub-optimal policy in a single state having (stricly) larger gain (Puterman,
1994). We generalize this useful monotony property to larger neighborhoods as follows:

Assumption 3 (Policy-improving neighborhood) ∀c∈C, π /∈Π⋆
c , ∃π′∈Π, h(π, π′)⩽k,

such that gc,π′ > gc,π, where h denotes the Hamming distance between two policies.
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Here, k is a given constant. Note that as k increases from 1 to S, Assumption 3 interpolates
between (at least) all unichain MDPs, when k = 1, and all discrete MDPs, when k = S.

Remark 2 In a communicating MDP, for Π consisting of all stationary policies, the set of
optimal policies does not depend on the starting pair and is simply denoted by Π⋆. Moreover,
an optimal policy is also unichain in this case. The gain of a unichain policy π does not
depend on the starting state-action pair, and is simply denoted by gπ (and g⋆ for an optimal
policy); hence, we denote Π⋆

c=Π⋆ and g⋆
c =g⋆ for all c. Note, however, that for sub-optimal

policies π∈Π that are not unichain, gc,π may still depend on the initial state-action c∈C.

The online learning problem The learner interacts with MDP M for T time steps,
starting in an initial state-action pair (s1, a1) ∈ C chosen by Nature. At each time t≥ 2,
she is in state st∈S and chooses an action at∈Ast according to a stationary policy πt∈Π,
that is at∼πt(st). The stationary policy πt is selected based on the learner’s observations
so far. Then, (i) she receives a reward rt∈ [0, 1], where rt∼r(st, at); and (ii) Nature decides
a next state st+1 ∈ S, where st+1 ∼ p(·|st, at). The sequence of chosen policies is denoted
by (πt)t⩾1, and simply by (π) when for all time step t ⩾ 1, πt = π. Further, we denote
by ct = (st, at) the state-action pair at time step t. We assume that the learner does not
know the reward function r, but knows the transition function p, and can thus compute
pπ for each π ∈ Π. Her performance is measured through the notion of (expected) regret,
as defined next. Let VM(A, T ) denote the cumulative reward of an algorithm A following a
policy sequence (πt)t⩽T up to time T :

VM(A, T ) = E(πt)

[
T∑
t=1

rt

]
.

For a policy sequence (π), it is simply denoted by VM((π), T ). The (expected) regret with
respect to playing a gain-optimal policy sequence (π⋆), up to time T , is defined as:

RM(A, T ) = VM((π⋆), T )− VM(A, T ). (1)

Remark 3 (Pseudo-regret) For each given T , the quantity V ⋆
M(T ) = max

π∈Π
VM((π), T )

and the set Argmax
π∈Π

VM((π), T ) differ a priori from the cumulative reward of gain-optimal

policies (VM((π⋆), T ))π⋆∈Π⋆ and the set Π⋆, respectively. However, it is easily checked that
lim
T→∞

V ⋆
M(T )/T = lim

T→∞
VM((π⋆), T )/T = g⋆, for all gain-optimal stationary policy π⋆ ∈Π⋆.

That is, the asymptotic maximal average reward coincides both with the asymptotic average
reward of gain-optimal policies and the optimal gain. Since the set of considered stationary
policies Π is finite, this further implies that Π⋆

T ⊂Π⋆ when horizon T is large enough, which

also implies V ⋆
M(T )−VM((π⋆), T )

T→∞
= O(1).

3. Rarely-switching Algorithms

Rarely-switching learners We choose to restrict the learner to follow a rarely-switching
strategy, which forces the learner to keep playing the same policy until some criterion —
to be introduced momentarily — is met. The T time steps are divided into episodes of
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random durations, where episode k ∈ {1, 2, . . . } starts at random time τk−1 + 1 and ends
at random time τk (with τ0 = 0). We gather in the sequence T = (τk)k∈N the last time
step before starting each new episode. Hence, for τ ∈ T , the learner starts at time step
τ+1 a new episode (to which we refer as “episode τ”), and after pulling state-action pair
cτ+1 = (sτ+1, aτ+1), she follows the same policy π = πτ+1 until the event Event is triggered
(and the episode ends). Event is a generic function of the current policy π and the history
hτ+1:t of all observations and decisions made from the beginning of the episode until the
current time. We resume the generic structure of rarely-switching learners in Algorithm 1.

Algorithm 1 Rarely-switching learner
1: input: (pπ)π∈Π, (s1, π1) and Event function
2: Start a new episode τ ← 0, π ← π1

3: Pull action a1 ∼ π(s1)
4: for time step t ⩾ 1 do
5: Receive reward rt, update history ht = (st, π, at, rt)
6: if ¬Event(π, hτ+1:t) then
7: Keep the same policy π ← πτ+1

8: Pull action at+1 ∼ π(st+1)
9: else
10: Start a new episode τ ← t
11: Compute a new policy πτ+1 and update π ← πτ+1.
12: Pull action at+1 ∼ π(st+1)
13: end if
14: end for

Counters For a rarely-switching learner, let N ini
c,π(0 : T ) =

∑
τ∈T ∩[T ]

I{πτ+1 = π, cτ+1 = c}

denote the number of times when an episode starts in pair c and follows policy π until
time T . This quantity should not be confused with the (possibly much larger) number of
visits Nc,π(T ) =

∑
t∈[T ] I{πt = π, ct = c} of pair c by policy π until time T . In view of the

introduction of Event, it is also convenient to introduce Nc(h) =
∑

(s,π,a,r)∈h I{(s, a) = c}
that counts the number of visits of pair c on the piece of history h.

Owing to the fact that the criterion used to stop an episode is independent of the rewards
accumulated during the episode, and using properties of the expectation, we can show the
following decomposition lemma, somewhat reminiscent of bandit analyses.

Assumption 4 (Whole number of episodes) We assume that T ∈ T , that is horizon
time T coincides with the last time step of an episode. We abusively conserve the notation
E(πt)[Z] instead of E(πt)[Z|T ∈ T ] to compute the expectation of any random variable Z.

Lemma 4 (Cumulative reward and regret decomposition) Under Assumption 4, the
cumulative reward of a rarely-switching algorithm A satisfies

VM(A, T ) =
∑
c∈C

∑
π∈Π

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] ·Gc,π ,

where ℓc,π =min{t > 0 : Event(π, h1:t), c1 = c} denotes the (random) length of the episode,

and where Gc,π = E(πt)

[
1

ℓc,π

ℓc,π∑
t=1

rt

∣∣∣(s1, a1) = c
]
denotes the expected average reward of an

episode starting in pair c and following policy π. When Event further ensures an episode
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running policy π always stops in a same reference pair cπ ∈ C, then writing G⋆ = Gcπ⋆ ,π⋆,
it holds

RM(A, T ) =
∑
c∈C
π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
·E[ℓc,π]·(G⋆−Gc,π)

+
∑
c ̸=cπ⋆

E(πt)

[
N ini

c,π⋆(1 :T )
]
·E[ℓc,π⋆ ]·(G⋆−Gc,π⋆) . (2)

Note that N ini
c,π⋆(1 :T ) excludes the first episode. Furthermore, we stress that G⋆ is defined

using the stopping time induced by π⋆, and Gc,π by the one induced by π.
The proof of Lemma 4 is provided in Appendix A. To give some intuition, Lemma 4

decomposes the cumulative reward of a rarely-switching learner according to each config-
uration when the policy being played is π and the initial pair in this episode is c. Thus,
it makes appear the number of times such a configuration happens, E(πt)

[
N ini

c,π(0 :T )
]
, as

well as the reward accumulated in that episode. A similar decomposition can be written for
the optimal policy, and using a reference state ensures that RM(π⋆, T ) ≃ TG⋆, up to the
contribution of the first episode in which the episode may not start from cπ⋆ . Combining
the two cumulative reward decompositions yields the convenient form in Equation (2).

Further, the product form term E[ℓc,π] · Gc,π reveals that Lemma 4 offers a decoupling
between the expected number E[ℓc,π] of steps of an episode starting in c with policy π,
and its average reward Gc,π received during that episode. It is worth mentioning that the
decoupling between the gain and the length of an episode holds by virtue of the Markov
property and since we consider a decomposition in expectation.

Remark 5 (Simplifications) Note that E(πt)

[
N ini

c,π(0 :T )
]
= 0 for policies π not explored

by a rarely-switching algorithm. Typically, a learning algorithm will progressively focus on a
few policies, and hence, the sum over all stationary policies π should effectively involve much
fewer terms than AS (i.e., the number of all stationary deterministic policies). Interestingly,
in the case of bandits, there is a unique state, and hence, Equation (2) simplifies to the
classical regret decomposition, in which case the second term disappears:∑

c ̸=cπ⋆

E(πt)

[
N ini

c,π⋆(1 :T )
]
· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) = 0 .

Gain One may wonder about the link between Gc,π and the gain gc,π: Gc,π can be seen

as a proxy for the gain gc,π of the policy, since gc,π = lim
T→∞

E(πt)

[
1
T

T∑
t=1

rt

∣∣∣c1 = c, π1 = π
]
,

that is, as ℓc,π → ∞, then Gc,π indeed approaches gc,π. This interpretation is however valid
only when ℓc,π is sufficiently large. Luckily, thanks to the regenerating properties of the
chain, if we start and stop an episode in the same recurrent pair cπ, hence “completing a
loop”, then the average of the rewards received during that episode must, in expectation,
equal that of infinitely many such loops. More formally:

Lemma 6 (Regeneration property) For any unichain policy π, any recurrent reference
pair cπ ∈ C+

π , and any function Event ensuring that an episode always stops in cπ when we
play π, then Gcπ ,π = gcπ ,π, that is the expected average reward received during an episode
starting and ending at pair cπ is equal to the gain of the policy.
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A proof of Lemma 6 is provided in Appendix A.1. This motivates us to introduce for
each π a reference pair cπ ∈ Argmax

c∈C
pπ(c)(c) (which belongs to C+

π by construction), and

define Event(π, hτ+1:t) to ensure that (st, at) = cπ. Indeed, this choice of cπ also minimizes
τπ(c, c) over c, hence tends to reduce E[ℓcπ ,π]. This construction of events further yields the
following useful control on the regret:

Proposition 7 (Rarely-switching learners with reference pair) Under Assumption 1,
if the rarely-switching learner A specifies for each π to stop the episode starting with π in
the same reference pair cπ ∈ C+

π , then the following bound holds almost surely:∑
c ̸=cπ⋆

N ini
c,π⋆(1 :T ) ⩽

∑
c∈C

∑
π ̸=π⋆

N ini
c,π(0 :T ) .

Moreover, the cumulative regret of any such rarely-switching algorithm A with respect to the
unique optimal policy π⋆, up to the end T of any episode, is upper-bounded by

RM(A, T ) ⩽ E(πt)

 ∑
c∈C,π ̸=π⋆

N ini
c,π(0 :T )

· ( max
(c,π)̸=(cπ⋆ ,π⋆)

E[ℓc,π](G⋆−Gc,π) +B⋆

)
,

where B⋆ := max
c ̸=cπ⋆

E(πt)[ℓc,π⋆ ](G⋆−Gc,π⋆) is a problem-dependent quantity.

Remark 8 It holds B⋆ ⩽ max
(c,π)̸=(cπ⋆ ,π⋆)

E[ℓc,π](G⋆−Gc,π). Further, B⋆=0 for bandits.

Estimation and covering time Before we specify the algorithm, let us remind that
since the transitions are known, only the mean rewards need to be estimated. Since gc,π =∑
c′∈C+

π

pπ(c)(c
′)m(c′), where m is unknown, it is natural to collect observations of pairs

c′ ∈ C+
π to estimate the corresponding m(c′), and hence the gain gπ. A natural way to

ensure the estimation error reduces in each episode is to stop an episode when all pairs in
C+
π have been visited at least once: Formally, min

c′∈C+
π

Nc′(hτ+1:t) > 0, that is after covering the

set C+
π . In order to control the resulting episode length, unfortunately, there is in general

no simple control of the cover time by a policy π of its recurrent pairs. The policy could
be diffusive or lazy (see Appendix B), yielding an arbitrarily large cover time. Formally,
given C ⊂ C and c ∈ C, we denote by πH

c (C) a policy that minimizes over policies π the
expected time τH

c,π(C) to reach any element of C starting from c and following π. In a
similar manner, we let πc(C) denote a policy minimizing over π the expected time τ c,π(C)
to cover all elements of C starting from c and following π. Letting DM denote the diameter
of M,2 it holds: min

π
τH
c,π(C) ⩽ DM and min

π
τ c,π(C) ⩽ |C|DM for all c and C. In contrast,

τ c,π(C+
π ) could be arbitrarily large, even for a gain-optimal policy π.

