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Abstract

We conduct a detailed investigation of tempered posteriors and uncover a number of crucial
and previously undiscussed points. Contrary to previous results, we first show that for re-
alistic models and datasets and the tightly controlled case of the Laplace approximation to
the posterior, stochasticity does not in general improve test accuracy. The coldest temper-
ature is often optimal. One might think that Bayesian models with some stochasticity can
at least obtain improvements in terms of calibration. However, we show empirically that
when gains are obtained this comes at the cost of degradation in test accuracy. We then
discuss how targeting Frequentist metrics using Bayesian models provides a simple expla-
nation of the need for a temperature parameter λ in the optimization objective. Contrary
to prior works, we finally show through a PAC-Bayesian analysis that the temperature λ
cannot be seen as simply fixing a misspecified prior or likelihood.

Keywords: Tempered Posteriors; Cold Posteriors; PAC-Bayes

1. Introduction

An influential line of work starting from Wenzel et al. (2020) highlighted that Bayesian
neural networks typically exhibit better test-time predictive performance if the posterior
distribution is “sharpened” through tempering. Tempering with a temperature λ is either
applied to both the data likelihood and the prior resulting in cold posteriors or only to
the data likelihood resulting in tempered posteriors. The empirical need for this tempering
highlights a fundamental mismatch between Bayesian theory and practice. As the number
of training samples increases, Bayesian theory states that the posterior distribution should
be concentrating more and more on the true model parameters, under mild regularity
assumptions. At any time, the posterior is our best guess at the true model parameters,
without having to resort to heuristics.

The experimental setups where the need for tempering arises have been hard to pinpoint
precisely. Likelihood misspecification has proven to be a prominent explanation. Nabarro
et al. (2022); Bachmann et al. (2022); Kapoor et al. (2022); Aitchison (2021) argue that the
aleatoric uncertainty in the likelihood function becomes misspecified in many experiments
due to data augmentation and/or due to curation of the data. A common thread in the above
works is that a correct likelihood would lead to optimal test performance and tempering
would be unnecessary. In the original paper Wenzel et al. (2020) as well as subsequent ones
(Nabarro et al., 2022; Bachmann et al., 2022; Kapoor et al., 2022; Aitchison, 2021) another
conclusion is that Bayesian neural networks outperform deterministic ones in test metrics
for the correct value of λ.
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We challenge both theoretically and experimentally the above assumptions and conclu-
sions. In a strict sense, we will be focusing on tempered posteriors, while noting that for
Gaussian priors and posteriors the two can be seen as equivalent (Aitchison, 2021). We
make the following four contributions.

We first observe that in previous works (Nabarro et al., 2022; Bachmann et al., 2022;
Kapoor et al., 2022; Aitchison, 2021) even after “fixing” the likelihood with various ap-
proaches, the test accuracy seems to be improving as the temperature is decreasing, though
it is implied that some stochasticity is beneficial. In the tightly controlled case of the Laplace
approximation, we show experimentally that in terms of test accuracy, stochasticity does
not help (Section 4). In contrast to previous works, our conclusion is that the deterministic
network is nearly always optimal.

Second, one can question if such an evaluation is fair for Bayesian models. Indeed
practitioners often motivate the use of Bayesian models so as to improve the calibration
of predictions. We empirically show that for the negative log-likelihood (NLL) and the
expected calibration error (ECE), multiple values of λ are optimal, i.e. some stochasticity
helps (Section 4). Crucially though, improving the test ECE comes in general at the cost
of reducing test accuracy.

Third, given the poor performance of purely Bayesian models for Frequentist metrics,
we then posit that there exists a simpler explanation for cold and tempered posteriors,
specifically that Bayesian inference does not readily provide high-probability guarantees on
out-of-sample performance (Section 5). Existing theorems simply describe posterior con-
traction to the true posterior (Ghosal et al., 2000; Blackwell and Dubins, 1962). However,
practitioners (Nabarro et al., 2022; Bachmann et al., 2022; Kapoor et al., 2022; Aitchison,
2021) evaluate posteriors on Frequentist test metrics such as test accuracy. This discrep-
ancy between using Bayesian models and evaluating on Frequentist metrics is enough to
justify the use of a temperature parameter. To prove out-of-sample performance with high
probability, one needs a generalization bound such as a PAC-Bayes bound (McAllester,
1999; Catoni, 2007; Alquier et al., 2016; Dziugaite and Roy, 2017). The tightest of these
bounds (Catoni, 2007) naturally incorporates a temperature parameter λ.

