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Abstract

Utilizing a pretrained vision backbone to finetune a model for semantic segmentation is
common practice in computer vision. However, there are few works intending to enlarge
the semantic context learning capacity by incorporating a segmentation adapter into the
backbone. Thus, in this paper, we present a simple but efficient segmentation adapter,
termed as SegAdapter, which can be plugged into the pretrained vision backbone to im-
prove the performance of existing models for image semantic segmentation. We summarize
SegAdapter with three attractive advantages: 1) SegAdapter is a plug-and-play module
demonstrating strong adaptability in CNN and Transformer based models such as Con-
vNext and Segformer, 2) SegAdapter applies a light-weight High-order Spatial Attention
(HSA) to make use of intermediate features from the pretrained backbone which extends
the model depth and produces auxiliary segmentation maps for model enhancement, 3)
SegAdapter builds a powerful vision backbone by incorporating the semantic context into
each stage which takes on some of the functions of the segmentation head. So, SegAdapter
augmented model can be used in simple designed decode head to avoid heavy computa-
tional cost. By plugging multiple SegAdapter layers into different vision backbones, we
construct a series of SegAdapter-based segmentation models. We show through the exten-
sive experiments that SegAdapter can be used with mainstream backbones like CNN and
Transformer to improve mloU performance in a large margin while introducing minimal
additional parameters and FLOPs.

Keywords: Semantic Segmentation, Segmentation Adapter, CNN, Transformer, Spatial
Attention.

1. Introduction

Semantic segmentation is a fundamental task in computer vision research which aims at
assigning each pixel in an image to a specific category label. In the past few years, deep-
learning-based semantic segmentation techniques have evolved considerably and shown im-
pressive performance. Since much better results can be achieved by using pretrained models
for semantic segmentation than by using ones that are trained from scratch, it becomes the
de facto paradigm for modern deep learning training strategy. From Convolutional Neural
Network (CNN) based models such as FCN (Long et al. (2015)), HRNet (Sun et al. (2019))
and ConvNext (Liu et al. (2022)), to Transformer-based models such as Pyramid Vision
Transformer (Wang et al. (2021)), Swin Transformer (Liu et al. (2021)) and Segformer
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Figure 1: Simple illustrations of Window-based Self-Attention (WSA) and High-order Spa-
tial Attention (HSA), showing the difference in colors. WSA applies query-key
multiplication to obtain the attention score (), which are used to perform
attention-value weighted summation (Jjj) without semantic context. HSA uses two
SegAttention modules to encode regional information (Jjj and i) with Depth-wise
Separable Convolution (DSConv) of both input and segmentation map, respec-
tively. The two features are further fused by semantic-feature gating to selectively
incorporate the semantic context.

(Xie et al. (2021)), all of them tackle the semantic segmentation problem by employing the
encoder-decoder architecture, where the encoder (backbone) is pretrained on a large-scale
dataset (e.g., ImageNet (Deng et al. (2009))) for image classification task, then finetuning
is applied to the entire model on the segmentation dataset.

However, simply using pretrained backbones to transfer downstream tasks in semantic
segmentation usually leads to sub-optimal results. Jain et al. (2021) point out that the
semantic context during the finetuning is very significant in segmentation task since this
information can further enhance the model training for faster convergence. Hence, to allow
better transfer of the pretrained backbone to semantic segmentation, they plug semantically
masked attention into the hierarchical architectures to augment the global feature captured
by the Transformers with the semantic context. However, this study is conducted only
based on Swin Transformer backbone (Liu et al. (2021)), which cannot demonstrate its
effectiveness on CNN-based backbones such as ConvNext (Liu et al. (2022)).

To address the above issues, we propose segmentation adapter (hereafter referred to
SegAdapter) to encode the semantic context based on the Transformer and CNN backbone
like Segformer (Xie et al. (2021) )and ConvNext (Liu et al. (2022)). Specifically, we plug a
SegAdapter layer at the end of each backbone layer, which uses High-order Spatial Attention
(HSA) for sematic prior encoding. Figure 1 illustrates the difference between the Window-
based Self-Attention (Liu et al. (2021)) and the proposed HSA. The former one applies
query-key multiplication to obtain the attention map (weights), then the weights are used
to perform attention-value weighted summation. So, no semantic context is involved in this
module. However, HSA uses two SegAttention modules to encode regional information of
both input and segmentation map, respectively, and the two features are further fused by
semantic-feature gating. Hence, HSA can selectively incorporate the semantic context.
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Our proposed SegAdapter can be plugged into any vision backbones for semantic seg-
mentation. It can reduce the burden on the segmentation decode head while allowing the
entire model to use a lighter decode head. Moreover, SegAdapter only introduces a small
number of parameters and FLOPs while it can boost the mean Intersection over Union
(mlIoU) performance in a great margin compared with the baseline backbone. We summa-
rize our contributions as follows:

e We propose SegAdapter as a plug-and-play module, which can be inserted into any
existing pretrained backbone. It puts forward the semantic segmentation performance
by encoding the semantic context and building the high-order spatial attention.

