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Abstract

Cervical cancer is the most common gynecologic malignancy, and in clinical practice, cer-
vical cancer is best treated if it is detected at an early stage. Thinprep Cytologic Test
(TCT) is the best early detection method for cervical cancer as determined by the WHO.
As the coverage of early detection of cervical cancer increases, the number of samples in
hospitals increases annually, and the pressure on the pathologists to read the cytological
images increases, which easily leads to an increase in the rate of misdiagnosis and missed
diagnosis. Therefore, automatic detection of abnormal cells in cervical cytology images
of cervical fluid using deep learning techniques has become a hot research topic today.
However, existing deep learning models for cell detection often collect a single data source
from a medical institution for construction. Different medical institutions have different
equipment and staining methods, and the accuracy, magnification, and staining results
of the images obtained will be different. As a result, the application performance of the
model in different medical institution data is not good, and there is a problem of domain
shift. To address these problems, this paper proposes a method for cervical fluid-based
cell detection based on causal feature extraction. The method is based on the one-stage
detection model RetinaNet, and incorporates causal autoencoder to learn the invariant
causal feature representation from data. It reduces the impact of task-irrelevant feature
representations, reduces the variability of feature distributions in different datasets, and
effectively solves the domain shift problem. The addition of deformable convolution and
attention mechanism enhances the feature extraction capability for foreground categories
with variable shapes in cervical fluid-based pathology images. This reduces the impact of
possible strong correlation between background features and goal cells, and reduces the
interference of the foreground categories by fading and lack of brightness in the staining.
The generalization ability of the model is improved, which makes the model better appli-
cable to different medical institutions. The experimental results show that the method in
this paper not only improves the accuracy of the model detection, but also verifies its good
generalization effect on different datasets.
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1. Introduction

Cervical cancer is the most common gynecologic malignancy and has the 3rd highest inci-
dence rate among female malignancies worldwide Arbyn et al. (2011). In clinical practice,
cervical cancer is best treated and requires lower medical costs if it is detected at an early
stage Bray et al. (2018). Thinprep cytologic test (TCT) is the best early detection method
for cervical cancer as determined by the WHO Organization et al. (2006). Reading cervical
pathology images is an extremely labor-intensive, complex and tedious task. Each pathol-
ogy image has thousands of cells and the pathologist needs to scan carefully and make
a judgment. If pathologists are not skilled or overworked they are prone to an increased
rate of misdiagnosis and underdiagnosis William et al. (2019). For instance, the estimated
false-negative rates vary widely, ranging from 2% to 55% Branca and Longatto-Filho (2015).

“ VB T ) e

- -4‘
(a) CDTBS Dataset (b) A Certain Hospital Dataset

Figure 1: Examples of different cervical cell datasets. Figure 1(a)subfigure is a publicly
available CDTBS dataset and Figure 1(b)subfigure is a clinically collected dataset from a
hospital. They have problems such as image fading and insufficient cell staining that can
seriously affect the performance of the model on different datasets.

In recent years, deep learning techniques have been heavily applied to medical im-
ages Krizhevsky et al. (2017); Simonyan and Zisserman (2014); Ronneberger et al. (2015);
Girshick et al. (2014); Liu et al. (2022); Yi et al. (2020); Ghoneim et al. (2020); Wang et al.
(2022) due to their excellent results in all computer vision tasks.Menglu Zhang et al Zhang
and Shen (2021) proposed an automatic cervical cytology analysis detection framework
with effective feature representation, employing elastic transformation and channel space
attention modules to obtain more powerful feature extractors, suppress unnecessary fea-
tures, and effectively improve the accuracy of cell detection. Yixiong Liang et al Liang
et al. (2022) used the contextual relationships between cells and between cells and global
images to enhance each Region of Interest (Rol) feature and improve the classification ac-
curacy. Zhonghua Peng et al Peng et al. (2023) used YOLOV5 as a baseline model and used
Transformer Block combined with a multi-headed self-attentive layer to enhance feature
extraction to better extract cell features and obtain global information. Dongyao Jia et
al Jia et al. (2022) proposed an improved SSD network by adding supplementary cell fea-
tures to improve the overall accuracy of the model. Tingting Chen et al Chen et al. (2022)
improved the detection performance by learning more effective feature representations for
specific cell structures. These methods take full advantage of the fact that deep learning
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can automatically extract complex features from data at multiple levels, and automatically
learn and extract morphology, color, texture, and other features from cell images for cell
detection tasks, achieving better detection results.

