Proceedings of Machine Learning Research 222, 2023 ACML 2023

Domain Generalization with Interpolation Robustness

Ragja Palakkadavath R.PALAKKADAVATH@QDEAKIN.EDU.AU
Applied Artificial Intelligence Institute, Deakin University
Thanh Nguyen-Tang NGUYENT@QCS.JHU.EDU
Whiting School of Engineering, Johns Hopkins University
Hung Le THAL.LEQDEAKIN.EDU.AU
Applied Artificial Intelligence Institute, Deakin University
Svetha Venkatesh SVETHA.VENKATESHQDEAKIN.EDU.AU
Applied Artificial Intelligence Institute, Deakin University
Sunil Gupta SUNIL.GUPTA@DEAKIN.EDU.AU

Applied Artificial Intelligence Institute, Deakin University

Editors: Berrin Yanikoglu and Wray Buntine

Abstract

Domain generalization (DG) uses multiple source (training) domains to learn a model
that generalizes well to unseen domains. Existing approaches to DG need more scrutiny
over (i) the ability to imagine data beyond the source domains and (ii) the ability to
cope with the scarcity of training data. To address these shortcomings, we propose a
novel framework - interpolation robustness, where we view each training domain as a point
on a domain manifold and learn class-specific representations that are domain invariant
across all interpolations between domains. We use this representation to propose a generic
domain generalization approach that can be seamlessly combined with many state-of-the-art
methods in DG. Through extensive experiments, we show that our approach can enhance
the performance of several methods in the conventional and the limited training data setting.
Keywords: domain generalization ; limited data ; robustness ; latent interpolation ;
invariant representation

1. Introduction

Domain generalization (DG) (Muandet et al., 2013) aims at learning to generalize well to an
unseen distribution given data from multiple source distributions. Training data is available
from a set of related sources, where each source pertains to a set of labeled data from a
specific domain distribution. Domain distributions can differ from each other in multiple
ways. For example, the shift can occur in covariates, label generation mechanisms, or both.
In this paper, we are concerned with generalization under covariate shift where domains
differ in their covariate distributions.

Fig 1 displays images from PACS dataset (Li et al., 2017a), a benchmark dataset for
domain generalization. Images belong to the classes elephant and dog and extend across
four domains: photo, art painting, cartoon, and sketch. A good generalization algorithm
trained to distinguish between these classes on the domains comprising photos, cartoons, and
sketches should be able to successfully classify the data in a new domain, e.g., art painting.

© 2023 R. Palakkadavath, T. Nguyen-Tang, H. Le, S. Venkatesh & S. Gupta.

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

GO () G
- PN =D
By 0
i il
jftat pcary
(¢) cartoon (d) sketch

Figure 1: Sample images from the PACS dataset - the images are from the dog and elephant
class and belong to the domains: photo, art painting, cartoon, and sketch.

¥ .
=

A
]"':"_‘."'
——he
g =

(a) original ~ (b) translated (c) translated (d) original (e) translated (f) translated
(sketch) (photo) (limited data) (photo) (sketch) (limited data)

Figure 2: An illustration of limited data problem in DG. The power of domain density
transformations in DIRT reduces when training data is limited. The translated images from
the StarGAN model of DIRT become too incoherent for proper identification when the
training data (PACS dataset) is scaled down. Hence, domain density transformation alone
is insufficient for a well-generalized classifier in the limited data setting.

An effective way to generalize from multiple sources is to find common patterns across
all the source domains. Many of the popular models in DG such as DIRT (Nguyen
et al., 2021), MBDG (Robey et al., 2021), DDAIG (Zhou et al., 2020) do so by learning
transformations between source domains by mapping the data from one domain to another
and enforce their underlying representations to be similar and, therefore, domain invariant.
The transformations are learned using generative models (e.g., StarGAN (Choi et al., 2018),
CycleGAN (Zhu et al., 2020), MUNIT (Huang et al., 2018)).

Imagining beyond source domains. One of the limitations of domain invariant
transformation models is their inability to imagine data beyond the source domains. Since
the goal of DG is to perform well in a target domain, performing translations between source
domains alone may overfit the model’s imagination capability solely to the training data.
As an example, DIRT learns the invariant representation by enforcing the representations of
an instance and its domain-translated versions to be similar. If it were to transform an
image of a dog in the photo domain to the sketch domain, it aligns the photo and sketch
closer but does not know about other domains around it.