e Through extensive experiments, we show that SegAdapter achieves a considerable
improvement in semantic segmentation for ADE20K (Zhou et al. (2017)), Cityscapes
(Cordts et al. (2016)) and COCO-Stuff (Caesar et al. (2018)). Especially on ADE20K
task, SegAdapter can improve the Segformer (Xie et al. (2021)) and ConvNext (Liu
et al. (2022)) up to 2.9% and 3.5% in mIoU, respectively.

e Our ablation studies elaborate more evidence for the effective and efficient design
of the SegAdapter, which provides additional experimental data and inspiration for
modern adapter designs.

2. Related Works

2.1. Semantic Segmentation

FCN (Long et al. (2015)) is the first model to use convolution to encode images into ab-
stract features and to decode them into the segmentation maps without applying the fully
connected layers. Following that, many convolution-based approaches have been developed.
DeepLab v3+ (Chen et al. (2018)) improves the Atrous Spatial Pyramid Pooling (ASPP),
and incorporates it into the decoder to further enlarge the receptive field. Recently, many
researchers have proposed Transformer architecture for computer vision. Vision Trans-
former (ViT) (Dosovitskiy et al. (2020)) is a pioneer that applies the vanilla Transformer
on the image classification task. However, since non-hierarchical architecture is unsuitable
for dense prediction tasks, Liu et al. (2021) proposes Swin Transformer that uses Shifted
Window based Self-Attention (W-MSA) and patch merging to reduce the computational
cost to form a hierarchical framework. In this paper, we follow these previous works us-
ing pretrained backbones, but we focus on building a powerful and efficient segmentation
adapter.

2.2. Adapters for Semantic Segmentation

Applying adapter to a pretrained model allows backbone to incorporate task-relevant prior
knowledge to speed up the convergence. Jain et al. (2021) argue that the absence of semantic
context during encoding may lead to a poor segmentation performance. So, they propose to
insert a semantic layer after each Swin Transformer stage to use semantically masked feature.
Vision Transformer Adapter (ViT-Adapter) (Chen et al. (2022)) is designed specifically to
help the ViT adapting to the downstream dense prediction task. It uses the Deformable Self-
Attention (Xia et al. (2022)) as the attention mechanism, then fuses the multi-scale adapter
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Figure 2: Overall architecture of SegAdapter for semantic segmentation.

features and backbone features by cross attention. Instead of designing a segmentation
adapter for a certain backbone, we propose SegAdapter that can be plugged into any existing
models, which shows the effectiveness through extensive experiments.

2.3. Attention Mechanisms

The attention mechanism works by assigning a weight to each input feature, which deter-
mines how much attention the model should pay to that feature when making predictions.
Vaswani et al. (2017) propose the first work to introduce the self-attention for language
translation. After that, various self-attention mechanisms have been used in a variety of
computer vision fields. For example, DETR (Xia et al. (2022)) proposes Deformable Self-
Attention for object detection, Segformer (Xie et al. (2021)) presents Efficient Self-Attention
to down-sample the key and value for semantic segmentation, and CrossViT (Chen et al.
(2021)) utilizes cross-attention to learn multi-scale features for vision. As describe in Rao
et al. (2022), the above works are the variants of self-attention as the type of 3-order spatial
interaction. However, we build a 4-order spatial interaction via two simple and efficient
SegAttention modules.

3. Proposal
3.1. Overall Architecture

As shown in Figure 2, there are three main components in the proposed SegAdapter aug-
mented model: (i) a backbone which can be the CNN-based architecture (e.g., ConvNext
(Liu et al. (2022))) or the Transformer-based architecture (e.g., Segformer (Xie et al.
(2021))) to extract the abstract features from the input image, (ii) a decode head that
fuses the features from different backbone stages and produces the final prediction, (iii)
a SegAdapter that absorbs the multi-scale output from backbone and augments them by
semantic context at the end of each stage or layer.