However, due to the difficult and time-consuming acquisition and labeling of medical
image data, models are usually trained and evaluated on datasets collected from a single
medical institution. Thus the models have poor generalization capabilities, resulting in
poor application to other datasets. Deep learning models extract the high-order correlation
properties or features for pattern analysis or synthesis Deng (2014) Sarker (2021). Yet,
these features are unstable across cross-domain datasets, which can affect the generalization
ability and detection effectiveness of the model. For example, background features have
strong correlation with the goal cells, but the different equipment and staining methods used
by different medical institutions lead to differences in image quality and feature stability
across different datasets, as shown in Figure 1. Meanwhile, the problem of diverse shape
and size variations of cervical cells themselves can also seriously affect the generalization
performance of the model.

In order to improve the generalization of the model, this paper proposes a new method
for cervical fluid-based cell detection based on causal invariance theory, which ensures good
generalization of the model to new datasets by extracting potentially invariant causal feature
representations from cervical fluid-based pathology image data. The main contribution
points include:

(1) To address the interference problem of task-irrelevant features, a causal autoencoder is
introduced to extract the causal feature representations of cells. Focuses on identifying
key robust invariant features of different classes of cervical cells and reduces the impact
of task-irrelevant feature representations in the data. The effect of the variability of
feature distribution in different datasets is reduced, and the domain shift problem is
effectively solved;

(2) To address the interference problem of different background categories of cervical fluid-
based pathology images, deformable convolution and attention mechanisms are added.
On the one hand, the deformable convolution enhances the learning ability of the model
for different cellular irregular contour features. On the other hand, the attention mech-
anism enhances the feature extraction ability of the model for different foreground cat-
egories with variable shapes in the cervical fluid-based pathology images. By reducing
the impact of possible strong correlation between background features and goal cells,
the interference of foreground categories by problems such as fading and not bright
enough staining of stained films is reduced. The generalization ability of the model is
improved, which allows the model to be better applied to different medical institutions.

2. Methods

Figure 2 shows the overall architecture of the model, we use RetinaNet Lin et al. (2017) as
the baseline model, and first replace the normal convolution with Deformable Convolution
Block (DC-Block) in the backbone network ResNet-50, so that the model does not focus
only on the features in a rectangular box during the feature extraction process. Then, we
add the Spatial Attention-based interpretable module (SA), which makes the model focus
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Figure 2: The general architecture of the model. Where DC-Block denotes the Deformable
Convolutional block, SA denotes the Spatial Attention module, and CA denotes the Causal
Autoencoder module. In order to reduce the computational resources occupied by fea-
ture maps, RetinaNet starts from C3 for subsequent computation, and the neck network
FPN((Feature Pyramid Network) receives three feature maps C3, C4 and C5, and outputs
five feature maps P3-P7 into the head network for classification and regression.

on the foreground class to be detected and reduce the attention to the background class in
the feature extraction process. Causal Autoencoder (CA) is used to extract robust invariant
causal features for identifying different classes of cells, thus enhancing the generalization
ability of the model. The implementation of each module is described separately in the
following.