Failure of existing models under limited data. Domain invariant transformation
models translate data from one domain to another using generative models such as
StarGAN (Choi et al., 2018), CycleGAN (Zhu et al., 2020), MUNIT (Huang et al., 2018)
that require a substantial amount of training data. However, there is a shortage of labeled
training data in many critical applications (e.g., medical image analysis (Castro et al.,
2020)). Solutions for DG must address this challenge while also being robust with unseen

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

data. Existing solutions often assume sufficient training data, but training is difficult when
supervised data is scarce. As illustrated in Fig. 2, the domain translations performed by
StarGAN (used in DIRT (Nguyen et al., 2021)) on images from the PACS dataset are not
very effective when the training data reduces to 5% (~ 500 images). This problem can
trickle down to the generalization capabilities of the DG model in the limited data setting.

To overcome the above limitations, we propose a novel approach called Interpolation
Robustness which addresses DG in the conventional and the limited data setting. Our
key perspective is that we view a domain distribution as an interpolation between the
distributions of other domains, and by learning a representation that is invariant and robust
under such interpolation, we can equip the model to have better generalization in unseen
domains. To realize this insight in practice, we interpolate between latent representations
of a pair of inputs from two different domains that have the same class label by varying
the mixing coefficient. We assign the same class label to every intermediate representation
on the interpolation path. This approach allows the model to learn a representation that
is invariant for the source domains and invariant across all the interpolated domains. It
leads to better domain generalization, especially when the unseen domain falls around the
interpolated domains. This can be conceptualized as expanding from the source domains to
the full span of their interpolations.

More abstractly, if the domain distributions were points on a manifold, we can recover
many points not initially present in the training data through interpolation. Our concept
of interpolation robustness can be valuable in scenarios with limited training data. When
there is insufficient training data, we need a method that ensures robust representations
of images in the latent space across various imaginary domains. Interpolation achieves
this by densifying the distributions of existing domains via creating new domains through
interpolation. Our main contributions are:

e We propose interpolation robustness, a novel framework for DG that aims at learning
a representation that is robust against interpolation between different domains;

e We create a practical model-agnostic approach that one can use along with any of the
existing DG algorithms that use domain-invariant representation;

e We show that our method can significantly enhance the performance of state-of-the-art
domain invariant representation-based models on PACS, VLCS, RotatedMNIST, and
OfficeHome datasets for the DG task in conventional and limited data settings.

2. Related Works

2.1. Invariant Representation Learning

One of the popular approaches to DG is to learn a domain-invariant representation (Arjovsky
et al., 2019; Li et al., 2018; Nguyen et al., 2021; Zhao et al., 2020) from the training domains.
This stems from the assumption that the differences across domains are irrelevant to the
classification task and there exists a common representation that captures all the domains.
The aim is to extract a domain-agnostic model from these domains which generalizes to an
unseen domain. Existing DG algorithms transform data into a representation that captures
the essence shared by all the domains while eliminating non-generalizable features from

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

individual domains. Minimizing the domain divergences between any training domain and
its domain-translated version has been a recent area of research. It has achieved effective
performance (Nguyen et al., 2021; Robey et al., 2021; Zhou et al., 2020) in DG with covariate
shift. Large generative models (e.g., GANSs) are used to perform domain translation. Our
studies show that training a generative model is less effective when the training data is
limited. Since the domain translations are only among the source domains, there is a good
chance of these hugely parameterized models overfitting to the training data.

2.2. Training Strategy

Prior works have used different training strategies to promote generalization capabilities.
Examples of such models are meta learning (Li et al., 2017b; Balaji et al., 2018) and ensemble
learning (Wang et al., 2020a; Mancini et al., 2018; Cha et al., 2021). Meta-learning in DG
divides the source domains into multiple train and test sets. The models are trained on the
train set and made to adapt to the test set. Since they have been trained to adapt to unseen
data, they are also expected to generalize well to an actual unseen domain. In ensemble
learning, multiple domain-specific models are learned for each source domain. Then these
models are combined in different heuristic ways to make predictions for the unseen domain
to improve the generalization ability. Other than assembling model predictions, weights of
the model obtained across different epochs are averaged for better generalization.

2.3. Data Augmentation Techniques

Augmenting the training data with additional information can enhance the diversity of
training data. Heterogeneity brought by data augmentation could prevent overfitting and
improve the generalization ability. Additional information can be created through adversarial
data augmentation (Zhou et al., 2020; Volpi et al., 2018), through style transfers (Li et al.,
2020; Gong et al., 2019), using optimal transport techniques (Zhou et al., 2021).