In detail, the output of backbone layer-i is fed to the SegAdapter layer-i (i = 1,2,3,4)
to produce a side output prediction via a simple classification head, where the output of
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backbone layer is augmented by the proposed High-order Spatial Attention (HSA). After
that, we inject the augmented output back to the vision backbone with a small scale .
The above-mentioned process is denoted as “semantic flow” with blue arrow in Figure 2.
During training, the side output predictions from the four stages are all resized into the
1/4 input size, and then they are added together to produce a coarse segmentation map,
which is supervised by the per-pixel cross-entropy loss. The auxiliary path for producing
the coarse segmentation map works as another “semantic flow” that can be removed during
testing, which is denoted as blue dashed arrow in Figure 2.

3.2. Segmentation Adapter

In this section, we first briefly recap the mechanisms of Multi-head Self-Attention (Dosovit-
skiy et al. (2020)) and its variant, SeMask Attention (Jain et al. (2021)), which is specifically
designed for the Transformer backbone. Next, we cover the proposed SegAttention and the
main component of SegAdapter: High-order Spatial Attention.

DSConv& | SedAttention
s N x K
Linear
Cls e ,
DSConv& SegAttention ®—'
xxc
Linear
(a) High-order Spatial Attention (b) SeMask Attention

Figure 3: The architecture of High-order spatial attention and SeMask attention.

Self- Attention and SeMask Attention. Self-attention involves computing three ma-
trices: query, key and value. Basically, query and key are used to generate a set of spatial
attention weights via matrix multiplication (“Mul” in Figure 3-(b)), then the weights are
used to compute a weighted sum of the value matrix. Most methods divide the embed-
ding channels C into [C/d] groups as Multi-head Self-Attention (MSA) (Dosovitskiy et al.
(2020)), where each head can be formulated as follows:

Z = Softmax (QKT/\/&) v, (1)

where Q, K, and V are query, key and value learned from input X € RV*?4 N denotes
the token length (same as input size in vision task), and d presents the channel dimension
of each head. Liu et al. (2021) introduce Shifted Window based Multi-head Self-Attention
(W-MSA) to reduce the computational complexity of MSA by restricting the self-attention
inside a local window. After the seminal work of Liu et al. (2021), SeMask Attention (Jain
et al. (2021)) is proposed to encode the semantic context based on W-MSA. As shown in
Figure 3-(b), SeMask generates a segmentation map Sqg as query to perform W-MSA as
follows:

Z = Softmax (S¢Sk”) V, (2)
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where Sg, Sk € RVN*K v e RNXC are learned by linear transformation based on input,
K denotes the number of classes, and C denotes the embedding dimension. Note that in
Eq. (2), the side output S¢q is the segmentation map exactly guided by the cross-entropy
loss during training.

SegAttention. We argue that it is sub-optimal for Semask (Jain et al. (2021)) to simply
utilize side output prediction as query in adapter, because SeMask Attention produces the
semantic query Sg and semantic key Sk simultaneously, but only Sq is supervised by
the per-pixel loss, which may cause unclear meaning for spatial semantic attention for Sk .
Besides, VAN (Guo et al. (2022)) points out that the simple convolutional attention can be
more efficient to maintain the local continuity when compared to the complex design of W-
MSA. Therefore, for the attention design, we construct a simple but effective convolutional-
based spatial attention and termed it as SegAttention. The illustration of SegAttention is
shown in Figure 3-(a) with a gray box. We produce attention score U by applying Depth-
wise Separable Convolution (DSConv) with the kernel size of s x s and Layer Normalization
(Norm) (Ba et al. (2016)) based on input X. Here, U considers an area of s x s as receptive
field for one pixel in X . Meanwhile, the value V is obtained by linear transformation. We
employ Hadamard product (®) to perform spatial attention based on U and V. So, the
proposed SegAttention module can be formulated as follows:

U = Norm (DSConv(X)),
V = Linear(X), (3)
F = SegAttention(X)=U® V.

High-order Spatial Attention. As depicted in Figure 3-(a), we present a High-order
Spatial Attention (HSA) for the interaction between the backbone output and the side
output prediction. Similar to Jain et al. (2021), the backbone output X € RN*C i first
reshaped into the size of C x H x W, where N = H x W. And then X is fed into the 1 x 1
convolutional classification head (denoted as “Cls” in Figure 3-(a)) to generate a side output
prediction Cls(X) € REXHXW —Then, the SegAttention is applied as the 2-order spatial
interaction to the backbone output X and the side output prediction Cls(X) separately.
After that, the outputs of the two SegAttention, F'; and F'5, are further fused by Hadamard
product (®) to generate augmented feature Z, which simply encodes the semantic context
into the attention mechanism. Thus, the HSA process can be formulated as follows:

F; = SegAttention(X),
F5 = SegAttention (Cls(X)), (4)
Z =HSA(X)=F; ® Fs.