2.1. Deformable Convolution Block

Usually, when the convolution operation is performed on the feature map, the result value of
each pixel point after convolution is equal to the cumulative sum of the product of the pixel
point values within the size of the convolution block and the corresponding convolution
block position weights, centered on the current pixel point. The calculation is shown in
Equation 1,

y)= >, wp) =pi+p) (1)

p; € kernal
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where p; and p; enumerate the locations in kernel, specifically, p; represents the current
location to be calculated, the kernel defines the receptive field size and dilation. For
example, kernal = {(—1,-1),(-1,0),...,(0,1),(1,1)} defines a 3 x 3 kernel with dilation
1. And y (p;) represents the feature value of p; in the feature map after convolution, w
represents the convolution kernel, and w (p;) represents the weight value corresponding to
pj in the convolution kernel.

This convolution is limited by the size of the convolution kernel, the extent of the
perceptual field is basically equal to the size of the convolution kernel, and the features that
can be captured by the feature extraction module are thus limited to consider only pixels
of the rectangular convolution block around the convolution point. However, cervical cells
are usually in shapes such as circles, ovals and irregular polygons, and there is no regularity
in the size of the cells. In cervical cell detection, the complexity of variable size of different
cervical cell shapes can seriously affect the performance of the model. In order to avoid the
performance impact of incomplete target feature extraction, we add deformable convolution
to the model to replace the normal convolution block to extract target features of different
sizes and shapes, and then optimize the model.

The deformable convolution Dai et al. (2017) adds an additional offset clause Ap; to the
traditional standard convolution in the calculation of the sampling position, and the kernel
is augmented with offsets {Ap; | n =1,..., N}, where N = |kernel|, as shown in Equation 2.

y)= >, wp) zpi+p+Ap) (2)

p; € kernal

The offset map calculated by offset convolution has twice the number of channels as the
size of the convolution kernel, and stores the offset of each pixel point on the feature
map for each position in the convolution kernel in the horizontal and vertical coordinates,
respectively. During the training process, the parameters of the offset term can also be
continuously trained and make the convolution process capture the features of the cell itself
more accurately, reduce the influence of surrounding noise features, and improve the model
feature extraction ability.

2.2. Interpretable Modules Based On Spatial Attention

In addition to the effect of the shape of the cells themselves, the number of instances of
the background category in the cervical cell images (e.g., the presence of a large number of
partial adenocarcinomas with squamous intraepithelial neoplasia) is much larger than the
instances of the foreground category. Moreover, a certain amount of background noise is
generated during the production of pathology images, and these issues also have an impact
on the performance of the model. To solve these problem, we introduce a spatial attention
mechanism to improve the model’s recognition of foreground categories as a way to improve
the model generalization ability.

The spatial attention mechanism Woo et al. (2018) compresses the feature information of
multiple channels in a feature map to finally obtain an attention map with dimension 1 and
the same size as the input features, which responds to the importance of each pixel location
in space. Specifically, the spatial attention mechanism is used to calculate the channel
average and maximum value of each pixel of the input feature map F and superimpose
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them to generate new features. The feature map with channel dimension 1 is generated by
7x7 convolution, and after Sigmoid activation, a spatial attention map with values ranging
from 0 to 1 is obtained, indicating the importance of each pixel position in space, as shown
in Equation 3,

M, (F) = o (f™7 ([AvgPool (F) ; Maz Pool (F)])) (3)

where f7*7 represents a convolutional block calculation of 7x 7, AvgPool () and MaxPool ()
represent average pooling and maximum pooling calculations on the input feature map,
respectively, and then concatenate the two pooling results as inputs to the function f7*7,
o represents a Sigmoid operation.

The new feature map F’ is obtained by multiplying the obtained spatial attention map
My (F') with the original input feature map F, as shown in Equation 4.