Finally, we investigate the question of whether tempered posteriors can be seen as fixing
a misspecified likelihood (Section 6). With a simplified PAC-Bayesian analysis, we argue
that tempered posteriors do not only compensate for a misspecified aleatoric uncertainty,
contrary to Nabarro et al. (2022); Bachmann et al. (2022); Kapoor et al. (2022); Aitchi-
son (2021). Our bound implies that the specific weight instantiation of a neural network
influences the choice of λ. We confirm this experimentally for the case of the Laplace ap-
proximation. We use different MAP estimates to fit the Laplace approximation. For a
fixed value of λ, the test accuracy changes even though both the likelihood function and the
inherent aleatoric uncertainty of the data remain the same.

We also include a detailed FAQ section in the Appendix, together with all the proofs
and additional experiments.

2. Related work

Aitchison (2021) argues that tempering results from the fact that common computer vision
benchmarks are curated. That is, each label has been independently verified by multiple
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labelers, thus the aleatoric uncertainty for all labels is low. He proposes a generative model
that implies a tempered likelihood that accounts for data curation. Kapoor et al. (2022)
describe the softmax-cross-entropy loss as resulting from a multinomial likelihood function
together with a Dirichlet prior distribution. They propose a new likelihood and a corre-
sponding Dirichlet prior which explicitly models aleatoric uncertainty through an additional
hyper-parameter. They argue that a softmax-cross-entropy loss does not explicitly allow
tuning the aleatoric uncertainty of the data, thus necessitating tempered posteriors. Bach-
mann et al. (2022) argue that data augmentation reduces the effective number of training
samples. Thus tempering reduces the nominal number of training samples so as to match
the effective number. Nabarro et al. (2022) explore whether data-augmentation increases
the effective sample size. They propose a new valid likelihood that takes into account
data augmentations and discover that the cold-posterior effect persists. Despite the above
explanations, the need for tempering persists even in settings without data curation and
augmentation, and when the likelihood is suitably modified.

Certifying generalization to out-of-sample data has been extensively explored for the
case of deep neural networks (Dziugaite et al., 2021; Dziugaite and Roy, 2017; Zhou et al.,
2018; Lotfi et al., 2022; Bartlett et al., 2017). The current state-of-the-art bounds (Dziugaite
et al., 2021; Lotfi et al., 2022) utilize the Catoni PAC-Bayes bound Catoni (2007), together
with a data-dependent prior, and find non-vacuous and in some cases tight bounds. We
base part of our arguments on the Catoni bound.

The posterior contraction properties of Bayesian inference have been extensively studied
(Ghosal et al., 2000; Blackwell and Dubins, 1962). Of note are results that show contraction
even in the case of mispecification Grünwald (2012); Grünwald and Van Ommen (2017);
Grünwald and Langford (2007); Bhattacharya et al. (2019), using tempered posteriors re-
stricted to λ < 1 (warm posteriors).

Grünwald and Langford (2007); Grünwald (2012); Grünwald and Van Ommen (2017)
explore Safe-Bayes, which finds a temperature parameter λ by taking a sequential view
of Bayesian inference. They find a Cèsaro averaged posterior, which is an average of the
posteriors at different optimization steps, and which does not coincide with the standard
posterior. The Safe-Bayes analysis is also restricted to the case where λ < 1. By contrast
we provide an analytical expression of the bound on true risk, given λ, and also numerically
investigate the case of λ > 1. Our analysis thus provides intuition regarding which param-
eters (for example the curvature) might result in tempering. Catoni (2007) discusses the
optimal value of the temperature λ for PAC-Bayes bounds, for fixed priors and posteriors.
By contrast we investigate the case where the posterior is optimized for different λ and
which is the relevant one for the tempering literature. Bhattacharya et al. (2019) derive a
general form of the PAC-Bayes inequality albeit to analyze posterior contraction. In several
prediction settings, out-of-sample performance can however be established directly using
this result.