Note that this process can be also considered as pixel attention (Guo et al. (2022)) or feature
gating (Rao et al. (2022)), since we use pixel-wise multiplication to fuse the feature attention
and semantic context attention. From another view, the HSA can be also expressed as
follows:

Z =HSA(X)=91(X) @ ¥ 1(X) ® P3(Cls(X)) ® ¥a(Cls(X)), (5)

where ®;(-) and ®5(-) denote the linear transform functions for the feature and semantic
space, respectively. Wi(-) and Wy(-) present the combination of DSConv(-) and Norm(+).
Thus, from Eq. (5), the proposed HSA is a 4-order operation spatial attention.
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Figure 4: The architecture of SegAdapter block.

SegAdapter Layer. Similar to other backbone layers such as Sun et al. (2019) and
Woo et al. (2023), we can stack multiple SegAdapter blocks to form a SegAdapter layer. As
illustrated in Figure 4, the SegAdapter block includes an HSA and a standard Feed Forward
Network (FFN). For the residual learning, we use a learnable parameter u € R for each
channel to avoid changing the backbone output dramatically as follows:

Y = X +u-FFN(Z), (6)

where Y € RV*C denotes the output of the SegAdapter block, X € RV*® denotes the
backbone output, and Z € RV*C is the output of HSA which is fed to the FFN to fuse
channel information.

3.3. Computational Complexity Analysis

In this section, we first recap the computational complexity of MSA (Dosovitskiy et al.
(2020)), W-MSA (Liu et al. (2021)) and SeMask (Jain et al. (2021)), then introduce our
SegAttention for investigation.

From Eq. (1), with the definitions of N, H, W, C' and K in Section 3.2, the computational
complexity of MSA is formulated as follows:

Q(MSA) = 4HW C? + 2(HW)?C. (7)

From above, the computational cost of MSA is quadratic to the input size N = H x W, which
is unsuitable for dense prediction task. Hence, Liu et al. (2021) introduces W-MSA, which
first evenly partitions the input into multiple windows of size M x M in a non-overlapping
manner, then it computes self-attention within local windows. Thus, the complexity of
W-MSA is:

Q(W-MSA) = 4HWC? + 2HWCM?, (8)
which is linear to the input size N. Considering that W-MSA does not integrate semantic
information into backbone, SeMask (Jain et al. (2021)) presents a variant of W-MSA by
producing the query and value in the semantic space, and keeps other parts unchanged.
Hence, the complexity of SeMask Attention can be obtained as follows:

Q(SeMask) = 2HWCK + 2HWC? + HW K M? + HWCM?

= HW 2 ©)
= (2C + M?)(C + K).
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From Eq. (2), both W-MSA and SeMask Attention are 3-order spatial attention since they
follow the standard self-attention manner that depicted in Eq. (1).

Inspired by Jain et al. (2021), the proposed HSA uses backbone output to generate a side
output prediction, and it applies two SegAttention branches to construct spatial attention
for the feature and the semantic space separately. So, from Eq. (3), the complexity of HSA
is formulated as follows:

Q(HSA) = 2HWCK +3HWC? + sHWC + s*HWK + 3HWC

10
= HW(2CK + 3C? + s*C + s*K + 30). (10)

In the experiments, we set the kernel size of SegAttention to 5 x 5 by default. When
using the window size of 7 x 7 as default in SeMask (Jain et al. (2021)), we can obtain the
computational cost ratio r between (SeMask) and Q2(HSA) as follows:

. Q(SeMask) (2C+49)(C+K) (1)
~ Q(HSA) 20K +3C%?+425(C+K)+3C’

In the first stage, the embedding dimension C' is 64, the number of classes K is 150 for
ADE20K dataset (Zhou et al. (2017)), and r is around 1.02. The ratio r decreases to 0.74
when C'is set to 512 in the final stage. Therefore, our HSA can achieve a 4-order spatial
interaction with the similar computational cost as in SeMask, which is a 3-order one for
adapter.