F'=M,(F)®F (4)

2.3. Causal Autoencoder

Although the deformable convolution block and spatial attention mechanisms have enabled
the model to focus on all features of the foreground cell classes as much as possible. However,
not all features are useful when actually distinguishing between different classes of cells. For
example, cells of the same class in different datasets may differ in features such as color
and texture depending on the medical institution, and these features are not the basis for
distinguishing between cell classes, but rather affect the ability of the model to generalize
across different datasets. In contrast, pathologists typically identify abnormal cells based
on nucleus size and shape, features that are stable and invariant across domains and thus
require special attention from the model. To address this problem, we implemented a causal
autoencoder to solve it.

High-dimensional data tends to reduce the performance of feature learning, and autoen-
coder can extract useful information from the high-dimensional data of cervical pathology
image data by unsupervised learning, thus reducing the data dimensionality. However, the
commonly used autoencoder extracted information will have redundant information with
strong correlation with the goal cells, which severely reduces the generalization ability of
the model. Therefore, this paper uses causal autoencoder to perform feature extraction and
extract feature information with causal relationship with the goal cells. As shown in Fig-
ure 3, the causal autoencoder learns the low-dimensional representation by minimizing the
reconstruction error between the input and output data, and divides the low-dimensional
features into two categories by causal structure learning, i.e., causal features and other
irrelevant features.

The convolutional autoencoder consists of two stages, encoding and decoding, where
given the input data X, the encoder encodes it to learn the low-dimensional feature rep-
resentation &£, and then the decoder decodes it to obtain the estimated output . The
computational process is represented as follows,

Encoding: ¢V) = ¢ (Conv <§(j71),W§j)) —|—b§j)> ,J=1,2,--- L. (5)

Decoding: ¢V) = o (Deconv <w(j_l),ng)) + bgj)> ,J=1,2,--- L. (6)
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Figure 3: Architecture diagram of causal autoencoder. It consists of two parts: a convolu-
tional autoencoder maps the input data to a low dimensional feature space to reduce the
impact of noise in the data, and a causal feature decoder remaps the learned causal features
to a high dimensional feature space.

where [ is the number of convolutional layers of the convolutional autoencoder, o is the
nonlinear activation function, W is the weight matrix, and b is the bias vector.

Since the low-dimensional features learned by the convolutional autoencoder may con-
tain some redundant information that is not relevant to the goal cells. For example, the
background of cervical cell images and other irrelevant cells, which can reduce the robust-
ness of the model. Therefore, we expect that the model can focus on learning feature
representations that are causally related to the goal cells, since these causal features are
stable and invariant across domains.

Markov Blanket (M B) feature selection methods can quickly remove redundant features
and obtain the optimal feature subset Guyon and Elisseeff (2003); Ling et al. (2019); Yu
et al. (2020). Under the Markov Blanket condition of goal features, the valid information
of the goal is contained in its Markov Blanket, and all non-Markov Blanket (M B) features
are regarded as redundant features. We consider the M B features of the goal cell as its
causal features and the M B features as irrelevant features. To obtain the M B features
of the goal variable, the directed acyclic graph G on the low-dimensional feature £ is first
learned. Once G is obtained, the low-dimensional features obtained by encoding can be
distinguished into causal features and task irrelevant features.

Inspired by Zheng et al. (2018), we use the adjacency matrix A = [a1 | ... | ax] € R¥¥F
to encode the directed acyclic graph of &, where each column a; denotes the coefficients
of the linear structural equation model Z; = ain + N;, N; denotes the additive noise, and
Z; € Z is a parent (a direct cause) of Z; and Z; is a child (a direct effect) of Z; if there is a
directed edge from variable Z; to variable Z;, and Z is the set of k-dimensional high-level
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feature representation variables. Under the condition that A is acyclic Yang et al. (2021),
a new matrix A is obtained by thresholding the edge weights of A,

. 0, iflAlillj]l <o

Al = { Ali][j],  otherwise. (™)
if |A[i] [§]| > o holds, it means that there exists a directed edge from variable Z; to variable
Zj, i.e., Z; is a direct cause of Z;.