Modern contraction analyses and PAC-Bayes bounds are closely linked (Bhattacharya
et al., 2019; Grünwald, 2012). It is thus important to base our results on the tightest anal-
yses available for the deep learning setting. As previously mentioned, for Bayesian neural
networks the particular Catoni form of the PAC-Bayesian inequality has been empirically
shown to result in state-of-the-art bounds. We, therefore, use the Catoni bound in our
analyses where applicable.
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3. Limitations

We base our analysis on the Laplace approximation to the posterior. Therefore the question
arises as to whether our results generalize to other inference methods. Here we simply note
that our empirical results align with existing results in the MCMC case such as Kapoor
et al. (2022); Nabarro et al. (2022); Noci et al. (2021). A further limitation is that PAC-
Bayes bounds are sometimes (relatively) tight but more often they are loose. This brings
into question the practical utility of a PAC-Bayes theoretical analysis.

4. Stochasticity typically hurts performance

We first explore whether any stochasticity improves the test accuracy, compared to a deter-
ministic network. Here, working in the Laplace approximation setting is crucial. Previous
studies dealt with MCMC methods and have not adequately explored what happens when
the temperature becomes “frozen”. The case of Wenzel et al. (2020) is striking as the
“frozen” network and the deterministic network test accuracies do not match (Figure 1 of
Wenzel et al., 2020). The Laplace approximation has a simple intuitive behaviour: the pos-
terior collapses on a Dirac delta at the MAP as λ → +∞. We then investigate how λ affects
the other most popular test metrics (NLL and ECE). In particular we explore whether one
can improve the ECE without hurting test accuracy, which is the most pertinent question
for practitioners.

4.1. Definitions

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-
output pairs. Observations (X,Y ) are assumed to be sampled randomly from a distribution
D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation of n elements. We consider loss func-
tions ℓ : F × X × Y → R, where F is a set of predictors f : X → Y. We also denote
the risk Lℓ

D(f) = E(x,y)∼Dℓ(f,x, y) and the empirical risk L̂ℓ
X,Y (f) = (1/n)

∑
i ℓ(f,xi, yi).

We consider two probability measures, the prior π ∈ M(F) and the approximate pos-
terior ρ̂ ∈ M(F). Here, M(F) denotes the set of all probability measures on F . We
encounter cases where we make predictions using the approximate posterior predictive dis-
tribution Ef∼ρ̂[p(y|x, f)]. We will use two loss functions, the non-differentiable zero-one loss
ℓ01(f,x, y) = I(argmaxj f(x)j ̸= y), and the negative log-likelihood (NLL), which is a com-
monly used differentiable surrogate ℓnll(f,x, y) = − log(p(y|x, f)). We assume that outputs
of f form a probability distribution p(y|x, f) either through a Gaussian likelihood (in the
case of regression) or using the softmax activation function (in the case of classification).
Given the above, the Evidence Lower Bound (ELBO) has the following form

−Ef∼ρ̂L̂ℓnll
X,Y (f)−

1

λn
KL(ρ̂∥π), (1)

where λ = 1. Note that our temperature parameter λ is the inverse of the parameter
T = 1/λ typically used in tempered posterior works. Here, cold posteriors are the result of
λ > 1. Our setup is discussed in Wenzel et al. (2020), p3 Section 2.3, and used in Bachmann
et al. (2022); Aitchison (2021); Kapoor et al. (2022). While Wenzel et al. (2020) use MCMC
to conduct their experiments, we opt for the ELBO for analytical tractability.
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4.2. Experimental setup: Laplace approximation

The ELBO (1) is minimized at the probability density ρ⋆(f) given by Catoni (2007):

ρ⋆(f) := π(f)e−λnL̂ℓnll
X,Y (f)/Ef∼π

[
e−λnL̂ℓnll

X,Y (f)

]
.

We will use the Laplace approximation to the posterior in our experiments. This is equiva-
lent to approximating λnL̂ℓnll

X,Y (f) using a second order Taylor expansion around a minimum
wρ̂, such that

λnL̂ℓnll
X,Y (fw) ≈ λnL̂ℓnll

X,Y (fwρ̂
) +

λ

2
(w −wρ̂)

⊤H(w −wρ̂), (2)

where H is the network Hessian n∇∇L̂ℓnll
X,Y (fw)|w=wρ̂

. Assuming a Gaussian prior π =

N (0, σ2
πI), the Laplace approximation to the posterior ρ̂ is again Gaussian

ρ̂ = N
(
wρ̂,

(
λH+ I/σ2

π

)−1 )
.