2. The diameter of a finite MDP M is defined as DM=maxs ̸=s′ minπ E[Tπ(s, s′)], where Tπ(s, s′) denotes
the number of steps it takes to reach s′ starting from s and following policy π (Jaksch et al., 2010).
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Frequently recurrent pairs and restricted gain This motivates us to discard states
with too small return frequency. To formalize this, we introduce a notion of gain, which we
call η-restricted gain, defined using a parameter η ∈ R+. Formally, for a constant η ∈ R+,
define the set of frequently recurrent pairs of a stationary policy π:

(Frequently recurrent pairs) C+
c,π(η) := {c′ ∈ C : pπ(c)(c

′) > η} ,

which leads to defining the corresponding η-restricted gain function:

(η-restricted gain) gc,π(η) :=
∑

c′∈C+
c,π(η)

pπ(c)(c
′) ·m(c′)/

∑
c′∈C+

c,π(η)

pπ(c)(c
′) .

We further naturally introduce g⋆
c(η) =max

π∈Π
gc,π(η) and Π⋆

c(η) =Argmax
π∈Π

gc,π(η). Note

that for η = 0, we recover the usual definitions (e.g., gc,π(0) = gc,π). More generally:

Lemma 9 (Restricted-gain approximation)

∀π, c, η, gc,π − gc,π(η) ⩽ ηmmax|C+
c,π \ C+

c,π(η)| ,

where mmax = max
c∈C

m(c) is the maximal state-action pair mean.

This lemma is proven in Appendix C. In particular, for a given ε, choosing η ⩽ ε
mmax|C+

c,π\C+
c,π(η)|

(for instance, η = ε/(mmaxS)) ensures that the gain is still well-approximated by the η-
restricted gain up to the desired precision ε. Hence, we can restrict to cover C = C+

c,π(η)
instead of C+

c,π and define Event(π, hτ+1:t) accordingly. Unfortunately, τ c,π(C+
π (η)) can still

be arbitrary in general. This motivates us to introduce:

Definition 10 (Laziness) A chain induced by π is (B, η)-lazy if max
c′∈C+

c,π(η)
τ c′,π(C+

c,π(η))>B.

We assume (the laziness constant B may be unknown to the learner, or computed offline):

Assumption 5 (No-laziness) M has no (B, η)-lazy chain, where η ∈ [0, 1] is given.

Structure of policies We conclude this section by showing that choosing this specific
form of event further enables us to revisit the decomposition of regret to better exploit
structure of the policies. Indeed, while E(πt)

[
N ini

c,π(0 :T )
]
= 0 for policies π not explored by

a rarely-switching learner, there is more: policies are structured, in the sense that visiting
one state-action pair (s, a) is not only informative about the actual policy π playing a in
state s, but all such ones as well. Using Proposition 7 and the form of stopping event
introduced in Lemma 12 (in the next section), we derive the following result, showing,
remarkably, that the sum over all policies can be removed in favor of a maximum.

Theorem 11 (Rarely-switching learners exploiting recurrence structure) Let A be
a rarely-switching algorithm using stopping event Event(π, hτ+1:t) = {min

c′∈C
Nc′(hτ+1:t) >

0 and (st, at) = cπ} where C = C+
c,π(η) is parameterized by η. Then,∑

c∈C, π ̸=π⋆

N ini
c,π(0 :T ) ⩽ |C|max

c∈C
π ̸=π⋆

Nη
c,π(T ) ,
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where we introduced Nη
c,π(t) = min

c′∈C+
c,π(η)

Nc′(h1:t). In particular, using Remark 8,

RM(A, T )
E(πt)[maxc∈C,π ̸=π⋆ Nη

c,π(T )]
⩽ |C|

(
max

(c,π)̸=(cπ⋆ ,π⋆)
E[ℓc,π]︸ ︷︷ ︸

=:L

(G⋆−Gc,π)︸ ︷︷ ︸
∈[−1,1]

+B⋆

)
⩽ 2|C|L . (3)

4. The IMED-KD strategy

In this section, we present IMED-KD (Indexed Minimum Empirical Divergence for MDPs with
Known Dynamics), which is a rarely-switching algorithm that uses an IMED-type index
together with the knowledge of p to attain a logarithmic regret in communicating MDPs.
The IMED strategy (Honda and Takemura, 2015) has been proven asymptotically optimal in
stochastic MABs and is computationally appealing when compared with the optimistic KL-
UCB or the Bayesian Thompson sampling (TS) strategy that require, at each step, solving
an optimization problem or sampling from a posterior, respectively. Although posterior
sampling can be made efficient for some parametric distributions such as Gaussians, current
extensions of TS to MDPs require introducing a forced optimism mechanism (Agrawal and
Jia, 2017), which makes it less appealing both from theory and computational perspectives.

High-level description At a high level, the algorithm computes at the beginning of each
episode τ an empirical best candidate policy π̂⋆

τ , as well as a best informative policy π̂I
τ .

The algorithm considers the stopping event targeting C = C+
cτ ,π(η) and final pair c0 = cπ

for the policy π = π̂I
τ . It runs the episode using π̂H

τ until hitting C, followed by policy π (so
if cτ ∈ C, this reduces to running π). We now detail the computation of π̂⋆

τ , π̂
I
τ , and π̂H

τ .

a. Empirical best policy π̂⋆
τ is computed via classical value (or policy) iteration al-

gorithms in the MDP M̂τ = (S,A,p, r̂τ ) where for each c ∈ C, we introduce r̂τ (c) =
N (m̂τ (c), σ

2) with m̂τ (c) =
1

Nc(hτ )

∑τ
t′=1 rt′I{ct′ = c} being the classical empirical estimate

of the mean m(c) computed on observations received until time τ .

b. Informative policy To compute π̂I
τ , we first form ĝ⋆

c,τ (η) = ĝc,π̂⋆
τ ,τ

(η), where for each
policy π, we introduced its η-restricted gain estimate defined by

ĝc,π,τ (η) =

∑
c′∈C+

c,π(η)
pπ(c)(c

′)m̂τ (c
′)∑

c′∈C+
c,π(η)

pπ(c)(c
′)

.

We further introduce for each policy the notation Nπ(τ) = Nη
cτ ,π(τ) and the IMED-type

index, inspired by (Honda and Takemura, 2015) for MABs,

Iτ (π) = Nπ(τ)d(ĝcτ ,π,τ (η)
∣∣ĝ⋆

cτ ,τ (η)
)
+ log(Nπ(τ)),

where d(x|y) = (x−y)2

2σ2 = 2(x−y)2 denotes the Kullback-Leibler divergence between Gaussian
distributions with respective means x and y, and identical standard deviation σ = 1/2. This
is justified since under Assumption 2, all gains fall in [0, 1], and hence can be considered
1/2-sub-Gaussians. Finally, we let π̂I

τ (also written π̃τ+1) be a policy minimizing Iτ over a
subset of policies Πτ ⊂ Π containing π̂⋆

τ . Following Assumption 3, we introduce Vπ̂⋆
τ
(k) =

{π : h(π̂⋆
τ , π) ⩽ k}, and define Πτ such that Vπ̂⋆

τ
⊂ Πτ . We discuss choices of Πτ in Section 6.
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c. Exploratory policy To compute the fast hitting policy π̂H
τ = πH

c (C) that tries to
reach C = C+

cτ ,π̂I
τ
(η) as fast as possible starting from c = cτ , we introduce a specific MDP

MH
τ = (S,A,p, rHτ ) with modified reward function rHτ (c) =

{
1 if c ∈ C

0 else
. We compute

an optimal policy for this MDP, under the average reward criterion, using value iteration.
This policy is used to reach the set C and ensures the hitting time is always finite.

Strategy Finally, we define IMED-KD to be the rarely-switching algorithm with update
rule (line 11 of Algorithm 1) given by choosing at each new episode τ ∈T the policy

πτ+1 = πH
cτ (C

+
cτ ,π̂I

τ
(η)) followed by π̂I

τ ,

with stopping event Event(πτ+1, hτ+1:t) =

 min
c′∈C+

cτ ,π̂I
τ
(η)

Nc′(hτ+1:t) > 0 and (st, at) = cπ̂I
τ

.

We provide the following control on the length of episodes run with IMED-KD, whose
proof is given in Appendix C (together with a complementary control for generic learners).

Lemma 12 (Bound on episode lengths) Assuming M has diameter DM and no (B, η)-
lazy chain, the expected length of an episode of IMED-KD started at τ satisfies

E[ℓc,π|h1:τ , cτ = c] ⩽ DM + 2B.

5. Regret performances

In this section, we provide performance bounds of the IMED-KD strategy, starting with a
non-asymptotic control on the number of visits of sub-optimal policies. We stress that the
existing lower performance bounds from, e.g., (Burnetas and Katehakis, 1997) are explicit
only for ergodic MDPs, and presumably NP-hard to compute in general. Hence, we allow
for deviating from this and derive an upper-bound involving a different problem-dependent
term. Closing the gap is an interesting challenge (both computationally and theoretically).

Theorem 13 (Performance bound of IMED-KD) For an MDP M with diameter DM

and satisfying Assumptions 1–5, the IMED-KD strategy ensures, provided that η < εM(0)
2mmaxS

where εM(η) = min
c∈C
π/∈Π⋆

{
max
π′∈Vπ

gc,π′(η)− gc,π(η)

}
, the following

E(πt)

max
c∈C
π ̸=π⋆

Nη
c,π(T )

 ⩽ max
c∈C
π ̸=π⋆

(1 + αM(ε)) log(T )

d
(
gc,π(η)

∣∣g⋆
c(η)

) +KT (ε, η)(DM + 2B) ,

for all accuracy 0 < ε <
εM(η)

2
, where lim

ε→0
αM(ε) = 0 and

KT (ε, η) ⩽
5 |C| e2ε2

2ε2
+ |C|

(
1 + c−1

εM(η) + 2CεM(η)

√
log(cεM(η)T )

)
.

with Cε and cε being constants independent of M and T .

We combine this result together with Equation (3) and the fact that Gc,π ⩽ 1 to obtain

RM(A, T ) ⩽

max
c∈C
π ̸=π⋆

(1 + αM(ε)) log(T )

d
(
gc,π(η)

∣∣g⋆
c(η)

) +KT (ε, η)(DM + 2B)

 · 2(DM + 2B) |C| .(4)
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Remark 14 A natural question is how to ensure η is small enough since εM(0) is a priori
unknown. One possible way to accommodate this is to consider near-optimality instead, with
given precision ε̃, and simply choose η = ε̃/2S. In practice, we may choose η adaptively (i.e.,
η = ηt); we discuss in Appendix H some simple adaptive choices of η, and demonstrate that
they lead to promising empirical performance, though not directly covered by Theorem 13.

The regret bound in Equation (4) grows logarithmically with T , where the leading con-
stant is determined by a notion of gap with respect to η-restricted gains. In this respect,
the bound bears some similarity with logarithmic regret bounds for MABs. This is con-
sistent with the design principle behind the rarely-switching algorithms wherein the MDP
was viewed as a multi-policy MAB. In contrast, the bound in Equation (4) is inversely pro-
portional to the square of the gap terms, which stems from the technical difficulties arising
in the regret analysis in the average-reward setting. Jaksch et al. (2010) report a loga-
rithmic regret bound for UCRL2 that depends on a similar notion of gap term. However,
their bound involves an additive term, which depends on mixing time quantities and has
an implicit dependence on log(T ). It thus could grow very large. In empirical evaluation of
UCRL2, it is often witnessed that the logarithmic regime in the regret actually kicks in after
very long burn-in phase. While Equation (4) offers a bound with an optimal dependence
on T , it is not clear whether the gap in terms of policy gains — appearing in both Equation
(4) and (Jaksch et al., 2010) — is the best one could get. Indeed, we recall that regret lower
bounds for (non-ergodic) average-reward MDPs are open and deriving them even for the
case of known dynamics is a very interesting, yet challenging, topic of future research.

6. Choice of policies

In this section, we discuss the construction of the set Πτ . Hereafter, we consider that a set
of policies to be small if its size does not exceed 106, somewhat arbitrarily.

First, there are cases in which Π is small. This situation may typically happen in real-
world applications when a learner must choose between a limited set of policies prescribed
by experts. A typical example is that of agriculture in which policies are intervention plans
carefully built by agronomists, with a few parameters, despite considering a complex system.