3.4. Decode Head

We induce the light-weight decode head in Xie et al. (2021), which uses simple MLP to align
the number of channels to Cy for multi-scale features from the four stages of backbone. After
MLP, these features are concatenated along the channel dimension, and then projected to
produce the main prediction Sy,.

3.5. Training Objective

Our proposed SegAdapter produces two segmentation maps: main prediction S,, from
decode head, and the coarse output S, from Adapter. We use cross-entropy loss L. to
guide these two outputs for supervised training. Following the strategy in Jain et al. (2021),
the overall training objective £ is the weighted sum of the two losses as follows:

L= ['ce(Sma G) + A »Cce(Sc’ G)’ (12)

where G denotes the ground truth segmentation map, A is a hyper parameter for trading-off
the main prediction loss L. (Sm, G) and the coarse prediction loss L. (S¢, G).

3.6. Model Configurations

In practice, we set the FFN ratio ry of SegAdapter to 3.0, the number of SegAdapter blocks
Ny to [1,1,1,1] and the learnable parameter u to [107°,107%,1073,1072] for four stages
unless it specifies. The channel dimension Cj; in decode head is fixed to 256 for all models
unless other specified. And the trade-off loss parameter A is set to 0.4 as default.
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4. Experiments
4.1. Datasets

Following the benchmark of the mainstream semantic segmentation task, we use three
datasets: ADE20K (Zhou et al. (2017)), Cityscapes( Cordts et al. (2016)) and COCO-Stuff
(Caesar et al. (2018)). The ADE20K dataset covers 150 semantic categories, including
20,210 images for training and 2,000 images for validation. Cityscapes provides pixel an-
notations on 5,000 high resolution images with 19 categories in total. COCO-Stuff dataset
is constructed with 164k images that span over 172 categories, where 118k for training, 5k
for validation, 20k for the test-challenge and 20k for test-dev.

4.2. Implementation Details

In experiments, we select two state-of-the-art vision backbones for our SegAdapter: MIT
(the backbone of Segformer (Xie et al. (2021))) and ConvNext (Liu et al. (2022)). The back-
bones pretrained on ImageNet 1K dataset (Deng et al. (2009)) are from the public source of
Openmmlab (Contributors (2020)), where we keep the backbone configurations unchanged,
then build the SegAdapter models based on them. Basically, we refer SegAdapter models
to “Adapt-backbone-variant” , for example, Segformer-B0 with SegAdapter augmentation is
named as “Adapt-MIT-B0”. Following other segmentation methods as Liu et al. (2022),
Cheng et al. (2021) and Xia et al. (2022), we resize images with the ratio of [0.5, 2.0],
and apply random horizontal flip and random cropping. We use the AdamW optimizer
(Loshchilov and Hutter (2017))with initial learning rate of 6 x 10~°, and the poly schedule
with the power of 1. The batch size is set to 8 for Cityscapes (Cordts et al. (2016)), and
16 for other datasets. Note that Segformer (Xie et al. (2021)) uses crop size of 1024 x 1024
for training on Cityscapes while we modify it to 768 x 768 for saving the GPU memory.
We train all models for 160K iterations on ADE20K (Zhou et al. (2017)) and Cityscapes
(Cordts et al. (2016)), 80K iterations on COCO-Stuff (Caesar et al. (2018)), and use the
same testing pipeline as same in Xie et al. (2021). For all three datasets, we report the
single scale testing of mean Intersection over Union (mloU).

We conduct extensive experiments to evaluate the effectiveness of the proposed SegAdapter
on mainstream backbones like CNN and Transformer. For fair comparisons, we use the MLLP
decode head in Xie et al. (2021), and set the decode channels Cy = 256 for all models. How-
ever, note that the original Segformer-B2 and Segformer-B3 (Xie et al. (2021)) use a large
size decode head with Cy = 768 while we use C; = 256 for SegAdapters. So, to distinguish
the different size of decode heads, the Segformer method (B2 or B3) with Cy; = 256 is
denoted as Segformer* and that with Cy = 768 is denoted as Segformer** in the following
experiments.

4.3. Results

Through Table 1, on ADE20K (Zhou et al. (2017)), SegAdapter raises mloU by 2.9% com-
pared to the tiny baseline models (Segformer-B0 and ConvNext-T'), and over 1.4% compared
to small models (Segformer-B1, B2 and ConvNext-S). For base models, Segformer-B3 and
ConvNext-B, SegAdapter suppress them by 0.8% and 1.9% in mloU, respectively. On
Cityscapes (Cordts et al. (2016)), SegAdapter boosts mloU by 0.5-2.7%. On COCO-stuff
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Table 1: mloU (%) and FLOPs (G) comparisons of baselines and corresponding
SegAdapters on ADE20K, Cityscapes, and COCO-Stuff semantic segmentation.
FLOPs are counted as input size 5122 for ADE20K and COCO-Stuff, and 10242
for Cityscapes, respectively.