The Hessian is generally infeasible to compute in practice for modern deep neural
networks, such that many approaches employ the generalized Gauss–Newton (GGN) ap-
proximation HGGN :=

∑n
i=1 Jw(xi)

⊤Λ(yi; fi)Jw(xi), where Jw(x) is the network per-
sample Jacobian [Jw(x)]c = ∇wfc(x;wρ̂), and Λ(y; f) = −∇2

ff log p(y; f) is the per-input
noise matrix (Kunstner et al., 2019). We will use two simplified versions of the GGN:

(i) an isotropic approximation with variance σ2
ρ̂(λ) equal to

(
λh
d + 1

σ2
π

)−1
, and h equal to

tr(HGGN) =
∑

i,j,k[Λ(yi; f)]kk(∇wfk(xi;wρ̂)j)
2, and (ii) the Kronecker-Factorized Approx-

imate Curvature (KFAC) approximation (Martens and Grosse, 2015) which only retains a
block-diagonal part of the GGN.

4.3. Experimental setup: training

When making predictions, we use the posterior predictive distribution Ew∼ρ̂[p(y|x, fw)] of
the full neural network model, meaning that samples from ρ̂ are inputted to the full neural
network (as opposed to, for example, its linearization). Since the 0-1 loss is not differ-
entiable, the posterior estimated with the cross-entropy loss will be used for classification
problems.

We have tested extensively in realistic classification tasks. We used the CIFAR-10,
CIFAR-100 (Krizhevsky and Hinton, 2009), SVHN (Netzer et al., 2011) and FashionMnist
(Xiao et al., 2017) datasets. In all experiments, we split the dataset into three sets. These
three are the typical prediction tasks sets: training set Ztrain, testing set Ztest, and validation
set Zvalidation. We use Monte Carlo sampling with 100 samples to make predictions. For
the CIFAR-10, CIFAR-100, and SVHN datasets, we use a WideResNet22 (Zagoruyko and
Komodakis, 2016), with Fixup initialization (Zhang et al., 2019). For the FashionMnist
dataset, we use a convolutional architecture with three convolutional layers, followed by
two fully connected non-linear layers. More details on the experimental setup can be found
in the Appendix.
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Figure 1: Test 0-1 loss mean , as well as 10 MAP trials , along with the mean
of the validation set (we denote λ = 1 by ): KFAC Laplace 0-1 loss (top) and
KFAC NLL (middle) and 0-1 loss vs ECE (bottom row). For the standard KFAC posteriors
the test and validation 0-1 loss have a rapid improvement as λ ↑ followed by a plateau.
Coldest posteriors λ ≫ 1 are almost always best. The NLL has more complex behaviour,
with cold and warm posteriors depending on the dataset. There is a clear tradeoff between
0-1 loss and ECE.

We find ten MAP estimates for the neural network weights of the CIFAR-10, CIFAR-
100, SVHN and FMNIST datasets by training on Ztrain using SGD. We then fit a KFAC
Laplace approximation to each MAP estimate using (X,Y ) = Ztrain and also choose the
prior through optimizing the marginal likelihood. We estimate the 0-1 loss, negative log-
likelihood (NLL), and Expected Calibration Error (ECE) of the posterior predictive on Ztest

and Zvalidation.

4.4. Observations

We first test a setting without data augmentation. We plot the results for the 0-1 loss in
Figure 1 (top row). Contrary to Wenzel et al. (2020) in terms of test 0-1 loss, the MAP
estimate obtained where λ ≫ 1 and the posterior is “coldest” is almost always optimal. This
result is more coherent than the one in Wenzel et al. (2020) (Figure 1) where the coldest
temperature 0-1 test loss and the MAP 0-1 test loss don’t match. It highlights that in a
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tightly controlled setting, Bayesian approaches often don’t improve at all over deterministic
ones in terms of test Frequentist metrics such as the 0-1 loss, for any temperature λ.

We then plot in Figure 1 (middle row) the results for the NLL. Even without data
augmentation and even when we optimize the prior variance using the marginal likelihood,
we find that all three cases of temperatures (cold posterior, warm posterior, as well as
posterior with λ = 1) can be optimal, for varying datasets. This highlights the importance
of the choice of the evaluation metric when discussing the cold posterior effect, as results
can vary significantly depending on our choice.

We then elaborate on this finding and further ask the crucial question: If the Laplace
approximation does not improve the test 0-1 loss in general, can it retain (for some value of
λ) the same test 0-1 loss while improving calibration? In Figure 1, we see that in most of
our experiments, we couldn’t find such a temperature λ. Apart from FMNIST, there seems
to be a clear tradeoff between test 0-1 loss and calibration error.