Then, even when Π is large, there are cases when Π⋆ is known to belong to a small
set of policies. For instance in (Puterman, 1994)[Theorem 8.11.3], the author detail the
case of an inventory problem when an optimal policy can be searched in a restricted set
of
(
A+S−1

S

)
many non-decreasing policies instead of all possible AS ones. For an MDP

with S = 150 states and A = 4 actions, there are over 1090 deterministic policies but only
585276 ≃ 106 non-decreasing policies. Likewise, in goal-state MDPs, one can restrict to
policies aiming at reaching (and staying) in a single state as fast as possible (they can be
computed knowing the transitions of the MDP), yielding only S many policies to consider.

Finally, generic structural properties of the MDP can be used, such as restricting to
stationary and unichain policies since an optimal policy satisfies both conditions. Also,
when the MDP is known to be unichain, it then satisfies Assumption 3 with k = 1, which
suggests to simply choose Πτ = Vπ̂⋆

τ
(1). More generally, one can set Πτ = Vπ̂⋆

τ
(k) provided

that |Vπ(k)| =
(
S
k

)
Ak is small. When k is unknown, one may choose Πτ = Vπ̂⋆

τ
(k̃) ∪ Γ

where k̃ satisfies
(S
k̃

)
Ak̃ ⩽ 106 and Γ is a small set of policies uniformly randomly chosen in

Π \Vπ̂⋆
τ
(k̃). This indeed ensures that Πτ contains an improving policy over π̂⋆

τ with positive
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probability, which may be interesting for the practitioner. In Appendix G, we detail an
alternative way of exploiting policies having more than one recurrent class.

7. Numerical experiments
In this section, we discuss the practical implementation of the presented IMED-KD algorithm,
and present some numerical experiments3. We consider three environments: RiverSwim
(Fig. 1), which is difficult to navigate; nasty (Fig. 3), where two high reward cycles are
separated by a bottleneck action; and 4-rooms (Fig. 4), which is a sparse reward environment
with close-to-deterministic transitions.

Practical comparison In those environments, we illustrate the performance of IMED-KD
against the strategies UCRL3 (Bourel et al., 2020), PSRL (Osband et al., 2013) and Q-learning
(run with discount γ = 0.99 and optimistic initialization). PSRL and UCRL3 use a confidence
parameter to control the quality of the MDP approximation, which is set to 0.05 in the
experiments. Further, we adapt both strategies to receive exact knowledge of the transition.
The η parameter of IMED-KD plays a similar role, and we therefore use η = 0.05/|S| to
ensure a fair comparison. IMED-KD uses value iteration as a routine, which is faster than the
extended value iteration used in UCRL3. Q-learning takes an exploration parameter, ε, or
exploration scheme when ε is slowly decreased with time. We report regret curves averaged
over 2048 independent runs along with quantiles 0.1 and 0.9.

RiverSwim In each of the L states, there are two actions: RIGHT and LEFT. In Fig. 1,
the LEFT action is represented with a dashed line and the RIGHT with solid line. Rewards
are located at the extremities of the MDP, with a small reward in left initial state s1
and large reward in the rightmost state sL. Starting from state s1, this MDP has proven
challenging because of the large amount of non-rewarding exploration necessary to find the
optimal policy. We consider the 6-state and 25-state instances, which allows us to compare
how algorithms behave depending on the amount of necessary exploration; see Fig. 2. Q-
learning is struggling despite its optimistic initialization, while IMED-KD is on par with PSRL

on both experiments. The regret of UCRL3 scales differently with L than the one of IMED-KD
and PSRL, although it remains controlled.

sLsL−1

0.6
(r = 0.999)0.6

0.35

1

0.35

0.05

1

0.4

s1

0.4

0.6

0.05

1

0.6

1
(r = 0.05)

s2

0.35

0.05

1

s3

0.6

0.35

0.05

1

Figure 1: The L-state RiverSwim MDP

Nasty In this setting, there are two promising cycles separated by a small chain of one
bottleneck state with no associated reward, which may induce an “oscillation” of a learner
between the two cycles, paying the cost of the travel along the chain each time it changes
cycle (policy). Q-learning exhibits a bad performance, suffering from a large, linear-shaped
regret. UCRL3 attains an even worse regret than Q-learning. In contrast, IMED-KD and PSRL

are highly competitive and perform similarly.

n-rooms 4-rooms is a grid-like environment with 20 states and 4 cardinal actions where
transitions are close to deterministic with a 0.8 chance of going in the intended direction. A

3. Source code is available via https://github.com/fabienpesquerel/Logarithmic-regret-in-communicating-
MDPs-Leveraging-known-dynamics-with-bandits.git.

https://github.com/fabienpesquerel/Logarithmic-regret-in-communicating-MDPs-Leveraging-known-dynamics-with-bandits.git
https://github.com/fabienpesquerel/Logarithmic-regret-in-communicating-MDPs-Leveraging-known-dynamics-with-bandits.git
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Figure 2: Regret on RiverSwim MDPs: 6-state (left) and 25-state (right)

reward of 0.99 is located in the goal state (highlighted in yellow), while it is zero elsewhere.
Upon reaching the goal, the learner is positioned again in the initial red-state. As shown in
Fig. 4, IMED-KD significantly outperforms the others in this environment —also in 2-rooms
as shown in Appendix H. Even for horizons as large as 105, we cannot observe a bend in the
Q-learning regret curve while it occurs around time step 6×104 for UCRL3 (see Appendix H).
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Figure 3: The Nasty environment (left) and regret curves (right)
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8. Conclusion

We studied regret minimization in communicating MDPs with known dynamics but un-
known reward functions, and introduced a class of rarely-switching algorithms, whose design
allows for leveraging the connectivity structure induced by the (known) transition function
via considering the recurrent classes of the stationary policies. We presented IMED-KD,
a rarely-switching algorithm that relies on an IMED-style index function. It admits an
efficient implementation and significantly outperforms existing algorithms empirically. Un-
der mild assumptions, we derived a finite-time, problem-dependent, and logarithmic regret
bound for IMED-KD. Regret lower bounds for this setting (and communicating MDPs in gen-
eral) are open, to our best knowledge, and deriving them is an interesting, yet challenging,
direction for future work. Other interesting future directions include deriving adaptive rules
to tune the parameter η (used to control the gains) and to relax the laziness assumption,
even though some restrictive assumption seems required to ensure computational efficiency.
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Table of Notation

M average-reward Markov Decision Process

C set of state-action pairs

p transition distribution function on C

r reward distribution function on C

m mean reward function on C

Π finite set of stationary policies

T horizon time

st state visited at time step t

at action played at time step t

ct state-action pair (st, at)

A algorithm following a policy sequence (πt)1⩽t⩽T ⊂ Π

VM(A, T ) cumulative reward of an algorithm A

Mπ Markov chain induced by stationary policy π acting on M

pπ transition probability on C2 of Markov chain Mπ

pπ Cesaro-average of pπ

gc,π gain of stationary policy π starting from state-action pair c

g⋆
c maximal gain of stationary policies starting from state-action pair c

g⋆ maximal gain of stationary policies

Π⋆
c set of stationary policies achieving maximal gain g⋆

c when starting from state-action
pair c

Π⋆ set of stationary policies achieving maximal gain g⋆

π⋆ stationary policy achieving maximal gain g⋆

RM(A, T ) expected regret with respect to playing a gain-maximal stationary policy (up to
time T )

C+
π set of recurrent state-action pairs (with finite expected return times) when following

stationary policy π

cπ reference recurrent state-action pair in C+
π with minimal expected return time when

following stationary policy π
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Xπ set of disjoint recurrent cycles when following stationary policy π

τπ(c, c
′) expected hitting time of state-action pair c′ when starting from state-action pair c
and following stationary policy π

τk (random) last time step of episode k when following a rarely-switching algorithm

T sequence (τk) of last time steps of episodes when following a rarely-switching algorithm

N ini
c,π (0 :T ) number of times when an episode starts in state-action pair c and follows sta-

tionary policy π

Nc,π(T ) number of visits of state-action pair c when following stationary policy π (possibly
much larger than N ini

c,π(0 :T ))

h history of all the observations and decisions

hτ+1:t history of all observations and decisions made from the beginning of the episode
starting in time step τ + 1 until time step t

Event (random) event following which an episode ends

ℓc,π random length of an episode starting in state-action pair c when following stationary
policy π

ℓc,π expected length of an episode starting in state-action pair c when following stationary
policy π

Gc,π expected average reward of an episode starting in state-action pair c when following
statonary policy π
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Appendix A. Regret decomposition for rarely-switching learners

A.1. Regret decomposition generic events

Proof of Lemma 4:

Part 1 Let us consider the (random) sequence increasing of episodes (τi)i=0...|T |⊂T .
Then the duration of episode τi ∈ T is τi+1−τi. We then define respectively the total
duration and the average gain of policy π∈Π started in state-action pair c∈C as

Lc,π(T ) =

|T |∑
i=0

I{cτi+1 = c, πτi+1 = π}(τi+1 − τi) , (5)

and

Ĝc,π(T ) =
1

Lc,π(T )

|T |∑
i=0

I{cτi+1 = c, πτi+1 = π}
τi+1∑

t=τi+1

rt .

Then, the cumulative reward rewrites,

E(πt)

[
T∑
t=1

rt

]
=
∑
c∈C

∑
π∈Π

E(πt)

[
Lc,π(T ) · Ĝc,π(T )

]
.

The Markov property implies E(πt)

[
Ĝc,π(T )

∣∣∣(cτ ), (πτ ), (τi)] = Gc,π, and from previous

equality we have

E(πt)

[
T∑
t=1

rt

]
=

∑
c∈C

∑
π∈Π

E(πt)

[
Lc,π(T ) E(πt)

[
Ĝc,π(T )

∣∣∣(cτ ), (πτ ), (τi)]]
=

∑
c∈C

∑
π∈Π

E(πt)[Lc,π(T )]Gc,π . (6)

Similarly, the Markov property implies E(πt)

[
τi+1 − τi

∣∣∣(cτ ), (πτ )]= ℓcτi+1,πτi+1 . This im-

plies for all c∈C and for all π∈Π,

E(πt)[Lc,π(T )] = E(πt)

[
E(πt)

[
Lc,π(T )

∣∣∣(cτ ), (πτ )]]
= E(πt)

[∑
i⩾0

I{cτi+1 = c, πτi+1 = π}ℓc,π

]

= E(πt)

[∑
i⩾0

I{cτi+1 = c, πτi+1 = π}

]
E[ℓc,π]

= E(πt)

[
N ini

c,π(0 :T )
]
E[ℓc,π] , (7)

where we recall that N ini
c,π(0 : T ) is the (random) number of episodes with starting state-

action pair c and followed stationary policy π.
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We conclude the proof of the cumulative reward decomposition by combining Equations (6)
and (7).

Part 2 We now turn to the decomposition of the regret. To this end, we apply the
same decomposition to an optimal policy π⋆. Then since the event Event stops in the
same reference state cπ for a policy π by assumption, then except possibly for the first
episode, all next episodes under π⋆ start in the same reference state. This enables us to
use the following Markov regeneration property from Lemma 6.

Hence, we obtain that

E(π⋆)

[
T∑
t=1

rt

]
= E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ·Gc1,π⋆ ] + E(π⋆)

[
N ini

c⋆,π⋆(1 :T )
]
· E[ℓc⋆,π⋆ ] ·G⋆ , (8)

T = E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ] + E(π⋆)

[
N ini

c⋆,π⋆(1 :T )
]
· E[ℓc⋆,π⋆ ] , (9)

where G⋆=Gc⋆,π⋆ and c1 is generated from π⋆. In particular, both Equations (8) and (9)
imply

E(π⋆)

[
T∑
t=1

rt

]
= E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ·(Gc1,π⋆ −G⋆)]+ T G⋆ . (10)

Note that, taking limits as T → ∞, we recover that indeed G⋆ = g⋆.
Thus, from the cumulative reward decomposition and previous Equation (10), and

using that, on the other hand T =
∑
c∈C
π∈Π

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π], we obtain

RM(A, T )=E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ·(Gc1,π⋆−G⋆)]+
∑
c∈C
π∈Π

E(πt)

[
N ini

c,π(0 :T )
]
·E[ℓc,π]·(G⋆−Gc,π) .