Because in a directed acyclic graph, the Markov Blanket of a node is the parent node,
child node and parent of child node of that node. So once A is obtained, we can find
these nodes with causal relationship with the goal variable by matrix A to identify the MB
feature representation of the goal cell, and we can divide the low-dimensional features into
two groups, which are causal features M B (£) and other irrelevant features M B (§). Then
we use the causal feature decoder to decode the learned low-dimensional causal features,
and the obtained causal feature graph is computed with the input feature graph to obtain
the new feature graph.

We perform unsupervised pre-training on it using the CDTBS training dataset. The
overall loss function is shown in Equation 8,

Lo=Lp+alp (8)

where Lp denotes the reconstruction loss, Lg is the model parameter regularization term,
and « is used as the weight value to adjust the loss weight.

2.4. Network Optimization

The features output by the causal autoencoder are input to the FPN, and then the multi-
scale image features are output and fed into two prediction modules, the classification subnet
and the regression subnet, respectively. The probability of which class the cell belongs to
is predicted in the classification subnet, and the location of the cell is predicted in the
regression subnet, and finally the two predictions are combined to obtain the cell detection
result. In the classification subnet, Focal Loss is used to calculate the classification loss L.
as shown in Equation 9,

Los = —ay (1 - pt)A/ log (pt) (9)

In the regression subnet, Ly, represents the coordinate offset regression loss of the anchor
frame generated according to the anchor point, and Smooth L1 loss is used in this paper
instead of L1 loss for the calculation, as shown in Equation 10,

B 0522, |z| <1
Lvbos = { |z| — 0.5, otherwise (10)

where z represents the difference between the predicted value and the true label. When the
prediction difference is less than 0.5, L2 loss is used for calculation, conversely, a certain
degree of offset is added on the basis of L1 loss calculation. Thus Smooth L1 loss inherits the
advantages of both, solves the gradient explosion problem during training, and improves the
stability of training. Thus the loss function of the final goal detection model is calculated
as follows,

Edet = ﬁcls + ﬁbbox (11)
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3. Experiments
3.1. Datasets

To evaluate the model performance, two datasets were selected: the CDTBS Liang et al.
(2018) and a clinical cervical fluid-based pathology image dataset from a hospital:

CDTBS Dataset. It is a public dataset. The dataset contains 7410 cervical fluid-
based pathology images cropped from Whole-Slide Images (WSI) obtained from digital
scanners, containing a total of 11 cell categories, which are ASC-US (ascus), ASC-H (asch),
low-grade squamous intraepithelial lesion (lsil), high-grade squamous intraepithelial lesion
(hsil), squamous-cell carcinoma (scc), atypical glandular cells (agc), trichomonas (trich),
candida, flora, herps and actinomyces (actin).

A Certain Hospital Dataset. It was acquired from clinical cervical cancer screening
in a hospital and desensitized. The dataset contains 11,739 cervical fluid-based pathology
images cropped from WSI obtained from a digital scanner, of which 3,171 were labeled by
pathologists, and the test dataset contains 518 labeled images. A total of 8 categories of
cells are included, which are asch, ascus, hsil, scc, age, Isil, candida and flora.
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Figure 4: Example of cervical cells.
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Data Augmentation. For an original image of the training dataset, three different
clockwise rotations of 90 degrees, 180 degrees and 270 degrees are performed first. Then they
are flipped horizontally to obtain a new sample. After such two layers of data augmentation,
compared with the original training dataset, the cell size and angle transformations are
more abundant, and the overall sample size is increased while the sparse categories are
supplemented in large quantities, enabling the model to fully learn the different category
features.
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3.2. Experimental Setup and Evaluation Standard