We repeat the experiment for the case of data augmentation, for the CIFAR-10 and
CIFAR-100 datasets. We use the standard augmentations of random crops and rotations.
We perform augmentation both when estimating the MAP, as well as when fitting the
Laplace approximation. We include the results in the Appendix. We see similar behavior
to the setting without data augmentation. Our only additional observation is that test
accuracy has improved for both CIFAR-10 and CIFAR-100 (without augmentation not
only does training suffer but numerical issues arise when performing matrix inversion for
the Laplace approximation).

Empirically (for the Laplace case) the coldest temperature is almost always optimal
in terms of test accuracy. Even though one can improve calibration for a given
temperature, this comes at the cost of accuracy.

5. Tempered Posteriors: A simple explanation

In light of the generally poor performance of purely Bayesian methods in terms of test
Frequentist metrics for deep learning, we explore a simple explanation regarding the need
for tempering: the mismatch between Bayesian guarantees and practice. We start by noting
that in supervised prediction, what we often try to minimize is

KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]) = Ex,y∼D

[
ln

pD(y|x)
Ef∼ρ̂[p(y|x, f)]

]
, (3)

the conditional relative entropy (Cover, 1999) between the true conditional distribution
pD(y|x) and the posterior predictive distribution Ef∼ρ̂[p(y|x, f)]. For example, this is
implicitly the minimized quantity when optimizing classifiers with the cross-entropy loss
(Masegosa, 2020; Morningstar et al., 2022). It is also on this and similar predictive metrics
that the tempering effect appears. In the following, we will outline the relationship between
the ELBO, PAC-Bayes, and (3).
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5.1. ELBO

We assume a training sample (X,Y ) ∼ Dn as before, denote p(w|X,Y ) the true posterior
probability over predictors f parameterized by w (typically weights for neural networks),
and π and ρ̂ respectively the prior and variational posterior distributions as before. The
ELBO has the following form

KL(ρ̂(w)∥p(w|X,Y )) = −n

(
−Ef∼ρ̂L̂ℓnll

X,Y (f)−
1

n
KL(ρ̂∥π)

)
︸ ︷︷ ︸

ELBO

+ ln p(Y |X).

Thus, maximizing the ELBO can be seen as minimizing the KL divergence between the
true posterior and the variational posterior over the weights KL(ρ̂(w)∥p(w|X,Y )). The
true posterior distribution p(w|X,Y ) gives more probability mass to predictors which are
more likely given the training data, however these predictors do not provably minimize
KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]), the evaluation metric of choice for supervised prediction.
Similar issues exist with theorems on posterior contraction. These typically guarantee
that the posterior concentrates on the most probable set of parameters, in the well-specified
regime (Blackwell and Dubins, 1962). When we are not interested in inferring the most
probable parameters but in predicting on new data, it is important to derive a certificate
of generalization through a generalization bound, which directly bounds out-of-sample per-
formance. In the following, we focus on analyzing a PAC-Bayes bound in order to obtain
insights into when tempering is necessary. As discussed in Section 2, modern contraction
analyses are closely related to PAC-Bayes, and one can sometimes move from a contraction
result to a generalization bound. However, the specific forms discussed in the following
section currently provide state-of-the-art generalization bounds for modern deep neural
networks (Dziugaite et al., 2021; Lotfi et al., 2022).

5.2. PAC-Bayes

We first look at the following bound denoted by BAlquier. It was considered by Alquier et al.
(2016) (Theorem 4.1); see also Theorem 1 by Masegosa (2020) for a statement under the
same conditions. We will see that it is natural to assume a temperature λ when trying to
bound out-of-sample performance, as opposed to guaranteeing posterior contraction.

Theorem 1 (BAlquier, Alquier et al., 2016) Given a distribution D over X × Y, a hy-
pothesis set F , a loss function ℓ : F × X × Y → R, a prior distribution π over F , real
numbers δ ∈ (0, 1] and λ > 0, with probability at least 1 − δ over the choice (X,Y ) ∼ Dn,
we have for all ρ̂ on F

Ef∼ρ̂Lℓ
D(f) ≤ Ef∼ρ̂L̂ℓ

X,Y (f) +
1

λn

[
KL(ρ̂∥π) + ln

1

δ
+Ψℓ,π,D(λ, n)

]
where Ψℓ,π,D(λ, n) is equal to lnEf∼πEX′,Y ′∼Dn exp

[
λn
(
Lℓ
D(f)− L̂ℓ

X′,Y ′(f)
)]

.