Model ADE20K Cityscapes COCO-Stuff
mloU(%) FLOPs(G) | mIoU(%) FLOPs(G) | mIoU(%) FLOPs(G)

Segformer-B0 37.4 8.4 76.2 44.0 35.6 8.4
Adapt-MIT-B0 40.3 (+2.9) 9.7 77.8 (+1.6) 470 | 36.6 (+1.0) 9.7
Segformer-B1 42.2 15.9 78.1 86.6 40.2 15.9
Adapt-MIT-B1 44.0 (+1.8) 19.5 79.6 (+1.5) 974 | 41.1 (+0.9) 19.5
Segformer-B2* 45.9 25.8 81.0 147.7 44.6 25.8
Adapt-MIT-B2 48.0 (+2.1) 204 | 815 (+0.5)  158.6 | 45.5 (+0.9) 29.4
Segformer-B3* 48.6 42.5 81.4 238.6 45.0 42.5
Adapt-MIT-B3 49.4 (40.8)  46.1 81.9 (+0.5) 2495 | 46.2 (+1.2) 46.1
ConvNext-T 41.6 29.0 77.2 113.7 39.7 29.0
Adapt-ConvNext-T | 45.1 (+3.5) 32.9 79.9 (42.7) 134.6 42.0 (+2.3) 32.9
ConvNext-S 45.6 51.1 79.9 202.1 41.6 51.1
Adapt-ConvNext-S | 47.0 (+1.4) 57.5 80.6 (+0.7) 223.0 43.1 (+1.5) 57.5
ConvNext-B 46.1 86.2 80.8 342.5 42.4 86.2
Adapt-ConvNext-B | 48.0 (+1.9) 96.9 81.6 (+0.8) 379.0 44.6 (+2.2) 96.9

(Caesar et al. (2018)), we also observe remarkable performance of SegAdapter with 0.9-2.3%
improvements in mloU. These results demonstrate that SegAdapter is a viable solution for
improving the performance of existing CNN or Transformer backbones for semantic seg-
mentation.

Table 2: Comparison with state-of-the-art methods on ADE20K dataset.

Method | Backbone | Params (M) | FLOPs (G) | mlIoU (%)
SeMask MIT-BO 4.7 9.8 39.1
SegAdapter | MIT-B0 4.8 9.7 40.3
SeMask MIT-B1 17.1 20.7 42.7
SegAdapter | MIT-B1 17.3 19.5 44.0
Segformer** | MIT-B2 27.5 62.4 46.5
MaskFormer | Swin-T 42.0 55.0 46.7
SeMask MIT-B2 28.2 30.6 47.0
SegAdapter | MIT-B2 28.4 294 48.0
SeMask MIT-B3 37.2 47.2 48.3
HRFormer-B | HRFormer 56.2 280.0 48.7
Swin-B FPN | Swin-B 93.0 103.0 48.8
Segformer** | MIT-B3 47.3 79.0 49.4
SegAdapter | MIT-B3 374 46.1 49.4
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Figure 5: Stage feature visualization of (a) Segformer-B0 and (b) Adapt-MIT-BO0.

We also compare SegAdapter with SeMask (Jain et al. (2021)), another adapter strategy
for semantic segmentation. In the experiments, we replace HSA with SeMask Attention
while keeping other modules unchanged and training on ADE20K (Zhou et al. (2017)). For
a more comprehensive comparison, in Table 2, we also list other state-of-the-art methods,
such as HRformer (Yuan et al. (2021)), MaskFormer (Cheng et al. (2021)) and Segformer**
(Xie et al. (2021)) in the original paper. From the table, when using similar model size
(“Params” in Table 2) and slightly smaller computational cost (FLOPs), our SegAdapter
can surpass SeMask by more than 1% in mIoU, which indicates the strong learning capacity
of the SegAdapter. Moreover, SegAdapter surpasses other non-adapter methods such as
HRFormer and MaskFormer in a great margin even though we have much smaller model
parameters and FLOPs. Also, we notice that in Segformer, the decode head with Cy = 768
causes a large number of FLOPs (See Segformer* in Table 1 and Segformer** in Table 2).
However, the proposed Adapt-MIT-B3 can still perform on-par with Segformer-B3** even
though we have a much smaller FLOPs when using Cy = 256.