(11)
At this point, focusing on the second term, we remark that∑

c∈C
π∈Π

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] · (G⋆−Gc,π) =

∑
c∈C
π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] · (G⋆−Gc,π)

+
∑
c ̸=c⋆

E(πt)

[
N ini

c,π⋆(0 :T )
]
· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) ,

(12)

from which we deduce that

RM(A, T ) =
∑
c∈C
π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] · (G⋆−Gc,π)

+E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ·(Gc1,π⋆−G⋆)]

+
∑
c ̸=c⋆

E(πt)

[
N ini

c,π⋆(0 :T )
]
· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) .
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To better control the last term we first isolate the first episode from the next ones.
Indeed the first episode may be a bit special, compared to next episodes, as we do not
necessary start from a reference state for the current policy. Using the definition ofN ini

c,π⋆(0 :
T ), we isolate the first episode and write

N ini
c,π⋆(0 :T ) = I{π1 = π⋆, c1 = c}+

∑
τ∈T ∩[T ],τ>0

I{πτ+1 = π⋆, cτ+1 = c}

= I{π1 = π⋆, c1 = c}+N ini
c,π⋆(1 :T ) .

This leads to a first interesting reduction. Indeed, we then realize that

RM(A, T ) =
∑
c∈C
π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] · (G⋆−Gc,π)

+E(π⋆)[I{c1 ̸= c⋆}ℓc1,π⋆ ·(Gc1,π⋆−G⋆)]

+
∑
c ̸=c⋆

E(πt)[I{π1 = π⋆, c1 = c}]· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆)

+
∑
c ̸=c⋆

E(πt)

[
N ini

c,π⋆(1 :T )
]
· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) ,

in which the second and third term telescope, owing to the fact that since c1 is fully
determined under π⋆, then∑
c ̸=c⋆

E(πt)[I{π1 = π⋆, c1 = c}]· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) = E(πt)[I{π1 = π⋆, c1 ̸= c⋆}· ℓc1,π⋆ · (G⋆−Gc1,π⋆)] .

Hence, we obtain

RM(A, T ) =
∑
c∈C
π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
· E[ℓc,π] · (G⋆−Gc,π)

+
∑
c ̸=c⋆

E(πt)

[
N ini

c,π⋆(1 :T )
]
· E[ℓc,π⋆ ] · (G⋆−Gc,π⋆) , (13)

thus completing the proof. □

Proof of Lemma 6:

We denote by (π, cπ) the constant policy (π) started at reference pair cπ. (π, cπ) can
be seen as a rarely-switching policy such that πτ+1 = π at each new episode τ . Since the
episode starts and stops in cπ, its length is a multiple of the recurrent time of cπ when
playing π. Note that the multiple can be larger than 1 has we may require visiting cπ
several times during an episode. Also, by definition of reference pair cπ, for all pair c ̸= cπ,
Lc,π(T ) = 0 and Lcπ ,π(T ) = T (see Equation (5)).
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Hence, from Equation (6) we have

E(π,cπ)

[
T∑
t=1

rt

]
= T ·Gcπ ,π .

This implies in particular

gcπ ,π := lim
T→∞

E(π)

[
1

T

T∑
t=1

rt

∣∣∣∣ c1 = cπ

]
= lim

T→∞

1

T
E(π,cπ)

[
T∑
t=1

rt

]
= Gcπ ,π .

□

A.2. Regret decomposition for specific stopping events

Proof of Proposition 7:

We prove an upper bound on the regret by making appear the gaps Gc⋆,π⋆−Gc,π, for
c∈C, π∈Π, using Lemma 4. We recall that c⋆ is the unique state-action pair of reference
of the unique optimal stationary strategy π⋆ (Assumption 1).

The key property we use is that when the episode always stops in the same reference
pair for a given policy, since π⋆ is unichain, then except for the first episode, an episode
under π⋆ that does not start in state-action pair of reference c⋆ implies that the stationary
policy from the previous episode differs from π⋆. This shows that∑

c ̸=cπ⋆

N ini
c,π⋆(1 :T ) ⩽

∑
c∈C

∑
π′ ̸=π⋆

N ini
c,π′(0 :T ) . (14)

By combining Equations (2) and (14), we prove the following upper bound on the regret:

RM(A, T ) ⩽ E(πt)

 ∑
c∈C, π ̸=π⋆

N ini
c,π(0 :T )


×
(

max
(c,π) ̸=(cπ⋆ ,π⋆)

E[ℓc,π](G⋆−Gc,π) + max
c ̸=cπ⋆

E[ℓc,π⋆ ](G⋆−Gc,π⋆)

)
.

□

A.3. Regret decomposition for stopping events using recurrent sets

Proof of Theorem 11:

In order to prove the upper bound on the regret we prove an upper on the total number
of episodes under a sub-optimal stationary strategy, that is

∑
c∈C, π ̸=π⋆

E(πt)

[
N ini

c,π(0 :T )
]
.
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Let us consider the number of pulls Nη
c,π(t) = min

c′∈C+
c,π(η)

Nc′(h1:t) associated with stationary

policy π ∈ Π started in state-action pair c ∈ C. When considering rarely-switching algo-
rithms, due to the definition stopping event, all state-action pairs c′ ∈ C+

c,π(η) are visited
at each episode started in state-action pair c under policy π. This implies

∀c′ ∈ C,
∑

c∈C, π ̸=π⋆

I{c′∈ C+
c,π(η)}N ini

c,π(0 :T ) ⩽ Nc′(h1:T ) . (15)

By considering the definition of the associated numbers of pulls and introducing the argmin
set C+

c,π(η, T ) = Argmin
c′∈C+

c,π(η)

Nc′(h1:T ) ⊂ C+
c,π(η) in previous Equation (15), it holds

∀c′∈C,
∑

c∈C,π ̸=π⋆

I{c′∈C+
c,π(η, T )}N ini

c,π(0 :T ) ⩽
∑

c∈C,π ̸=π⋆

I{c′∈C+
c,π(η)}N ini

c,π(0 :T ) ⩽ Nc′(h1:T ) ,

(16)
where Nη

c,π(T ) = Nc′(h1:T ) by construction when c′ ∈ C+
c,π(η, T ). This implies

∀c′ ∈ C,
∑

c∈C, π ̸=π⋆

I{c′ ∈ C+
c,π(η, T )}N ini

c,π(0 :T ) ⩽ max
c∈C
π ̸=π⋆

Nη
c,π(T ) . (17)

then, summing over c′ ∈ C, and using that |C+
c,π(η, T )| ⩾ 1, it comes

∑
c∈C, π ̸=π⋆

N ini
c,π(0 :T ) =

∑
c′∈C

∑
c∈C, π ̸=π⋆

I{c′ ∈ C+
c,π(η, T )}

|C+
c,π(η, T )|

N ini
c,π(0 :T ) ⩽ |C|max

c∈C
π ̸=π⋆

Nη
c,π(T ) . (18)

□

Appendix B. Cover times and episode lengths

In this section, we provide a few illustrative examples that highlight the challenges of having
a long enough episode on the one hand, while ensuring the cover time of recurrent pairs is
controlled.

Long enough episode To give intuition about what it means to have a sufficiently large
episode length, consider the example of Fig. 5 depicting an MDP (here deterministic for
illustration purpose) with two actions (solid/dashed transitions). In this case, starting from
state s0 following solid actions yields a cycle of length 4 and dashed actions a cycle of length
13. An episode smaller than the length of the cycle will not result in a good approximation
of gc,π. On the other hand, the average gain is equal to the expected average reward on
the cycle starting and ending in s0 (due to the Markov property hence the regenerative
property at state s0). So, a good estimation of it can be obtained by completing exactly at
least one full cycle and using the corresponding average reward to update the estimate.
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s0 s1

s2s3

s4 s5 s6

s9

s7

s8

0.1

0.8

0.5

s12 s11 s10

Figure 5: A deterministic MDP with two actions (solid/dashed line) and sparse rewards

Covering time of diffusive policies While in deterministic systems, the covering time
of C+

π by policy π would be of order the cardinal of C+
π , there is some difficulty when

considering a stochastic system: Indeed, take the case of a diffusion process as illustrated
in Fig. 6. In this case, starting from s0 with a policy π always playing up, C+

π contains all
pairs (s, up) with s ∈ S. However, reaching the states sk or s−k takes time exponential in
their distance k to s0, which is undesirable. At the same time, the contribution of these
states to the gain is much smaller than that of s0 as their return frequency is also much
smaller than that of s0.

s0s−3 s−2 s−1 s1 s2 s3. . . . . .

Figure 6: Diffusion process: Action up (solid line) has high probability 1 − 2ε to self-loop
(thick arrow), and ε probability (thin arrows) to go left or right, causing an
arbitrary large covering time

Covering time of lazy chains Now, let us consider the case of an MDP M and a
deterministic policy π that induces the following chain for some small ε > 0:

pπ(s
′|s) =

{
1− ε if s′ = s
ε

S−1 else
.

Note that such situation can happen for an optimal, or near-optimal policy, that cycles on (a
subset of) states in a lazy way. In such a chain, all states s are recurrent and asymptotically
visited at same frequency, yielding pπ((s, π(s))) =

1
S . Hence, |C

+
c,π(η)| = S for η ∈ [0, 1/S).

On the other hand, we observe that it takes about 1/ε steps to move from one state to
another one, due to high probability of self-loop 1− ε that makes the chain lazy. Further, it
is easily shown that the expected time to cover the set, starting from any s is O(S ln(S)/ε).
Hence for each recurrent c′, τ c′,π(C+

c,π(η)) = O(S ln(S)/ε), which can be made arbitrarily
large independently of the values of pπ. This shows that there is in general no direct control
of the covering time of a set as a function of the asymptotic visiting probabilities.

Appendix C. Technical lemmas

Lemma 15 (Restricted-gain approximation)

∀π, c, η, gc,π − gc,π(η) ⩽ ηmmax|C+
c,π \ C+

c,π(η)| .
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Proof :

Indeed, it holds that

gc,π − gc,π(η) =
∑

c′ /∈C+
c,π(η)

pπ(c, c
′)︸ ︷︷ ︸

⩽η

· m(c′)︸ ︷︷ ︸
⩽mmax

−
∑

c′∈C+
c,π(η)

pπ(c, c
′) ·m(c′)

∑
c′ /∈C+

c,π(η)
pπ(c, c

′)∑
c′∈C+

c,π(η)
pπ(c, c

′)︸ ︷︷ ︸
⩾0

.

□

We first provide a useful control of the episode lenghts for any rarely-switching algorithm
using a specific stopping event. In general, without further assumption on the structure of
the MDP or laziness of its chains, we can prove the following.

Lemma 16 (Episode length) Assume that for some subset C ⊂ C and target c0 ∈ C,
the stopping event is of the form Event(π, hτ+1:t) = {min

c′∈C
Nc′(hτ+1:t) > 0 and (st, at) = c0}.

Then, the following holds

ℓc,π(η)⩽

τπ(c, c0) if C = ∅∑
c′∈C

τπ(c, c
′) + I{c′ ̸= c0}τπ(c′, c0) else. (19)

where τπ(c, c
′) denotes the expected first (random) passage time from state-action pair c∈C

to state-action pair c′∈C in the Markov Process Mπ=(C,pπ).

Proof of Lemma 16:

Let us consider τπ(c, c
′) the first (random) passage time from state-action pair c∈C to

state-action pair c′∈C in the Markov process Mπ=(C,pπ), whose expectation is τπ(c, c
′).

For a set C ⊂ C, the first (random) cover time of C, denoted by τπ(c, C), corresponds
to the first time when all elements of C have been visited at least once. Ordering the
elements of C from the (random) first element c(1) visited in C to the (random) last one
c(|C|), we have τπ(c, c(1)) < · · · < τπ(c, c(|C|)), where τπ(c, C) coincides with τπ(c, c(|C|)),
that is we have τπ(c, C) = max

c′∈C
τπ(c, c

′). Note that this quantity is very different from and

should not be confused with max
c′∈C

τπ(c, c
′), which can be much smaller than the expected

covering time E[τπ(c, C)]. Now, considering the set C to be non-empty, we thus introduce
the (random) state-action pair

cη,π = argmax
c′∈C

τπ(c, c
′)

such that for all state-action pair c′ ∈ C, τπ(c, c
′) ⩽ τπ(c, cη,π). By construction of the

stopping event Event, if cη,π=c0 then the episode stops immediately, otherwise one has to
wait to reach c0 from cη,π, that is τπ(cη,π, c0) many steps. Hence, under any rarely-switching
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algorithm using such event, the expected duration of an episode started in state-action pair
c under the policy π is given by the following expression

ℓc,π(η) = E(π)[τπ(c, cη,π) + I{cη,π ̸= c0}τπ(cη,π, c0)]

⩽ E(π)

[
max
c′∈C

τπ
(
c, c′
)
+ I{c′ ̸= c0}τπ

(
c′, c0

)]

Upper-bounding the maximum over c′ by a sum over the possible c′, and using that
E(π)[τπ(c, c

′)] = τπ(c, c
′) this implies

ℓc,π(η) ⩽
∑
c′∈C

(
τπ(c, c

′) + I{c′ ̸= c0}τπ(c′, c0)
)
. (20)

Now, if the set C is empty then the episode stops when c0 is reached, that is ℓc,π(η) ⩽
E(π)[τπ(c, c0)] = τπ(c, c0). □

Now, we provide the control of the length of episodes for IMED-KD below, under the
assumption that there are no (B, η)-lazy chains.