Recently, few works (Yao et al., 2022; Wang et al., 2020b; Yan et al., 2020) have adapted
Mixup (Zhang et al., 2018) to address the problem of subpopulation shift and distribution
shift. These methods mix the input and their labels in the pixel space. However, images
created through the combination of other images in the pixel space can cause a complex
arrangement of latent representations and lead to non-smooth classifier boundaries (Verma
et al., 2018). They may contain noisy artifacts caused by the mixing of two different
images (e.g., see Fig. 3(b)). Moreover, augmenting high-dimensional interpolated images
with the training data puts an additional burden on the training procedure. Manifold
Mixup (Verma et al., 2018) combines data in a latent space instead of pixel space. It has
shown better performance over pixel space mixup for in-distribution classification setting.
However, Manifold Mixup has not been used in a DG context.

In contrast to Yao et al. (2022); Wang et al. (2020b); Yan et al. (2020) that address
distribution shift by mixing samples in the pixel space, we perform the interpolation in a
latent space. Fig. 3 shows that interpolation in a latent space leads to better-quality images.
Despite combining representations of images in the latent space, our work differs from
Manifold Mixup as follows. (i) Instead of combining the input representation and their label
in the latent space for a fixed coefficient, we create a span of interpolated domains between the
source domains, which is more informative to the model. (ii) Instead of interpolating between

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

%5)%5)%) %) %)% %)% B0 %[%] %] A A 4] 4] 4 A 4
5% %% %% 50% %% % %N NN
5% %% % %% %%)% %% %K% k% %k

5% %% %% %%
G %% %% %%
& % & O G 0 By G

Qo O O Op Op Do Do Do Do fo
Co Oo G0 G0 Go Do fo fo o to

B B % % % % % % 0 &b b b B o o bo bo bo o
R

(b) Pixel Space Interpolation

Figure 3: Fig. 3(a) shows the interpolated versions of a digit (class) between two angles
(domain) in the latent space. For example, we interpolate digit 3’s angle (domain) from 15°
to 30° at a step of 0.02. Similarly, we create interpolations of digit 8 between 30° to 45° at
the step of 0.02. Fig. 3(b) shows the same in pixel space. As seen in Fig. 3, the interpolation
results in images that lie between 15° to 30° for digit 3 and 30° to 45° for digit 8. These
angles (domains) were not present in the training data. Images obtained show promise of
discovery of new domains originally not present in the data from interpolation.

pair of random representations, we only interpolate between pairs of latent representations
from the same class and different domains. Our class-consistent interpolation establishes an
invariant property that clusters representations of the same class from different domains.

3. Domain Generalization via Interpolation Robustness

Problem setting. We consider the standard setting of DG where data from multiple
labeled source domains § = {S1US;y...US,,} where S; ~ Py is a collection of domain d
(where d € D) data of the form (x,y), where x € X is the input, y €) is the label of x.
The goal of a DG learner is to learn from S and generalize well to a novel domain d that
was unseen during training.

Motivation for Interpolation Robustness. Domain invariant transformation models
lack the capability to envision data beyond the source domains, which may hinder their
effectiveness in achieving DG.

We illustrate our interpolation robustness idea through an example. We use the
RotatedMNIST dataset, where the domains are the angles of rotation. It contains 6
domains as follows: [0°, 15°, 30°, 45°, 60°, 75°]. The task is to perform well in an unseen
domain. As seen from Fig. 3(a), an encoded representation of digit 3 at 15° and at 30° are
interpolated at intervals of 0.02 to generate the representations between 15° and 30°. Due
to class-consistent, robust interpolation, the intermediate image representations continue to
be digit 3. However, they are at different rotation angles between 15° and 30°, which were
not present in the training data. Intermediate representation may not always result in a
domain close to the target domain, but it provides the model with rich information different
from the training data. Such representations can enable the model to imagine different areas
of the latent space for which no source data is present and fill up its knowledge of the latent
space of possible domain distributions’.

1. At a high level, Nguyen et al. (2023) also share our idea of capturing all possible domain distributions,
though for a different problem of test-time adaptation. In addition, their imagined domain distributions
are constructed from a set of transformations on the feature space (using adversarial samples), not in the
latent space using interpolation as in our framework.

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

o Ch > y=dog < Ch 7 I}
..... \

/ \ Interpolated
: K] Domain H

E¢ . : Interpolated 2 : E
- Domain_ / A H . ¢

Interpolated sz
X~ Pd(x | y) Domain K .