Implementation Details. The causal autoencoder is pre-trained using the Adam Kingma
and Ba (2014) optimizer with the batchsize set to 2 and the learning rate set to 0.001. In
Equation 8, the parameter « is set to 0.01. The backbone network of the overall model
is ResNet-50 obtained by pre-training on ImageNet Deng et al. (2009), the neck feature
extraction network is FPN, and the feature dimension of the output to the prediction
module is 256 dimensions. The input cervical cell images are uniformly 1024 x 1024 pixel
size, using an SGD Zhou et al. (2020) optimizer with a learning rate of 0.0025, momentum
set to 0.9, weight decay to 0.0001, and batchsize set to 8. The overall model is implemented
through the PyTorch deep learning framework, and the hardware is configured with a 1TB
hard disk and 128G of memory. The CPU configuration is 8-core 2.40GHz*4, and the GPU
configuration is NVIDIA GeForce 2080 Ti.

Assessment. The assessment metric we used was mAP (mean Average Precisions),
which is the average AP wvalue for each category. Usually, AP50 is considered to have
indicative results for good localization and classification scores. Therefore, we use an IoU
threshold of 0.5 to calculate AP and then combine the average as the final evaluation result.

3.3. Experimental Results

Analysis Of Single-domain Experimental Results. The single-domain experiments
were trained on the training dataset of CDTBS and tested on the test dataset of CDTBS.
The results of our model were compared with other classical one-stage models, and the
results are shown in Table 1. As can be seen from the table, our proposed model has a
+2.3% improvement in mAP compared to the baseline RetinaNet model, and a +0.9%
and +1.1% improvement compared to SSD Liu et al. (2016) and FCOS Tian et al. (2019),
respectively. In addition, our method also has better results compared to other cervical
cell detection models. Compared with the detection accuracy of the model Comparison
Detector Liang et al. (2018) using the same dataset for experiments, our model has a
significant improvement in detection accuracy, which is +5.6% higher.

Table 1: Experimental results of different models on the CDTBS dataset

Method BatchSize mAP
SSD 8 50.6
FCOS 8 50.4
RetinaNet 8 49.2
Comparison Detector 4 45.9
Ours 8 51.5

The detection of cervical cancer cells and precancerous cells is crucial as missed diagnoses
in cervical fluid-based cell testing can affect the timely treatment of patients, and morbidity
and mortality rates can increase as a result. A visual analysis of the RetinaNet model
and our model test results is presented in Figure 5. From the figure, it can be found
that compared with RetinaNet, our model can identify abnormal cells more accurately and
improve the detection rate, which is important for reducing morbidity and mortality.
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Figure 5: Visualization of prediction results. Figure 5(a)subfigure shows the ground truth
annotation results, Figure 5(b)subfigure shows the cell detection results of RetinaNet drawn
in green boxes, and Figure 5(c)subfigure shows the detection results of our model, with
the yellow oval circles pointing out the abnormal cells detected by our model more than
RetinaNet.

Ablation Experiments. The ablation experiments are used to verify the effectiveness
of the modules of our model such as causal autoencoder, deformable convolutional block
and spatial attention mechanism, and the experimental results are shown in Table 2.

As can be seen in Table 2, the first row is not good using only the baseline model.
The second row is a +15.4% improvement in mAP after data augmentation, which indi-
cates that the cell sizes and angles become richer after rotation and flip, enhancing the
applicability of the model to the unknown transformation of the goal. The third row is a
+1.3% improvement compared to the baseline model after adding the causal autoencoder,
indicating that the causal features effectively reduce the impact of task-irrelevant features
and help the model perform classification detection more than the correlation features. The
fourth row shows a +0.2% improvement in mAP after replacing the normal convolution
block with the deformable convolution block, indicating that the deformable convolution
is helpful for the model to detect various types of cells with different morphologies. The
fifth row is the introduction of the spatial attention mechanism, which gives the model a
+1.9% boost, a good proof that it can better capture the foreground category and reduce
the interference of the background category. The last row shows the result of our model,
which has a significant boost of +2.3% over RetinaNet.
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Table 2: Ablation experimental results of the model on the CDTBS dataset (DA: Data
Augmentation; CA: Causal Autoencoder; DC: Deformable Convolution; SA: Spatial Atten-
tion)

