
Distilling Influences to Mitigate Prediction Churn

Appendix A. Mathematical Details

In this part, we provide the proofs for the Propositions in the main paper.

A.1. Proof of Proposition 1.

Let G = (V,E) be a graph with each node vi having two neighbors, denoted v1i and v2i .
Further, let all node features be initialized such that both neighbors start with the same
state x1i = x2i . In f , all nodes x1i are weighted by p, and all nodes x2i are weighted by ϵ. In
g, weights are exchanged. Thus, results for f , g are the same and C(f, g) = 0. However,
the influence difference is large, precisely for p > 3ϵ, it is

ID(f, g) =
p− ϵ

0.25 · (p+ ϵ)
> 2 . (1)

□

A.2. Proof of Proposition 2.

Our proof closely follows the proof for random noise by Srinivas et al. We use the Taylor-
approximation of T and S around the point (X,A) and use our assumption about zero
mean for each entry of Adrop.

EAdrop

 N,C∑
v,i=1

(T (X,A+Adrop)vi − S(X,A+Adrop)vi)
2


= EAdrop

 N,C∑
v,i=1

(T (X,A)vi + vec(∇AT (X,A))T vec(Adrop)) +O(vec(Adrop))⊙ vec(Adrop)))

− S(X,A)vi + vec(∇AS(X,A))T vec(Adrop)) +O(vec(Adrop))⊙ vec(Adrop))))
2

]

= EAdrop

 N,C∑
v,i=1

(T (X,A)vi − S(X,A)vi)
2


+ EAdrop

[
(vec(∇AT (X,A)vi)

T vec(Adrop))− vec(∇AS(X,A))vi)
T vec(Adrop)))

2
]

+ EAdrop

 N,N∑
v,u=1

O((Adrop)
2
vu)


=

N,C∑
v,i=1

(T (X)vi − S(X)vi)
2

+ EAdrop

(vec(∇AT (X,A)vi −∇AS(X,A)vi)
T vec(Adrop)

)2
+

N,N∑
v,u=1

O((Adrop)
2
vu)


All terms linear in Adrop have expectation zero, as E [(Adrop)uv] = 0 for all u, v ∈

[1, . . . , N ].



Table 1: Mean and standard deviation of our proposed metrics over five runs with random
parameter initializations.

Dataset Acc./F1-score (%) C (%) ID (%) corr(id, s) corr(h, s)

Citeseer 54.3± 2.7 32.2± 3.9 47.8± 4.9 −0.03± 0.07 −0.08± 0.03
Photo 56.5± 12.2 59.0± 8.5 55.6± 11.5 0.00± 0.06 −0.08± 0.06
WikiCS 71.1± 1.0 29.7± 2.6 21.7± 5.7 −0.06± 0.02 −0.12± 0.01

Computers 47.0± 13.1 71.4± 7.2 64.6± 23.2 0.00± 0.09 −0.03± 0.03
Physics 90.0± 2.1 13.6± 3.9 29.1± 10.4 −0.01± 0.08 −0.22± 0.06
PPI 72.0± 0.1 10.7± 0.1 19.2± 0.5 - -

Appendix B. Additional Experiments using the GCN

In this section, we provide an evaluation of the experiments shown in the main paper
replacing the GAT layers with GCN layers. The experimental setup remains the same
with the teacher being the same high-capacity GAT model. The motivation for employing
a simpler student model stems from it being computationally more memory and runtime
efficient during inference. However, due its inferior expressivity, the GCN may not be able
to match influence. The extent of influence differences is generally unclear as the GCN uses
fixed edge weights only based on the node degrees.

The results for our metrics for GCN models are shown in Table 1. The influence dif-
ference is still very noticeable across all datasets, albeit less pronounced. It is again not
correlated to the stability of a node prediction. The correlation to the entropy of the
neighboring node labels is larger in all cases, though it is rather weak.

The effects on Knowledge Distillation are presented in Table 2. Here, the results demon-
strate a higher degree of variance. For the Photo dataset, accuracy is improved by 16.0%
and for the Computers dataset by 14.6%. These results indicate a large potential in guiding
less expressive models toward desired solutions. However, DD is not always as effective as
the accuracy is slightly behind the best other method for three datasets. Results regarding
prediction churn are presented in Table 3. Again, DD achieves large improvements for some
datasets but is ineffective for others. A similar influence may not lead to optimal results
for models with different expressive power.
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Table 2: comparison of the performance on the node classification tasks. For PPI, the F1-
score is reported, and in all other cases, accuracy is reported. The best results are
indicated in bold, the second-best are underlined.

Accuracy/F1-score Computers Physics WikiCS Photo Citeseer PPI

Teacher 80.8 91.2 79.7 85.4 68.8 98.8

Student 47.0± 13.1 90.0± 2.1 71.1± 1.0 56.5± 12.2 54.3± 2.7 72.0± 0.1
Student+DropEdge 48.0± 12.6 90.8± 1.1 71.6± 1.1 58.8± 10.5 57.5± 2.7 70.4± 0.1

KD 47.6± 13.8 90.2± 2.0 73.5± 0.8 61.2± 7.9 57.0± 2.1 72.1± 0.3
KD+DropEdge 46.0± 9.2 91.0± 1.4 73.7± 0.5 60.3± 8.2 56.6± 1.6 70.5± 0.2

G-CRD 49.9± 12.4 89.6± 1.9 73.5± 0.6 62.1± 13.5 54.3± 2.4 70.9± 0.2
G-CRD+DropEdge 49.1± 10.4 90.8± 1.4 73.8± 0.6 62.5± 14.3 56.2± 2.2 68.0± 0.4

DropDistillation 63.7± 4.5 88.0± 1.2 74.3± 0.7 78.5± 6.5 57.0± 2.8 71.9± 0.2

Table 3: Average model churn C(S, T ) between the teacher and each student. The models
are the same as in Table 2. Lower scores are better.

Churn C Computers Physics WikiCS Photo Citeseer PPI

Student 57.0± 14.2 10.8± 3.3 26.2± 1.4 44.8± 10.9 41.5± 1.8 15.7± 0.1
Student+DropEdge 59.6± 12.9 9.7± 3.3 24.8± 0.5 42.9± 10.3 37.2± 3.6 16.3± 0.1

KD 57.7± 12.2 12.9± 5.3 19.6± 0.4 41.5± 7.7 60.1± 3.2 15.6± 0.1
KD+DropEdge 59.8± 10.4 11.8± 2.7 19.0± 0.5 41.3± 7.7 57.3± 8.0 16.3± 0.1

G-CRD 54.8± 11.6 10.8± 1.4 22.1± 0.6 40.6± 11.5 44.3± 2.2 16.3± 0.1
G-CRD+DropEdge 55.4± 7.7 9.8± 1.7 22.1± 0.9 41.0± 14.2 37.1± 4.7 17.8± 0.2

DropDistillation 39.4± 9.1 15.1± 3.8 18.4± 0.5 22.4± 5.6 51.7± 2.3 15.8± 0.1
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