There are three different terms in the above bound. The empirical risk term Ef∼ρ̂L̂ℓ
X,Y (f)

is the empirical mean of the loss of the classifier over all training samples. The KL term
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Figure 2: We plot the Catoni bound, as well as the test misclassification error for the CIFAR-
10, CIFAR-100, SVHN and FMNIST datasets and the Isotropic Laplace approximation.
We see that the Catoni bounds tightly correlate with the test error. As the temperature λ
increases, the bound predicts a smaller test error, this is reflected in the empirical data as
the need for a tempered posterior.

1/(λn)KL(ρ̂∥π) is the complexity of the model, which in this case is measured as the KL-
divergence between the posterior and prior distributions. The Moment term 1/(λn)Ψℓ,π,D(λ, n)
is the log-Laplace transform of the difference between the risk and empirical risk for a re-
versal of the temperature. We can typically make assumptions on the tails of the loss to
ensure that the Moment term is bounded (see eg Germain et al., 2016). Using Theorem 1
together with Jensen’s inequality, one can bound (3) directly as follows

KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)])
= Ex,y∼D[− lnEf∼ρ̂[p(y|x, f)]] +Ex,y∼D[ln pD(y|x)]
≤ Ex,y∼D[Ef∼ρ̂[− ln p(y|x, f)]] +Ex,y∼D[ln pD(y|x)]

≤ Ef∼ρ̂L̂ℓnll
X,Y (f) +

1

λn

[
KL(ρ̂∥π) + ln

1

δ
+Ψℓnll,π,D

]
︸ ︷︷ ︸

PAC-Bayes

+Ex,y∼D[ln pD(y|x)].

The last line holds under the conditions of Theorem 1 and in particular with probability
at least 1 − δ over the choice (X,Y ) ∼ Dn. Notice here the presence of the temperature
parameter λ ≥ 0, which need not be λ = 1.

It is easy to see that maximizing the ELBO is equivalent to minimizing a PAC-Bayes
bound for λ = 1, which might not necessarily be optimal for a finite sample size. More
specifically even for exact inferencethe Bayesian posterior predictive distribution does not
necessarily minimize KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]).

We note that the temperature is inherent in the derivation of PAC-Bayes bounds (Bégin
et al., 2016) (see also Appendix). It more generally occurs when trying to apply Chernoff
bounds on the tails of random variables. It is necessary here because we are trying to bound
out-of-sample performance, with high probability.

5.3. Classification tasks

For classification tasks, we are typically mainly interested in achieving low expected zero-one
risk Ef∼ρ̂Lℓ01

D (f). The ELBO objective is not directly related to this risk. However in the
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PAC-Bayesian literature, there exist bounds specifically adapted to it. In the following, we
will use one of the tightest and most commonly used bounds, the “Catoni” bound, denoted
BCatoni from Catoni (2007) Theorem 1.2.6.

Theorem 2 (BCatoni, Catoni, 2007) Given a distribution D over X ×Y, a hypothesis set
F , the 0-1 loss function ℓ01 : F × X × Y → [0, 1], a prior distribution π over F , a real

number δ ∈ (0, 1], and a real number λ > 0, with Φ−1
λ (x) = 1−e−λx

1−e−λ , we have with probability
at least 1− δ over (X,Y ) ∼ Dn

∀ρ̂ on F : Ef∼ρ̂Lℓ01
D (f) ≤ Φ−1

λ

(
Ef∼ρ̂L̂ℓ01

X,Y (f) +
1

λn

[
KL(ρ̂||π) + ln

1

δ

])
.

Similarly to the Alquier bound, the empirical risk term is the empirical mean of the loss of
the classifier over all training samples. The KL term is the complexity of the model, which
in this case is measured as the KL divergence between the posterior and prior distributions.
The Moment term has been absorbed in this case in the Φ−1

λ function.