Proof of Lemma 12:

IMED-KD runs a policy that first reaches C+
c,π̂I

τ
as fast as possible, but then simply run

the policy π̂I
τ . Hence, it takes at most DM expected steps to reach C+

c,π̂I
τ
but then B many

steps to cover the set C+
c,π̂I

τ
under Assumption 5, and at most B more steps to reach the

reference pair cπ̂I
τ
. This proves that

E(πt)[ℓc,π|h1:τ , cτ = c] ⩽ DM + 2B .

□

Appendix D. Finite time analysis of IMED-KD

At a high level, the key interesting step of the proof is to realize that the considered algorithm
implies empirical lower and empirical upper bounds on the numbers of pulls (see Lemmas 18
and 19). Then, based on concentration lemmas (see Section F as well as the discussion
below Theorem 24), the algorithm-based empirical lower bounds ensure the reliability of
the estimators of interest (Lemma 21). Interestingly, this makes use of arguments based on
recent concentration of measure that enable to control the concentration without adding
some log log bonus —such a bonus was required for example in the initial analysis of the KL-
UCB strategy from (Cappé et al., 2013). Then, combining the reliability of these estimators
with the obtained algorithm-based empirical upper bounds, we obtain upper bounds on the
average numbers of pulls (Theorem 13). Interestingly, most of the proof is agnostic to
the length of an episode (that is handled separately). We only use the property that the
algorithm guarantees in each episode an increase by at least one of the number of pulls of
each η-recurrent pair. The proof is concise to fit mostly in the next few pages.
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D.1. Notations

For an MDP M, we denote by Vπ = {π′ ∈ Π : h(π, π′) ⩽ k} the neighbourhood of policy
π ∈ Π at radius k in Hamming distance h. For constant η ⩾ 0, we let

εM(η) = min
c∈C
π/∈Π⋆

{
max
π′∈Vπ

gc,π′(η)− gc,π(η)

}
. (21)

According to policy-improvement Assumption 3, εM(0) > 0. Then, from Lemma 9, provided
that η < εM(0)/(2mmaxS), we also have εM(η) > 0. Furthermore, it holds that

εM(η) ⩽ min
c∈C
π/∈Π⋆

{gc,π⋆(η)− gc,π(η)} .

Note that this value of η also ensures that Π⋆ := argmax
π∈Π

max
c∈C

gc,π = argmax
π∈Π

max
c∈C

gc,π(η).

Indeed, εM(0) ⩽ min
c∈C
π/∈Π⋆

{
max
π′∈Π

gc,π′ − gc,π

}
, which ensures that η-restriction does not modify

the best policy. Then, there exists a function αM(·) with lim
ε→0

αM(ε) = 0 such that for all

0⩽ε<εM(η)/2, for all state-action pair c∈C, for all sub-optimal stationary policy π /∈Π⋆,

d(gc,π(η)+ε|g⋆
c(η)−ε) ⩽(1+αM(ε))−1 d(gc,π(η)|g⋆

c(η)) . (22)

In the sequel, for notational convenience and avoid cluttering the notations. We denote

Nπ(τ) := Nη
cτ+1,π(τ)

ĝπ(τ) := ĝcτ+1,π,τ (η)

ĝ⋆(τ) := ĝ⋆
cτ+1,τ (η)

Last, we recall that T denotes the set of starting times, namely the set of time steps that
start a new episode.

D.2. Algorithm-based empirical bounds

The IMED-KD algorithm implies inequalities between the indexes that can be rewritten as
inequalities on the numbers of pulls. While lower bounds involving log(t) (or log(τ)) may
be expected in view of the asymptotic regret bounds, we show lower bounds on the numbers
of pulls involving instead log

(
Nπ̃τ+1(τ)

)
= log

(
Nη

cτ+1,π̃τ+1
(τ)
)
, the logarithm of the number

of pulls of the current index policy. We also provide upper bounds on Nπ̃τ+1(τ) involving
log(τ). We believe that establishing these empirical lower and upper bounds is a key element
of our proof technique, which is of independent interest.

Remark 17 According to the IMED-KD algorithm, π̂⋆
τ ∈ Vπ̂⋆

τ
⊂ Πτ .

Lemma 18 (Empirical lower bounds) Under IMED-KD, for all starting time τ ∈T , for
all stationary policy π∈Πτ ,

log
(
Nπ̃τ+1(τ)

)
⩽ Nπ(τ) d(ĝπ(τ)|ĝ⋆(τ)) + log(Nπ(τ)) , (23)

and for the empirical best policy π̂⋆
τ ,

Nπ̃τ+1(τ) ⩽ Nπ̂⋆
τ
(τ) . (24)
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Proof :

For all stationary policy π ∈Π, we have Iπ(τ) =Nπ(τ)d(ĝπ(τ)|ĝ⋆(τ))+log(Nπ(τ)) by
definition. Hence, by non-negativity of the first term, it comes

log(Nπ(τ)) ⩽ Iπ(τ) .

This implies, since the policy π̃τ+1 with minimum index is chosen,

log
(
Nπ̃τ+1(τ)

)
⩽Iπ̃τ+1(τ)=min

π∈Π
Iπ(τ)⩽Iπ̂⋆

τ
(τ)=log

(
Nπ̂⋆

τ
(τ)
)
.

Taking exp(·) = log−1(·) on both side concludes the proof. □

Lemma 19 (Empirical upper bounds) Under IMED-KD, for all starting time τ ∈T , for
all stationary policy π∈Πτ ,

Nπ̃τ+1(τ) d
(
ĝπ̃τ+1(τ)|ĝ⋆(τ)) ⩽ log(τ) . (25)

Proof :

By construction, since policy π̃τ+1 has minimum index, we have

Iπ̃τ+1(τ) ⩽ Iπ̂⋆
t
(τ) .

To conclude, it remains to note that on one hand,

Nπ̃τ+1(τ)d
(
ĝπ̃τ+1(τ)|ĝ⋆(τ)) ⩽ Iπ̃τ+1(τ) ,

and on the other hand,
Iπ̂⋆

τ
(τ) = log(Nπ̂⋆

τ
(τ)) ⩽ log(τ) .

□

D.3. Non-reliable current best stationary policy

For accuracy ε > 0, stationary policy π∈Π, and state-action pair c∈C, let M⋆
c,π(ε) be the

set of starting times τ ∈T such that cτ+1= c and π̃τ+1=π and where some of the current
best stationary policy π̂⋆

τ has not too optimistic gain and does not belong to Π⋆:

M⋆
c,π(ε)

def
=


τ ∈T :

(1) cτ+1 = c

(2) π̃τ+1 = π

(3) ĝπ̂⋆
τ
(τ) < gc,π̂⋆

τ
(η) + ε

(4) π̂⋆
τ /∈ Π⋆


. (26)
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For all couple of stationary policies (π, π′)∈Π2, initial state-action pair c∈ C, and for all
accuracy ε > 0, let us further introduce K−

c,π,π′(ε) as the set of starting times where couple
of stationary policy (π, π′) shows ε-d-log deviation, that is

K−
c,π,π′(ε)

def
=

t∈T :

(1) cτ+1 = c

(2) π̃τ+1 = π′

(3) ĝπ(τ) ⩽ gc,π(η)− ε

(4) log(Nπ′(τ)) ⩽ Nπ(τ) d(ĝπ(τ)|gc,π(η)−ε) + log(Nπ(τ))

 .

(27)
The two sets are related thanks to the following result.

Lemma 20 (Relation between subsets of times) Under IMED-KD, for all accuracy 0<
ε<εM(η)/2, for all stationary policy π∈Π, and all starting state-action pair c∈C,

M⋆
c,π(ε) ⊂

⋂
π+∈V⋆

K−
c,π+,π

(εM(η)/2) , (28)

where we introduced the set V⋆ =
⋃

π̂⋆ /∈Π⋆

Argmax
π′∈Vπ̂⋆

gc,π′(η).

Proof :

Let us consider τ ∈ M⋆
c,π(ε). Since π̂⋆

τ /∈ Π⋆ is not a best stationary policy, then
according to policy-improvement Assumption 3 and for a value of η ensuring that εM(η) >
0, and for any π+ ∈ argmax

π′∈Vπ̂⋆
τ

gcτ+1,π′(η), we have

gcτ+1,π+(η) > gcτ+1,π̂⋆
τ
(η) . (29)

Then, since π̂⋆
τ ∈argmax

π∈Π
ĝ(τ) and Vπ̂⋆

τ
⊂ Πτ ⊂ Π, we have on the other hand

ĝπ̂⋆
τ
(τ) = ĝ⋆(τ) ⩾ ĝπ+(τ) , (30)

where π+ ∈ argmax
π′∈Vπ̂⋆

τ

gcτ+1,π′(η) ⊂ Vπ̂⋆
τ
⊂ Π by the design of IMED-KD. Since τ ∈M⋆

c,π(ε),

we have by construction
gcτ+1,π̂⋆

τ
(η) + ε ⩾ ĝπ̂⋆

τ
(τ) . (31)

By combining Equations (30) and (31), it comes

gcτ+1,π̂⋆
τ
(η) + ε ⩾ ĝ⋆(τ) ⩾ ĝπ+(τ) . (32)

Since εM(η)⩽gcτ+1,π+(η)−gcτ+1,π̂⋆
τ
(η), Equation (29) implies gcτ+1,π+(η) > gcτ+1,π̂⋆

τ
(η) +

εM(η). Then, since ε ⩽ εM(η)/2, Equation (32) implies

gcτ+1,π+(η)− εM(η)/2 > gcτ+1,π+(η) + ε⩾ ĝ⋆(τ) ⩾ ĝπ+(τ) . (33)

At this point, since π+∈Vπ̂⋆
τ
⊂ Πτ , empirical lower bounds in Equation (23) imply

log
(
Nπ̃τ+1(τ)

)
⩽ Nπ+(τ) d(ĝπ+(τ)|ĝ⋆(τ)) + log(Nπ+(τ)) . (34)
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The classical monotonic properties of d(·|·) and Equation (33) imply{
ĝπ+(τ) ⩽ ĝ⋆(τ) < gcτ+1,π+(η)−εM(η)/2

d(ĝπ+(τ)|ĝ⋆(τ)) ⩽ d(ĝπ+(τ)
∣∣gcτ+1,π+(η)−εM(η)/2

)
.

(35)

Combining Equations (33) and (35), we finally get{
ĝπ+(τ) < gcτ+1,π+(η)−εM(η)/2

log
(
Nπ̃τ+1(t)

)
⩽ Nπ+(τ) d(ĝπ+(τ)

∣∣gcτ+1,π+(η)−εM(η)/2
)
+ log(Nπ+(τ)) ,

(36)

which means τ ∈K−
c,π+,π̃τ+1

(εM(η)/2), hence concluding the proof. □

D.4. Reliable current gains and current best stationary policy

In this subsection, we characterize subsets of starting times where both the gain of current
played stationary policy and the optimal gain are well-estimated.

Let us consider for an accuracy 0< ε < εM, a sub-optimal stationary policy π ∈Π and a
starting state-action pair c∈C, the following set of starting times

Uc,π(ε) =


τ ∈T :

(1) cτ+1 = c

(2) π̃τ+1 = π /∈Π⋆

(3) (3a) or (3b) or (3c) or (3d) where
(3a) ĝπ(τ) ⩾ gc,π(η) + ε
(3b) ĝπ̂⋆

τ
(τ) ⩾ gc,π̂⋆

τ
(η) + ε and Nπ(τ) ⩽ Nπ̂⋆

τ
(τ)

(3c) ĝπ̂⋆
τ
(τ) ⩽ gc,π̂⋆

τ
(η)− ε and Nπ(τ) ⩽ Nπ̂⋆

τ
(τ)

(3d) ĝπ̂⋆
τ
(τ) < gc,π̂⋆

τ
(η) + ε and π̂⋆

τ /∈ Π⋆


,

where we recall that whenever π̃τ+1 = π, then Nπ̃τ+1(τ) ⩽ Nπ̂⋆
τ
(τ), by Equation (24). By

construction of this set we have the following result.