4.4. Visualization

To better illustrate the differences between our proposed SegAdapter and Segformer, we
visualize features of the four stages of the Adapt-MIT-BO and Segformer-B0 (Xie et al.
(2021)) for comparison as shown in Figure 5. The input is from Cityscapes validation set
(Cordts et al. (2016)), and we reshape feature outputs from the four stages to the original
input size with visualizing them as heatmaps. From the figure, the Stage I features are
very similar because we use a small y to control the semantic context learning. After that,
the two models exhibit very different learning patterns: in Stage II, Segformer-BO shows
a very high response globally, especially on “roads” and “buildings”, while Adapt-MIT-
B0 exhibits a high response only on object contours. In Stage 111, Adapt-MIT-B0 focuses
more on "trunks” and ”walls” compared to Segformer-B0, which indicates that Adapt-MIT-
BO incorporates more semantic context in deeper layers. In Stage IV, Adapt-MIT-B0’s
low response area is primarily concentrated on ”roads” and ”leaves,” and it shows greater
contrast than Segformer-B0. This indicates that Adapt-MIT-B0 exhibits more prominent
semantic feature contrasts in the final layers.
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The ground truth and segmentation outputs are shown in Figure 6. We zoom in on
the semantic segmentation result of a pedestrian in the distance for comparison. As we
can observe, Segformer-B0O (Xie et al. (2021)) fails to accurately segment the far-away
pedestrian, while Adapt-MIT-B0, which incorporates semantic context into attention of
backbone, performs better in segmenting the outlines of the pedestrian.

4.5. Ablation Studies

In this section, we conduct several experiments on ADE20K (Zhou et al. (2017)) to ablate
the components of our SegAdapter. In detail, the ablation experiments include the kernel
size s X s, normalization layer of SegAttention, FFN ratio r; in SegAdapter block, the
number of SegAdapter blocks NV}, for each stage, as well as the initial value of the trade-off
parameter p. We use MIT-B1 as backbone and MLP decode head with channel dimension
Cq = 256 for all experiments.

Table 3: Ablation on (a) Kernel size of SegAttetion, (b) FFN ratio of SegAdapter block
and (c) Normalization type of SegAttention.

(a) Kernel size. (b) FEN ratio. (¢) Normalization type.
kernel size | mIoU(%) FFN ratio | mIoU(%) Normalization | mIoU(%)
3x3 43.8 2.0 43.6 Layer Norm 44.0
5x5H 44.0 3.0 44.0 Batch Norm 43.5
TxT 44.1 4.0 44.1 Instance Norm 43.1

Kernel size of SegAttention. We evaluate the effectiveness of kernel size s in SegAt-
tention by setting s = 3, 5 and 7. From Table 3-(a), we can observe that increasing the
convolution kernel sizes can expands the receptive field to capture more context in a local
region, thus resulting in a slight increase in mIoU. We notice that larger kernel size causes
slower train and inference speed, so we use 5 x 5 kernel size as default for trading-off.

FFN ratio in SegAdapter Block. For an attention block, it is natural to place a two-
layer FFN after the attention module, which is pointed out as vital for modern block design
(Yu et al. (2022)). In ablation, we investigate FFN ratio r¢ in the dense fully connected
layers by setting r¢ to 2.0, 3.0 and 4.0 in the experiments. From Table 3-(b), as ry becomes

Ground Truth Segformer-BO Adapt-MIT-BO

Figure 6: Visual result comparisons of Ground Truth, Segformer-BO and Adapt-MIT-BO0.
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larger, we observe a stable improvement in mloU performance. However, the situation
saturates when ry = 4.0. Thus, considering the efficiency, we use r; = 3.0 by default.

Normalization of SegAttention. We use Layer Normalization (LN) (Ba et al. (2016))
by default since almost all self-attention mechanisms in the community apply this normal-
ization type. Therefore, in ablation, we also employ Batch Normalization (BN) (Ioffe and
Szegedy (2015)) and Instance Normalization (IN) (Ulyanov et al. (2016)) to evaluate the
impact of different normalization layers in SegAttention. From Table 3-(c), if we apply BN,
the mIoU decreases to 43.5%. However, when using LN, we obtain the best performance
of 44.0% in mloU, which is consistent with that in the ConvNext (Liu et al. (2022)): after
replacing BN with LN, they observe slight performance improvements. This is because both
Segformer and ConvNext use LN in the backbone, that implicitly encourages the feature
to act differently along channels. Finally, the IN based model reaches only 43.1% in mloU,
which indicates that only normalizing the token length (height and width of the feature)
on a single sample is inappropriate for the Adapter.