5.4. Experiments

PAC-Bayes bounds require correct control of the prior mean as the ℓ2 distance between
prior and posterior means in the KL term is often the dominant term in the bound. To
control this distance, we follow a variation of the approach in Dziugaite et al. (2021) to
construct our classifiers. We first use Ztrain to find a prior mean wπ. We then set the
posterior mean equal to the prior mean wρ̂ = wπ but evaluate the r.h.s of the bounds
on Zvalidation. Note that in this way ∥wρ̂ − wπ∥22 = 0, while the bound is still valid since
the prior is independent of the evaluation set (X,Y ) = Zvalidation. We fit an Isotropic
Laplace approximation to the posterior (using (X,Y ) = Zvalidation). This is because for the
isotropic Laplace approximation and a Gaussian isotropic prior, the KL divergence has a

simple analytical expression KL(ρ̂∥π) = 1
2

(
d
σ2
ρ̂(λ)

σ2
π

+
∥wρ̂−wπ∥22

σ2
π

− d− d lnσ2
ρ̂(λ) + d lnσ2

π

)
.

For different values of λ we then estimate the Catoni bound (Theorem 2) using Zvalidation.
We also estimate the test 0-1 loss. We use the prior variance σ2

π = 0.1, as optimizing the
marginal likelihood leads to σ2

π ≈ 0 which is not relevant for BNNs. We plot the results in
Figure 2. The Catoni bound correlates tightly with test 0-1 loss for all datasets.

The temperature in PAC-Bayes bounds (which is also present in all Chernoff bounds)
is a plausible explanation for the need of tempering. It should also be considered first
by researchers, before resorting to more involved explanations.

6. Temperature λ, aleatoric uncertainty and curvature

How does PAC-Bayes align with prior explanations of tempering? In particular, it is in-
teresting to explore the most prominent explanation, which suggests that the temperature
λ fixes our wrong assumptions about aleatoric uncertainty, encoded in our choice of the
likelihood and/or the prior. PAC-Bayes objectives are difficult to analyze theoretically in
non-convex cases. Thus in the following we make a number of simplifying assumptions.
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Figure 3: λ does not simply fix a misspecified likelihood or prior. For fixed λ and noting
that the prior σ2

π and the dataset are also fixed there is large variability in the test 0-1
loss given multiple Laplace approximations. Since the inherent aleatoric uncertainty in this
experiment is fixed, we shouldn’t be observing any variability in test error for fixed λ. For
λ ≫ 1 all the Laplace approximations degenerate to deterministic networks. Conversely,
for λ ≪ 1 all the Laplace approximations degenerate to random predictions. In both cases,
the standard deviation of the error is almost 0.

First of all we focus our analysis on a linearized model around a minimum of the loss
landscape. There are a number of factors supporting this choice. The Laplace approxi-
mation with the Generalized Gauss–Newton approximation to the Hessian corresponds to
a linearization of the neural network around the MAP estimate wρ̂ ∈ Rd (Immer et al.,
2021) flin(x;w) = f(x;wρ̂) + ∇wf(x;wρ̂)

⊤(w − wρ̂). Also, prior work has shown that
linearization is reasonable when analyzing minima of the loss landscape. This is without
having to resort to common assumptions about infinite width (Zancato et al., 2020; Mad-
dox et al., 2021). We adopt the aforementioned linear form together with the Gaussian
likelihood ℓnll(w,x, y) = 1

2 ln(2πσ
2) + 1

2σ2 (y − flin(x;w))2. We also make the following
modeling choices: 1) Prior over weights: w ∼ N (wπ, σ

2
πI). 2) Gradients as Gaussian mix-

ture: ∇wf(x;wρ̂) ∼
∑k

i=1 ϕiN (µi, σ
2
xiI). Note that this assumption should be plausible

for trained neural networks, in that previous works have shown that per sample gradients
with respect to the weights, at wρ̂, are clusterable (Zancato et al., 2020). We consider that
a Gaussian Mixture model for these clusters is a crude but reasonable modeling choice. 3)
Labeling function: y = f(x;wρ̂) + ∇wf(x;wρ̂)

⊤(w∗ − wρ̂) + ϵ, where ϵ ∼ N (0, σ2
ϵ ). We

also assume that we have a deterministic estimate of the posterior weights wρ̂ which we
keep fixed, and we model the posterior as ρ̂ = N (wρ̂, σ

2
ρ̂(λ)I), similarly to our experimental

section. Therefore estimating the posterior corresponds to estimating the variance σ2
ρ̂(λ).