Lemma 21 (Reliable current means) Under IMED-KD, for all accuracy 0<ε<εM(η)/2,
for all stationary policy π ∈ Π and starting state-action pair c ∈ C, for all starting time
τ /∈Uc,π(ε) such that cτ+1=c and π̃τ+1=π /∈Π⋆,

π̂⋆
τ ∈ Π⋆

cτ+1

ĝ⋆(τ) ⩾ g⋆
cτ+1

(η)− ε

ĝπ(τ) ⩽ gcτ+1,π(η) + ε .

Proof :

For 0 < ε < εM(η)/2, for stationary policy π ∈ Π, let us consider a starting time
τ /∈Uc,π(ε), such that π̃τ+1=π /∈Π⋆.
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Since π̃τ+1=π /∈Π⋆ and τ /∈Ucτ+1,π̃τ+1(ε), then ĝπ̃τ+1(τ) < gcτ+1,π̃τ+1(η)+ε, which rewrites
ĝπ(τ) < gcτ+1,π(η)+ε (since π̃τ+1=π).

Likewise, since π̃τ+1=π /∈Π⋆
cτ+1

and τ /∈Ucτ+1,π̃τ+1(ε), and Nπ(τ) ⩽ Nπ̂⋆
τ
(τ), then

ĝ⋆(τ) = ĝπ̂⋆
τ
(τ) > gcτ+1,π̂⋆

τ
(η)− ε . (37)

Likewise, we must have
ĝ⋆(τ) = ĝπ̂⋆

τ
(τ) < gcτ+1,π̂⋆

τ
(η) + ε . (38)

Since π̃τ+1=π /∈Π⋆ and τ /∈Ucτ+1,π̃τ+1(ε), then this must in turn imply

π̂⋆
τ ∈ Π⋆ . (39)

By combining this with Equations (37) and (38), we get

ĝ⋆(τ) > g⋆
cτ+1

(η)− ε . (40)

□

Size of the set Uc,π(ε) We now want to control the expected size of the set Uc,π(ε). To
this end, we first note that Lemma 20 enables to replace the equality in the definition of
Uc,π(ε) with an inclusion, and (3d) with

∀π+ ∈ V⋆, ĝπ+(τ) ⩽ gc,π+(η)−ε̃ (41)

log(Nπ(τ)) ⩽ Nπ+(τ) d(ĝπ+(τ)
∣∣gc,π+(η)−ε̃

)
+log(Nπ+(τ))

where ε̃ = εM(η)/2 ⩾ ε. Further, we realize that we can decompose the set as follows

Uc,π(ε) ⊂ Ec,π(ε) ∪ Ec,π(ε) ∪ Kc,π(ε̃) ,

where we introduced the following convenient events

Ec,π(ε) = {τ : (1), (2), ĝπ(τ) ⩾ gc,π(η) + ε}
Ec,π(ε) = {τ : (1), (2),∃π′ : |ĝπ′(τ)− gc,π′(η)| ⩾ ε and Nπ(τ) ⩽ Nπ′(τ)}
Kc,π(ε̃) = {τ : (1), (2), (41)}

Interestingly, we note that if τ ∈ Kc,π(ε̃) \ Ec,π(ε) and since ε̃ ⩾ ε, then for each π+ ∈ V⋆,
on top of Equation (41) we must also have Nπ(τ) > Nπ′(τ), which motivates to introduce

Kc,π(ε̃) = {τ : (1), (2), (41) and ∀π+ ∈ V⋆, Nπ(τ) > Nπ+(τ)} .

Using this decomposition, we get the following control

max
c∈C
π∈Π

|Uc,π(ε)| ⩽ max
c∈C
π∈Π

|Ec,π(ε)|+max
c∈C
π∈Π

∣∣Ec,π(ε)
∣∣+max

c∈C
π∈Π

∣∣Kc,π(ε̃)
∣∣ . (42)

We can now resort to concentration arguments in order to control the size of these sets
under rarely-switching algorithms, which yields the following upper bounds. We defer the
proof to Appendix E.
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Lemma 22 (Bounded subsets of times) Under any rarely-switching algorithm, for all
accuracy ε>0, for all stationary policy π∈Π and starting state-action pair c∈C,

E(πt)

max
c∈C
π∈Π

|Ec,π(ε)|

 , E(πt)

max
c∈C
π∈Π

∣∣Ec,π(ε)
∣∣ ⩽ 2 |C| bε ,

E(πt)

max
c∈C
π∈Π

∣∣Kc,π(ε)
∣∣ ⩽ |C|

(
bε + 1 + c−1

ε + 2Cε

√
log(cεT )

)
,

where bε = 2σ2eε
2/2σ2

/ε2 with σ2 = 1/4, considering concentration for σ-sub-Gaussian
distributions, and cε, Cε>0 are the constants involved in the concentration Theorem 24.

In particular, using this lemma, it holds

E(πt)

max
c∈C
π∈Π

|Uc,π(ε)|

 ⩽ 5 |C| bε + |C|
(
c−1
ε + 2Cε

√
log(cεT )

)
. (43)

D.5. Upper bounds on the numbers of pulls of sub-optimal policies

In this subsection, we now combine the different results of the previous subsections to prove
Theorem 13.

Proof of Theorem 13:

For all accuracy 0<ε< εM(η)/2, for all stationary policy π ∈Π, for all starting time
τ /∈Uc,π(ε) such that π̃τ+1 = π /∈Π⋆, we derive the following steps. From empirical upper
bounds (25), we have

Nπ(τ) d(ĝπ(τ)|ĝ⋆(τ)) ⩽ log(τ) . (44)

From Lemma 21, we have ĝπ(τ) ⩽ gcτ+1,π(η)+ε < g⋆
cτ+1

(η)−ε ⩽ ĝ⋆(τ). From classical

monotonic properties of d(·|·) and Equation (22), we have d(ĝπ(τ)|ĝ⋆(τ))⩾d
(
gcτ+1,π(η)+

ε
∣∣∣g⋆

cτ+1
(η)−ε

)
⩾(1+αM(ε))−1 d

(
gcτ+1(η)

∣∣∣g⋆
cτ+1

(η)
)
. In view of Equation (44), and recall-

ing that Nπ(τ) = Nη
cτ+1,π(τ), this implies

∀τ /∈ Uc,π(ε) such that π̃τ+1 = π /∈ Π⋆, Nη
cτ+1,π(τ) ⩽

(1 + αM(ε)) log(τ)

d
(
gcτ+1,π(η)

∣∣g⋆
cτ+1

(η)
) . (45)

For state-action pair c∈C and for stationary policy π /∈Π⋆, we denote by

τc,π = max {τ ∈T : cτ+1 = c, π̃τ+1 = π and τ /∈ Uc,π(ε)} (46)

the last starting time that does not belong to Uc,π(ε) such that we play stationary policy π.

Now, using Equation (46) and that by definition, when τ ∈ Uc,π(ε), it must be that
cτ+1 = c, π̃τ+1 = π, we obtain
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Nη
c,π(T ) = min

c′
Nc′(h1:T )

= min
c′

∑
k∈N

τk+1∑
t=τk+1

I{ct = c′}

= min
c′

∑
k∈N

I{cτ+1 = c, π̃τ+1 = π, τk /∈ Uc,π(ε)}
τk+1∑

t=τk+1

I{ct = c′}

+
∑
k∈N

I{cτ+1 ̸= c or π̃τ+1 ̸= π or τk ∈ Uc,π(ε)}
τk+1∑

t=τk+1

I{ct = c′}

⩽ min
c′

Nc′(h1:τc,π) +
∑
k∈N

I{τk ∈ Uc,π(ε)}
τk+1∑

t=τk+1

I{ct = c′}

⩽ min
c′

Nc′(h1:τc,π) +
∑
k∈N

I{τk ∈ Uc,π(ε)}(τk+1 − τk)

L
= Nη

c,π(τc,π) +
∑
k∈N

I{τk ∈ Uc,π(ε)}ℓc,π

where the last equality holds in law, using that τk+1 − τk is equal in law to ℓc,π.
Now, from Lemma 12, we can control the expected value of ℓc,π conditionally on the

past history before each episode, by the deterministic quantity

E(πt)[ℓc,π|h1:τ , cτ ] ⩽ L
def
= max{(|C|+ 2)DM, DM + 2B} .

Since the law of the stopping time ℓc,π is independent of other variables before the start
of an episode, we deduce that

E(πt)

[∑
k∈N

I{τk ∈ Uc,π(ε)}ℓc,π
]

= E(πt)

[∑
k∈N

I{τk ∈ Uc,π(ε)}E(πt)[ℓc,π|h1:τkcτk = c]

]
⩽ E(πt)

[∑
k∈N

I{τk ∈ Uc,π(ε)}
]
L .

Further remarking that
∑

k∈N I{τk ∈ Uc,π(ε)} = |Uc,π(ε)|, we deduce that

E(πt)[max
c∈C
π ̸=π⋆

Nη
c,π(T )] ⩽ E(πt)[max

c∈C
π ̸=π⋆

Nη
c,π(τc,π)] + E(πt)[max

c∈C
π ̸=π⋆

]|Uc,π(ε)|]L .

Combined with the inequality in Equation (45), and using that τc,π ⩽ T , we obtain

E(πt)[max
c∈C
π ̸=π⋆

Nη
c,π(T )] ⩽ E(πt)[max

c∈C
π ̸=π⋆

(1 + αM(ε)) log(τc,π)

d
(
gc,π(η)

∣∣g⋆
c(η)

) ] + E(πt)[max
c∈C
π ̸=π⋆

|Uc,π(ε)|]L

⩽ max
c∈C
π ̸=π⋆

(1 + αM(ε)) log(T )

d
(
gc,π(η)

∣∣g⋆
c(η)

) + E(πt)[max
c∈C
π ̸=π⋆

|Uc,π(ε)|]L .

We conclude the proof using Equation (43) to control E(πt)[max
c∈C
π ̸=π⋆

|Uc,π(ε)|]. □
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Appendix E. Bounded subsets of time (Proof of Lemma 22)

We regroup in this section, for completeness, the proofs of the remaining lemmas used in
the analysis of IMED-KD in Section D.

Proof of Lemma 22, part 1:

We detail the proof to bound E(πt)

[∣∣Ec,π(ε)
∣∣]. The control of E(πt)[|Ec,π(ε)|] is similar.

We first write∣∣Ec,π′(ε)
∣∣ = ∑

τ∈T
I{cτ+1 = c, π̃τ+1 = π′, ∃π : Nπ′(τ) ⩽ Nπ(τ), |gc,π(η)− ĝπ(τ)| ⩾ ε} .

(47)
Considering the stopped stopping times τn=inf {τ ∈T : cτ+1=c, π̃τ+1=π′ and Nπ′(τ)⩾n}
for n⩾0, we will rewrite the sum of indicators and use Lemma 23. We note that the set{

τ ∈T : cτ+1=c, π̃τ+1=π′ and n⩽Nπ′(τ)<n+ 1
}

is either empty or equal to {τn}. This is true for all rarely-switching algorithm (Algo-
rithm 1), by construction of the stopping event that ensures Nπ′(τ) increases by one in
the corresponding episode.