Table 4: Ablation on the (a) initial value of x and (b) number of SegAdapter blocks.

(a) Initial value of u. (b) Number of SegAdapter blocks.

Initial value of | mIoU(%) # Blocks | FLOPs (G) | mIoU (%)
const [1.0,1.0,1.0, 1. 0} 43.2 [0,0,0,0] 15.9 42.2
(1.0, 1.0, 1.0, 1.0] 43.4 [1,1,1,1] 19.5 44.0
(10~ 2 , 10 2 , 10 2 , 1072 43.7 [1,1,2,1] 20.6 43.8
(10~ 1, , 10~ i, , 10~ i, ,1074] 43.8 [1,2,2,1] 21.4 43.9
(10~ 2, , 10 3, 10—4 1079] 43.4 [1,2,4,1] 23.4 43.8
(10~ 5. 10 4 ,1073,1072 44.0 [1,2,6,1] 25.4 44.1

Initial value of the trade-off parameter u. We ablate the parameter p in Eq.
(6), which is used to control the amount of semantic context information injection of the
backbone. As shown in Table 4-(a), By keeping the p = [1,0,1.0,1.0,1.0] as constant (not
learnable) for all four stages, we obtain a mloU of 43.2%, which is 1.0% higher than the
baseline Segformer-B1 (42.0%). However, when p = [1.0,1.0,1.0,1.0] are learnable, the
mloU result increases to 43.4%, which demonstrates that setting p learnable can boost
the performance. Moreover, we find out that initializing g with a small value, e.g., p =
1072 and p = 10~* for all stages, can further increase the performance to 43.7% and
43.8%, respectively. Intuitively, as the layer goes deeper, it is encouraged to gradually
increase initial p for better incorporating more semantic context. Therefore, when p =
[107°,107%,1073,1072] are learnable, we observe the highest mloU as 44.0% in our study.
If we reverse the initial value as p = [10_2, 103,104, 107°], The performance drop to
43.4%, which indicates that the effectiveness increases by setting the trade-off parameter p
learnable as the network deepens.

Number of SegAdapter Blocks. We study the influence of the Number of SegAdapter
blocks N for each stage. Here, Ny = [0, 0,0, 0] represents the Segformer-B1 baseline model.
We notice that the modern design of CNN-based and Transformer-based vision backbones
(Xie et al. (2021), Yu et al. (2022)) usually assign a few blocks for Stage II, and assign a
large number of blocks for Stage III to build a larger model. Inspired by these, we ablate the
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number of SegAdapter blocks N, by adding the SegAdapter blocks to the second and third
stage as N, = [1,1,2,1], [1,2,2,1], [1,2,4,1] and [1,2,6,1]. Through Table 4-(b), we get
same conclusion as in SeMask (Jain et al. (2021)): i.e., the best setting is N, = [1,1,1, 1],
and further increasing the SegAdapter block does not bring performance gain. It indicates
that stacking too many random initialized blocks to the pretrained backbone may disrupt
the distribution of the original feature.

5. Conclusion

In this paper, we propose SegAdapter, an efficient segmentation adapter to improve the
performance of the existing backbones for image semantic segmentation without requiring
additional pretraining. Our experiments show that SegAdapter can perform as a plug-
and-play module with the mainstream backbones like CNN and Transformer. The novel
High-order Spatial Attention constructs an adaptive selection on both features and seg-
mentation map, and fuses them via Hadamard product, which dynamically encodes the
semantic context into the backbone. Besides, the process of generating segmentation map
in SegAdapter layer eases the burden of decode head, so that SegAdapter-augmented back-
bones can be equipped with a simple decoder for efficient training and inferencing without
sacrificing the prediction accuracy. This makes SegAdapter a cost-effective and efficient
solution to enlarge the vision backbone learning capacity instead of stacking the same base
blocks. Extensive experiments demonstrate that our proposed SegAdapter can surpass the
baseline and other adapter methods in a large margin, and the ablations prove that the
careful designed architecture is the key component for the success of SegAdapter. For the
future work, we aim to extend the SegAdapter to handle more universal segmentation tasks
including instance segmentation and panoptic segmentation.
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