Proposition 3 (Bapproximate) With the above modeling choices, given a distribution D over
X ×Y, real numbers δ ∈ (0, 1], λ ∈ (0, 1c ) with c = 2nσ2

xσ
2
π, we have with probability at least
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1− δ over (X,Y ) ∼ Dn

2Ew∼ρ̂Lℓnll
D (w) ≤

∥y − f(X;wρ̂)∥22
n σ2

+ ln(2π σ2 ) + σ2
ϵ

+
h

2n σ2

(
λ h

d σ2
+

1

σ2
π

)−1

+
2σ2

x(σ
2
πd+ ∥w∗∥22)

1− 2 λ nσ2
xσ

2
π

+
1

λ n

 d

σ2
π

(
λ h

d σ2
+

1

2σ2
π

)−1

+
∥wρ̂ −wπ∥22

σ2
π

− d

+d ln

(
λ h

d σ2
+

1

σ2
π

)
+ d lnσ2

π + 2 ln
1

δ

]

where h =
∑

i

∑
j(∇wf(xi;wρ̂)j)

2 is a curvature parameter, σ2
x =

∑k
j=1 ϕjσ

2
xj is the pos-

terior gradient variance, and σ2 is the variance of the likelihood function.

Given the Gaussian likelihood function, previous works (Bachmann et al., 2022; Nabarro
et al., 2022; Aitchison, 2021) have identified σ2 (our estimate of the aleatoric uncertainty
of the data) as a key source of misspecification, which the temperature λ attempts to fix.
Under the PAC-Bayesian modeling of the risk our conclusions are different. Contrary to
this prior work our bound suggests that λ cannot be seen as simply fixing a misspecified
likelihood variance σ2 or prior variance σ2

π. In particular it does not simply rescale the
aforementioned quantities. Tempering is the result of complex interactions between various
parameters resulting from 1) the likelihood through σ2, 2) the prior π through wπ and
σ2
π, 3) data through w∗ and σ2

x, 4) as well as various parameters such as the curvature
of the minimum h and the MAP estimate wρ̂ that depend on the deep neural network
architecture, the optimization procedure and the data. Furthermore, our bound implies
that even for fixed prior, likelihood, and data, the same λ can imply different test risks
based on each MAP estimates properties such as the curvature h and the distance from
initialization ∥wρ̂ −wπ∥22.

We can observe this in our empirical data. We first make 10 MAP estimates for the
CIFAR-10, CIFAR-100, SVHN and FMNIST datasets and take care such that the training
and testing errors of the MAP are similar. We fit for each MAP a Laplace approximation
using the Isotropic approximation to the posterior. For a fixed value of λ we compute the
test 0-1 loss of all the Laplace approximations at the different MAP estimates. We then
compute the standard deviation of the test 0-1 loss for this fixed value of λ. We keep the
prior variance fixed σ2

π = 0.1. We combine the resulting differences for all fixed values of
λ ∈ [10−7, 104] in Figure 3. We see that the standard deviation is large for some fixed values
of λ. As both the prior, the temperature λ and the dataset are kept fixed, the variability
can only be explained in terms of the different posteriors induced by the different MAP
estimates. In particular we identify the curvature at the minimum h as important, given
that we’ve taken care such that the training and testing accuracy of the different MAP
estimates is similar. Our results imply that the temperature parameter λ cannot simply be
seen as fixing our wrong initial assumption about the aleatoric uncertainty.
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Assume that different MAP estimateswρ̂ are generated from some randomized algorithm
wρ̂ ∼ P(X,Y ) where X,Y are the training data. Our results furthermore imply that it
might be difficult to find a single value of λ that gives a target test loss, simply because
of the stochasticity of wρ̂ ∼ P(X,Y ). This is especially interesting for neural networks
because inference is always approximate, and the loss is multimodal.

λ does not simply fix a misspecified estimate of aleatoric uncertainty. In our case, λ
also varies due to the specific MAP estimate used for Laplace approximation. More
generally, λ is influenced by the fact that inference is approximate and stochastic.

7. Discussion

We argued that using Bayesian models to target Frequentist metrics provides a simple ex-
planation for needing a temperature in the optimization objective. We hope that this will
motivate Bayesian practitioners to use heuristics “guilt-free” when targeting Frequentist
performance metrics, or target posterior contraction instead. We showcased the impor-
tance of choosing a metric when discussing tempering, and our empirical results on the
tradeoff between metrics point towards the need for the use of Pareto curves when evalu-
ating Bayesian approaches. Finally our results on the effect of the posterior on tempering
might imply that some fine-tuning of λ might be inevitable given the approximate and
stochastic nature of inference in neural networks.
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