∣∣Ec,π′(ε)
∣∣ ⩽

T−1∑
n=0

∑
τ∈T

I{cτ+1 = c, π̃τ+1 = π′, n ⩽ Nπ′(τ) < n+ 1} (48)

×I{∃π : n ⩽ Nπ(τ), |gc,π(η)− ĝπ(τ)| ⩾ ε}

⩽
T−1∑
n=0

∑
τ∈T

I{τ = τn, cτ+1 = c, π̃τ+1 = π′, n ⩽ Nπ′(τ) < n+ 1} (49)

×I{∃π : n ⩽ Nπ(τn), |gc,π(η)− ĝπ(τn)| ⩾ ε}

⩽
T−1∑
n=0

I{∃π : n ⩽ Nπ(τn), |gc,π(η)− ĝπ(τn)| ⩾ ε} ,

where in the last line we use thatNπ′(τ) does increase by one in episode τ . At this point, we
make use of the fact that gc,π(η) =

∑
c′∈C+

c,π(η)

p̃π(c)(c
′)m(c′) and ĝπ(τ) =

∑
c′∈C+

c,π(η)

p̃π(c)(c
′)m̂τ (c

′),

with p̃π(c)(c
′) = pπ(c)(c

′)∑
c′∈C+c,π(η)

pπ(c)(c
′) so that

gc,π(η)− ĝπ(τ) =
∑

c′∈C+
c,π(η)

p̃π(c)(c
′)
(
m(c′)− m̂τ (c

′)
)
.
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In particular, |gc,π(η)−ĝπ(τ)| ⩾ ε implies that ∃c′ ∈ C+
c,π(η), |m(c′)−m̂τ (c

′)| ⩾ ε, otherwise

one would have |gc,π(η)− ĝπ(τ)| <
( ∑

c′∈C+
c,π(η)

p̃π(c)(c
′)
)
ε = ε. Hence, this shows that

∣∣Ec,π′(ε)
∣∣ ⩽

T−1∑
n=0

I{∃π, c′ ∈ C+
c,π(η), n ⩽ Nc′(τn) : |m(c′)− m̂τn(c

′)| ⩾ ε}

⩽
T−1∑
n=0

I{∃c′ ∈
⋃
π

C+
c,π(η), n ⩽ Nc′(τn) : |m(c′)− m̂τn(c

′)| ⩾ ε} .

⩽
T−1∑
n=0

I{∃c′ ∈ C, n ⩽ Nc′(τn) : |m(c′)− m̂τn(c
′)| ⩾ ε} .

The last inequality implies

max
c∈C
π′∈Π

∣∣Ec,π′(ε)
∣∣ ⩽∑

c∈C

T−1∑
n=0

I{n ⩽ Nc(τn), |m(c)− m̂τn(c)| ⩾ ε} . (50)

Taking the expectation of Equation (50), it comes

E(πt)

max
c∈C
π′∈Π

∣∣Ec,π′(ε)
∣∣ ⩽

∑
c∈C

∑
n⩾0

P

 ⋃
t⩾1

Nc(t)⩾n

|m̂t(c)−m(c)| ⩾ ε

 . (51)

From Lemma 23, previous Equation (51) implies

E(πt)

max
c∈C
π′∈Π

∣∣Ec,π′(ε)
∣∣ ⩽

∑
c∈C

∑
n⩾0

2 exp
(
− n d(m(c)−ε|m(c))

)
. (52)

From Pinsker’s inequality, previous Equation (52) implies

E(πt)

max
c∈C
π′∈Π

∣∣Ec,π′(ε)
∣∣ ⩽

∑
c∈C

∑
n⩾0

2 exp
(
−nε2/2σ2

)
=

2 |C|
1− e−ε2/2σ2 , (53)

where σ2 = 1/4, assuming 1/2-sub-Gaussian reward distributions. Finally we note that

1

1− e−ε2/2σ2 =
eε

2/2σ2

eε2/2σ2 − 1
⩽

2σ2eε
2/2σ2

ε2
= bε .

□
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Proof of Lemma 22, part 2:

We now prove the upper bound on E(πt)

max
c∈C
π∈Π

∣∣Kc,π(ε)
∣∣.

By definition of the set, we have∣∣Kc,π′(ε)
∣∣ =

∑
τ∈T

I{cτ+1=c, π̃τ+1=π′, ∀π+∈V⋆, 0<Nπ+(τ)<Nπ′(τ)}

×I{ ĝπ+(τ)⩽gc,π+(η)−ε}
×I{log (Nπ′(τ)) ⩽ Nπ+(τ) d(ĝπ+(τ)|gc,π+(η)− ε) + log (Nπ+(τ))}.

(54)

Considering again the stopped stopping times

τn=inf
{
τ ∈T : cτ+1=c, π̃τ+1=π′ and Nπ′(τ)⩾n

}
for n ⩾ 0, we will rewrite the previous sum and use boundary crossing probabilities for
one-dimensional exponential family distributions. We recall that the set{

τ ∈T : cτ+1=c, π̃τ+1=π′ and n⩽Nπ′(τ)<n+ 1
}

is either empty or equal to {τn}.∣∣Kc,π′(ε)
∣∣

⩽
∑
τ∈T

I{cτ+1 = c, π̃τ+1 = π′, ∀π∈V⋆, 0 < Nπ(τ) < Nπ′(τ), ĝπ(τ) ⩽ gc,π(η)− ε}

×I{log (Nπ′(τ)) ⩽ Nπ(τ) d(ĝπ(τ)|gc,π(η)− ε) + log (Nπ(τ))}

⩽
T−1∑
n=0

∑
τ∈T

I{cτ+1 = c, τ = τn, π̃τ+1 = π′, n ⩽ Nπ′(τ) < n+ 1} (55)

×I{∀π∈V⋆, 0 < Nπ(τ), ĝπ(τ) ⩽ gc,π(η)− ε}
×I{∀π∈V⋆, log(n) ⩽ Nπ(τ) d(ĝπ(τ)|gc,π(η)− ε) + log (Nπ(τ))}

⩽
T−1∑
n=0

I{∀π∈V⋆, 0 < Nπ(τn), ĝπ(τn) ⩽ gc,π(η)− ε}

×I{∀π∈V⋆, log(n) ⩽ Nπ(τn) d(ĝπ(τn)|gc,π(η)− ε) + log (Nπ(τn))} (56)

Let us consider for stationary policy π∈Π and starting time τ ∈T ,

cπτ ∈ argmin
c′∈C+

c,π(η)

m̂τ (c
′)−m(c′) .

Then, the following inequality and implication holds (see Lemma 25):

m̂τ (c
π
τ )−m(cπτ ) ⩽ ĝπ(τ)−gc,π(η) =

∑
c′∈C+

c,π(η)

p̃π(c)(c
′)
(
m̂τ (c

′)−m(c′)
)
.
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(
ĝπ(τ)⩽gc,π(η)− ε

)
=⇒

(
m̂τ (c

π
τ )⩽m(cπτ )− ε and d(ĝπ(τ)|gc,π(η)− ε)⩽d(m̂τ (c

π
τ )|m(cπτ )− ε)

)
(57)

Note also that since cπτ ∈ C+
c,π(η) and by construction Nπ(τ) = minc′∈C+

c,π(η)
Nc′(τ), then

Nπ(τn) > 0 implies Ncπτn
(τn) > 0. In particular, Equations (55) and (57) imply

∣∣Kc,π′(ε)
∣∣ ⩽ min

π∈V⋆

T−1∑
n=0

I{0 < Ncπτn
(τn), m̂τn(c

π
τn) ⩽ m(cπτn)− ε}

×I{log(n) ⩽ Ncπτn
(τn) d(m̂τn(c

π
τn)|m(cπτn)− ε) + log

(
Ncπτn

(τn)
)
}

⩽ min
π∈V⋆

∑
c′∈C+

cτ+1,π
(η)

T−1∑
n=0

I{0 < Nc′(τn), m̂τn(c
′) ⩽ m(c′)− ε}

×I{log(n) ⩽ Nc′(τn) d(m̂τn(c
′)|m(c′)− ε) + log (Nc′(τn))} .

This last inequality implies

max
c∈C
π′∈Π

∣∣Kc,π′(ε)
∣∣ ⩽

∑
c∈C

T−1∑
n=0

I{1 ⩽ Nc(τn), m̂τn(c) ⩽ m(c)− ε}

×I{log(n) ⩽ Nc(τn) d(m̂τn(c)|m(c)− ε) + log (Nc(τn))} (58)

Taking the expectation of Equation (58), it comes

E(πt)

max
c∈C
π′∈Π

∣∣Kc,π′(ε)
∣∣ ⩽

∑
c∈C

T−1∑
n=0

P

 ⋃
t⩾1

Nc(t)⩾n

m̂t(c) < m(c)− ε



+
∑
c∈C

T−1∑
n=2

P


⋃
t⩾1

m̂t(c)<m(c)−ε
1⩽Nc(t)⩽n

Nc(t)d(m̂t(c)|m(c)−ε)⩾ log(n/Nc(t))

 .

Invoking Lemma 23 and Theorem 24, Equation (59) implies

E(πt)

max
c∈C
π′∈Π

∣∣Kc,π′(ε)
∣∣ ⩽ |C|

(
2σ2eε

2/2σ2

ε2
+ 1 + c−1

ε + 2Cε

√
log(cεT )

)
. (59)

Indeed, we have

T−1∑
n=2

Cε

n
√
log(cεn)

⩽ 1 + c−1
ε + Cε

T−1∑
n⩾1+c−1

ε

cε

cεn
√
log(cεn)

⩽ 1 + c−1
ε + Cε

∫ T

c−1
ε

cε dx

cεx
√
log(cεx)

= 1 + c−1
ε + 2Cε

√
log(cεT ) .



Saber Pesquerel Maillard Talebi

□

Appendix F. Concentration inequalities

In this section, we state two concentration results used in the proof. First, a classical maxi-
mal inequality for sub-Gaussian distributions. Then, a boundary crossing probability result
suitable for the analysis of an IMED strategy, adapted here to sub-Gaussian distributions.

Lemma 23 (Maximal concentration inequality) Under Assumption 2, for any c∈C,
for x<m(c), and integer n⩾0, we have

P

 ⋃
t⩾1

Nc(t)⩾n

m̂t(c) < x

 ⩽ exp
(
− n d(x|m(c))

)
.

Proof :

Indeed, by a Chernoff method, introducing some λ > 0, and φ(λ) = σ2λ2/2 where
σ = 1/2, we get, provided that λε ⩾ φ(λ),

P(∃t,Nc(t) ⩾ n, m̂t(c)−m(c) > ε)

= P

∃t,Nc(t) ⩾ n, exp

(
λ

Nc(t)∑
j=1

Zj

)
> exp(λNc(t)ε)


⩽ P

∃N ⩾ n, exp

(
λ

N∑
j=1

Zj −Nφ(λ)

)
> exp(N(λε− φ(λ))


⩽ P

∃N ⩾ n, exp

(
λ

N∑
j=1

Zj −Nφ(λ)

)
> exp(n(λε− φ(λ))


= E(πt)

max
N⩾n

exp

(
λ

N∑
j=1

Zj −Nφ(λ)

) exp (−n(λε− φ(λ)) ,

where Zj = r(j) − m(c) with r(j) ∼ r(c) being the j-th sample collected from r(c), and
where N denotes a random stopping time and Wn = exp(λ

∑n
j=1 Zj − nφ(λ)) is a non-

negative supermartingale bounded by 1. By Doob’s maximal inequality the expectation
term is thus upper bounded by 1. Optimizing over λ, we get

P(∃t,Nc(t) ⩾ n, m̂t(c) > m(c) + ε) ⩽ exp(−nε2/(2σ2))

= exp (−nd(m(c) + ε|m(c))) .

□
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For reward distributions belonging to generic exponential families, concentration result
is obtained in (Maillard, 2018, Corollary 2). Specializing this to Gaussian distributions
with variance of 1/2, the Kullback-Leibler divergence between two distributions reduces
to d. When assuming regular canonical one-dimensional exponential reward distributions
r(·), we can define the reward distributions as a function their means and abusively write
r(·) = (rc) =

(
r(m(c))

)
. Using this, we obtain more precisely

Theorem 24 (Boundary crossing probabilities) For all pair c ∈ C, for all ε > 0, for
all n⩾1, we have for one-dimensional exponential distributions

P


⋃
t⩾1

m̂t(c)<m(c)−ε
1⩽Nc(t)⩽n

Nc(t)KL
(
r(m̂t(c)), r(m(c))

)
⩾ log (n/Nc(t))

 ⩽
Cε

n
√
log(cεn)

,

where KL
(
r(m̂t(c)), r(m(c))

)
= d(m̂t(c)|m(c)−ε) when assuming Gaussian distributions

with standard deviation σ = 1/2, and where cε, Cε > 0 are explained in (Maillard, 2018,
Corollary 2).

It is then not difficult, scrutinizing the proof, to show that the same bound still holds
now for sub-Gaussian distributions. Importantly, in this case d is no longer the natural
metric, but by Pinsker’s inequality, d always controls it, although now in a possibly loose
way. More precisely, in the case of Gaussian reward distributions, we have KL(rc, r

′
c) =

(m′(c)−m(c))2 /2σ2 = d(m(c)|m′(c)) while for the case of reward distributions supported
on [0, 1] that we consider (that are 1/2-sub-Gaussian), by Pinsker’s inequality combined
with properties of total variation norm, it holds

KL(rc, r
′
c) ⩾ ∥rc − r′c∥2TV/2 ⩾ 2(m′(c)−m(c))2 = d(m(c)

∣∣m′(c)
)
.