DA CA DC SA mAP
33.8
49.2
v 50.5
v 49.4
v 51.1
v v v 51.5

AENENENEN

Cross-domain Generalization Capability Assessment. In the field of machine
learning, the generalization ability of a model usually refers to its performance on new
data. Models with good generalization ability are able to perform well on unseen data,
while models with poor generalization ability may perform poorly on new data. To verify
that our method can effectively improve the generalization ability of the model, we selected
two different datasets for cross-domain experiments: the CDTBS dataset was used as the
source domain to train the model and tested on a clinical cervical cancer screening pathology
image dataset from a hospital. In this experiment, we unified the annotations of the CDTBS
dataset into the same eight categories as a hospital dataset, and removed the redundant
images that did not contain these categories from the training dataset. The experimental
results are shown in Table 3.

Table 3: Results of cross-domain experiments

Method mAP
RetinaNet 38.8
RetinaNet+CA 41.3
RetinaNet+DC 40.4
RetinaNet+SA 40.2
Ours 42.7

The experimental results show that the performance of the model on the cross-domain
experiments is improved by +2.5%, +1.6% and +1.4% after adding the causal autoencoder,
the deformable convolution and the spatial attention mechanism, respectively. Among them,
the causal autoencoder improves the generalization ability of the model the most, which
indicates that the causal autoencoder can better capture the actual causal relationships
in the data, filter out the task-irrelevant features, reduce the influence of the variability
of feature distribution among different datasets, and thus improve the robustness of the
model. When all three methods are applied to the baseline model simultaneously, the mAP
value improves by 3.9%, which effectively verifies that our method not only improves the
prediction performance of the model, but also better improves the generalization ability of
the model.

Further, we used t-SNE Van der Maaten and Hinton (2008) to visually validate the
algorithm effectiveness. t-SNE is a dimensionality reduction technique that preserves local
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Figure 6: Visualization of t-SNE. Each color in the figure represents a cell category, for a
total of 8 categories.

relationships in high-dimensional data and maps high-dimensional data to 2D or 3D space
for visualization purposes. Specifically, it calculates the distance between each sample point
and its adjacent sample points, converts these distances into probability distributions to
represent their similarity with other data points, and then uses Gaussian kernel functions
to map these probability distributions into 2D or 3D space. RetinaNet and our method
performed the cell detection on the CDTBS dataset separately, and the visualization of the
t-SNE data distribution of the detection results is shown in Figure 6.

It can be seen that the data distribution of the same category in Figure 6(a)subfigure is
relatively discrete and the features between different categories stick to each other severely,
while in Figure 6(b)subfigure relative to Figure 6(a)subfigure the same category becomes
close to each other and the spacing with different categories becomes larger. It can be
seen that our method facilitates the alignment of category features, which makes the model
easier to classify and thus improves the generalization ability of the model.

4. Conclusion and Outlook

In this paper, a cervical fluid-based cell detection model with strong generalization capabil-
ity is proposed based on RetinaNet. A causal autoencoder is used to learn the causal features
of goal cells in pathological images, while a spatial attention mechanism and deformable
convolution are introduced to improve the grasping ability of foreground categories. The
comparison of experimental results shows that our method improves the accuracy of the
baseline model and outperforms other classical models while improving the accuracy of the
baseline model by 3.9% in cross-dataset experiments, which greatly improves the cross-
domain detection capability of the model. In the future, we will try more algorithms to
learn the causal structure in the cervical fluid-based cell images and optimize the network
structure and training method of the causal autoencoder to make it better applied to cer-
vical abnormal cell detection. And we have also noticed that advanced data augmentation
techniques in pathology may improve model generalization performance, and we will focus
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on it as a research focus in the future. In addition, we will quantitatively compare the effi-
ciency impact of each module through experimental analysis in the future, seeking a better
balance between efficiency and accuracy.
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