That is, concentration provides a high probability upper bound only on d(m(c)|m′(c)) but
(of course) not on the more demanding KL(rc, r

′
c).

Discussion. The previous restriction is not problematic, as in the analysis we use the
concentration tools of Lemma 23 and Theorem 24 after we deduce from inequalities involving
the gains (and hence, the state-action means). This is what is done especially in Appendix E
and Equation (57) by considering this straightforward lemma.

Lemma 25 (Mean to Gain) For a finite set C, consider aggregates g =
∑

c∈C pc · m(c)
and g′ =

∑
c∈C pc · m′(c), where p ∈ P(C), and where m(c),m′(c) ∈ R for all C. Let

c ∈ Argmaxc∈C
(
m′(c)−m(c)

)
such that gap m′(c) −m(c) is maximal. Then, for a given

accuracy ε > 0, g′ − g ⩾ ε implies:

(i) m′(c)−m(c) ⩾ g′ − g ⩾ ε, (ii)
(
m′(c)−m(c)

)2
/σ2 ⩾

(
g′ − g

)2
/σ2 , ∀σ > 0.

Reminding the reader that d(x|y) = (x−y)2

2σ2 = 2(x−y)2, then (ii) above rewrites d(m(c)|m′(c)) ⩾
d(g|g′) as desired for Equation (57) to hold. Hence, we only need a high-probability con-
trol on d(m(c)|m′(c)) to conclude and not on KL(rc, r

′
c). Now, one may prefer to use
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a more refined bound. In order to use a more refined (pseudo-)metric d′ such as in-
volving d′ = KL instead of d, one would need reverse inequalities of the form d(g′, g) =
(g′ − g)2 /2σ2 ⩾ κg,g′d

′(g, g′) for some κg,g′ ⩽ 1. Whenever these are available (such as in
one-dimensional exponential families), one would derive from (ii) d(m′(c)|m(c)) ⩾ d(g′|g)
the bound d(m′(c)|m(c)) ⩾ κg,g′d

′(g, g′). This in turn makes appear factors of the form
1/κg,g′ in the corresponding regret bounds, unless we slightly reshape the IMED-type in-
dexes to handle such factors.

Furthermore, we note it is possible to resort to another variant of Pinsker’s inequality
specific to regular canonical one-dimensional exponential distributions, in lieu of the one
applied to distributions with bounded support. Such distributions include Gaussians with
known variance, Bernoulli or Poisson distributions as special cases; we refer to, e.g., (Cappé
et al., 2013) for further examples, as well as the proof of the following result.

Lemma 26 (A variant of Pinsker’s inequality) When assuming regular canonical one-
dimensional exponential reward distributions r(·), for m<m′, it holds that

KL
(
r(m), r(m′)

)
⩾

(m′ −m)2

2σ2
,

where σ2=max
{
V

X∼r(m′′)(X) : m′′∈ [m,m′]
}
.

We refer to Lemma 3 in Appendix A.2.A of (Cappé et al., 2013) for more insights. Thus,
using this result we can assume regular canonical one-dimensional exponential reward
distributions and ensure the same theoretical guarantees by replacing σ2 = 1/4 with

max
m∈[m− ,m+]

V
X∼r(m)

(X) in metric d(·|·), where m− and m+ are such that m ⊂ [m− ,m+].

This enables to replace Assumption 2, assuming bounded support, with the following one:

Assumption 6 (An alternative to Assumption 2) We assume regular canonical one-
dimensional exponential family reward distributions r(·) with bounded mean m(·) ∈ [0, 1).

Appendix G. Computing the set of neighborhood policies

In this section, we explain how we compute Πτ (1) which is the 1-neighborhood of the
empirical optimal policy augmented by some randomly chosen policies. Computing the
indexes of policies in Πτ (1) is more complicated than it seems since some polices might be
multi-chain, i.e., they have multiple recurrent classes. In such cases, neither the gain nor
the index is uniquely defined and we must decompose the policy on all its recurrent classes
in order to compute one gain and one index per class.

The k-neighborhood of a policy can be computed recursively from the 1-neighborhood.
To compute the 1-neighborhood, we iterate through all states and actions to create S ×
(A− 1) new policies. Let us denote by πsa the policy that corresponds to the modification
of π̂⋆ where action a (different from π̂⋆(s)) is chosen in state s. We compute the associated
Markov chain thanks to our knowledge of transitions. If the policy is unichain, i.e., the
associated Markov chain has only one recurrent class, then we compute the (unique) gain
of the policy and add it to the 1-neighborhood pool. On the other hand, if the policy is
multi-chain — namely the associated Markov chain has p > 1 recurrent classes —, then
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there are up to p gains associated to this policy, one for each recurrent class. In this case, we
compute all the recurrent classes, all the associated gains and we register p different policies
in Πτ (1), one for each recurrent classes. This way, we will compute p different indexes for
the policy πsa, associated to each possible gain. In a sense, we derive from a multi-chain
policy p unichain policies.

To find the different stationary distributions, we use the Grassmann–Taksar–Heyman
(GTH) algorithm of Grassmann et al. (1985). The set of neighborhood policies is re-
computed only when the empirical policy changes but we still randomly sample distributions
to add to the set Πτ as described in the main part of the paper. Also, if a randomly selected
policy is multi-chain, we apply the same decomposition procedure we described.

Appendix H. Experiments

In this section, we report additional experimental results. One is concerned about confirm-
ing the effectiveness of IMED-KD in grid-like environment. To this end, we run an experiment
in the 2-rooms environment. Another one is conducted to investigate the efficacy of an adap-
tively chosen parameter η. To this effect, we present an environment in which IMED-KD is
not highly competitive and we show that its performances can drastically improve if we
chose to use an adaptive η.

n-rooms We recall in Fig. 7 the results that we got in 4-rooms environment. We confirm
the impressive performances of IMED-KD in grid-like environment by running an experiment
in the 2-rooms environments depicted in Fig. 10 along with the regret curves. In this
environment with 9 × 11 states, there are 4 actions, similar to what we described in the
main experimental section 7. It can be observed that IMED-KD is again, and by far, the
best of tested algorithm in this environment. Even PSRL that was somewhat competitive in
2-rooms suffers a large linear regret for a very long time. In fact, we were unable to find a
reasonable horizon under which regret curves start bending. Those two results emphasize
the effectiveness of IMED-KD in grid-like environments.
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Figure 7: The 4-rooms environment (left) and regret curves (right)



Saber Pesquerel Maillard Talebi

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

1

2

3

4

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 Gridworld-2-room-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

Figure 8: The 2-rooms environment (left) and regret curves (right)

Finally, we run an experiment in the 4-rooms environment with a horizon of 105 (but
only using 1024 runs). As depicted in Fig. 9, the regret under IMED-KD is substantially
smaller than the rest. Furthermore, while Q-learning suffers from a linear regret, it can be
observed that the regret of UCRL3 enters the sublinear phase around time step 6× 104.
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Figure 9: Regret curves in the 4-rooms environment with horizon of 105

Adaptive η When there is a large gap between the gain of an optimal policy and the
second largest gain achievable on an MDP, it could be that the chosen value of η impair our
IMED-KD from distinguishing between the two and maybe even worse, reverse the order of the
best two gains. Mathematically, it could be that the ordering of the policies according to gπ
is different from the one computed from the modified gains gηπ where only state-action pairs
that are visited with a frequency larger than η are taken into account in the computation of
the modified gain. Because rewards are bounded, the error is controlled by η and therefore
the order of policies with different gains is preserved if η is smaller than half of the smallest
difference between gains.
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Therefore, we know that if η is small enough, one can preserve the ordering of policies,
thus making IMED-KD safe. Since we do not know the gaps in advance, there could be no
constant choice of η that will do well in every environment. One promising solution seems
to make η a decreasing function of the time T , where η(T ) tends to 0 as T grows large. This
ensures that after a horizon T0, η(T0) is small enough to preserve the ordering of gains. We
provide below a sketch of proof.

Regret under adaptive parameter (sketch of proof) Note that provided that η <
εM(0)

2mmaxS
, if some π′ ∈ Vπ satisfies gc,π′(η) > gc,π(η), then it also satisfies gc,π′ > gc,π,

and thus a policy improvement can be obtained correctly in a neighborhood of any policy.
Unfortunately, since εM(0) is unknown, this motivates us to consider some ηt decreasing

with t and to introduce T0 = min{t : ηt < εM(0)
2mmaxS

}. For ηt → 0, T0 < ∞ and for all T ⩾ T0,
then the regret incurred in the subsequent time steps is controlled by RM(A, T − T0),
hence RM(A, T ) ⩽ T0 +RM(A, T − T0). Upper bounding K(ε, η) by K(ε, 0) and replacing
d
(
gc,π(η)

∣∣g⋆
c(η)

)
with its worst approximation d

(
gc,π(ηT0)

∣∣g⋆
c(ηT0)

)
, we can thus obtain the

following bound:

RM(A, T ) ⩽ T0 +

max
c∈C
π ̸=π⋆

(1 + αM(ε)) log(T − T0)

d
(
gc,π(ηT0)

∣∣g⋆
c(ηT0)

) +KT (ε, 0)(DM + 2B)

 · 2(DM + 2B) |C| ,

under the only assumption that ηt decreases towards 0 with t.

The benefit of rarely-switching algorithm (Algorithm 1) In this last series of
experiments, we illustrate the potential benefit of rarely-switching algorithm design (in
Algorithm 1) in itself, by experimentally comparing classical strategies to variants of them
using Algorithm 1. Indeed, IMED-KD is derived by instantiating Algorithm 1 with the IMED
approach. There the IMED algorithm is used in line 11 of the Algorithm 1, where IMED
indexes are computed for each of the policies in the considered policy space and the IMED
selection rule is applied to compute the policy to play in the next episode. Therefore, one
could in principle consider a UCB or TS approach as well (although these are not analyzed).

While we do not extend our theoretical analysis to other bandit algorithms, in this sec-
tion we report numerical experiments illustrating the performance of the rarely-switching
versions of TS and UCB. For these experiments, we assume Gaussian-like reward distribu-
tions. Because the rewards are bounded in [0, 1], we can assume that the variance is upper
bounded by 1

2 . More precisely, TS-RS consists in using the following TS selection rule in
line 11 of Algorithm 1. For all policy a, we sample a reward xa(t) from posterior distribu-
tion N (µ̂a(t),

1

2
√

Na(t)
) and select the policy with the largest sample, πt+1 ∈ argmaxxa(t).

Whereas UCB-RS consists in using the following UCB selection rule in line 11 of Algo-
rithm 1. For all policy a, we compute a reward upper bound ua(t) from UCB index for 1

2

sub-Gaussian distributions, ua(t) = µ̂a(t) +
√

log t
2Na(t)

and select the policy with the largest

upper bound, πt+1 ∈ argmaxua(t).
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Figure 10: IMED-KD against Algorithm 1 combined with TS and UCB in Nasty (left) and
6-state RiverSwim (right)

We compare those strategies in the 6-state RiverSwim environment (see Fig. 10 (right)).
It can be seen that Algorithm 1 can indeed be used, at least experimentally, with other
bandit sampling strategies with good empirical performances. Still, we observe that our
original design suffer the smallest regret. The experiment was run on 5120 independent runs
and the horizon was fixed to 20000. We also compare the designs on the Nasty environment
in Fig. 10 (left), where it is shown that IMED-KD still is better that the other algorithms,
albeit by a margin so small that its can be considered equivalent of other designs in this
experimental setting. Whatever the experiments, Algorithm 1 seems like a good enough
design to be used with other bandit strategies, and our preferred and studied strategy
IMED-KD proves the best empirically.


	Introduction
	Problem formulation
	Rarely-switching Algorithms
	The IMED-KD strategy
	Regret performances
	Choice of policies
	Numerical experiments
	Conclusion
	Regret decomposition for rarely-switching learners
	 Regret decomposition generic events
	Regret decomposition for specific stopping events
	Regret decomposition for stopping events using recurrent sets

	Cover times and episode lengths
	Technical lemmas
	Finite time analysis of IMED-KD
	 Notations
	Algorithm-based empirical bounds
	Non-reliable current best stationary policy
	Reliable current gains and current best stationary policy
	Upper bounds on the numbers of pulls of sub-optimal policies

	Bounded subsets of time (Proof of Lemma 22)
	Concentration inequalities
	Computing the set of neighborhood policies
	Experiments