(% op Photo
(Yol / (source domain)

Figure 4: A schematic of interpolation robustness. Image instances x and x’ are sampled
from the same class y but with different domain identifiers (d # d'). They are passed through
encoder (Ey4) to get latent representations z and z'. Intermediate samples z are obtained by
interpolating from z to z’ by varying w from 0 to 1. Classifier (Cy) takes z, z’ and z to the
same class y to ensure robustness against interpolation operation.

3.1. Design

We describe the practical realization of interpolation robustness below. It has 3 components.

Encoder: We consider an encoder as Eg : X — Z, parameterized by ¢. It maps data
from the high-dimensional pixel space into a low-dimensional latent space. Fy must create
the latent representation space Z such that the representations z obtained from inputs
that share the same label should lie clustered together and z’s obtained from inputs having
different labels should lie spread apart. The classifier module below ensures that property.

Classifier: We consider a classifier as Cy : Z —), parameterized by 6. Cy(z) predicts the
class of samples x from their latent representation z via the encoder E4. For Cy to associate
the representation z to its correct label, we minimize the following loss function:

Las(0,9) = E[I(Co(Ey(x)),y)] (1)

where [: Y x Y — R is the training loss (e.g., cross-entropy), and the expectation is taken
with respect to x ~ Py(x | v),y ~ Pai(y),d ~ D.

Interpolator: Instances x and x’ with the same label y are sampled from domains d and d’
respectively, i.e. x ~ Py(x | y) and X' ~ Py (x' | y). The encoded latent representations are
obtained as z = Ey(x) and z’ = Ey(x’). Inputs to the interpolator are z, z’ and interpolation
weight w. The interpolator outputs a latent representation z = I(z,z’,w). The set of
interpolated samples {z} that define the interpolation path is obtained by sampling w at
uniform intervals from 0 through 1. Interpolation can be performed in multiple ways. Eq. 2
below is an example of linear interpolation.

z=1(z,2,w)=z+w(z —z) (2)

We have posited that the domains lie on a low-dimensional manifold. Using a strictly linear
interpolation on this manifold may be rigid and only allow the discovery of domains on linear

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

Algorithm 1 DNT: DeepAll with IN Terpolation Robustness
Require: Training data: S, batch size: B, learning rate: 7, hyperparameter A
1: Initialize the weights of the neural networks: 6, ¢ and v
2: for epoch in MAX_EPOCH do
3: Sample batches {x;, y;, d;}2, {x}, v}, d/}2, from S such that d} # d; and y; = v/
for each i do
z; < Ey(x;) # Compute the representations via the encoder
z; = Ey(x;)
{zi} < 0, {yi} < 0
for w ~ Unif([0, 1]) do
z; < z; + w Ty (z, — z;) # Compute the interpolations
10: {2;} «+ {2;} Uz # Stack representations for the interpolation path
11 {vi} < {wi} Vi
12: end for
13: end for
14: Las(0,0) < >, [U(Co(z:), 1)) # Compute the classification loss
15 Lunl0,6,0) « 3, 1Co (), {uih) + T2, - 2:) — (2 — 2)]l]
16: »Cdnt < ‘Ccls(eu ¢) + A ['int(eu ¢a ¢
17: 0+ 06— nv9£dnt
18: ¢ ¢ — nvd)ﬁdnt
19: Y <=1 —nVyLan # Update the parameters via gradient descent
20: end for
21: return Trained 6, ¢ and

paths. This might cause many domains to be left unexplored. To add flexibility, we extend
from linear to nonlinear interpolation using a parametric function T}, such that T, : Z — Z.
Given this, we have our definition for nonlinear interpolation below:

z=1(z,2,w,Ty) =2+ wTy(z —z) (3)

Ty for linear interpolation is an identity mapping. In the nonlinear case, a neural network
can be used model T;,. However, at w = 1, z should be close to z’ ensuring that the terminal
of the interpolation curve is z’. This is realized by minimizing: ||T (2 — z) — (2’ — 2)|2.

Given z and z’, we enforce the interpolated samples z to have the same label under
interpolation, i.e. z should yield the same label y as its reference representations z and z’.
We define the interpolation robustness loss (INT) below to encode such behavior.

Lint(0,0) =E [l (Co(I(2,2',w,Ty)),y) + |Ty(2 — 2) — (2 — 2)l2] , (4)
where the expectation is taken with respect to y ~ Py(y), (d,d") i D,x ~Py(x|y),x' ~
Py (x| y) and w € Unif([0,1]). Thus, to train Ey4, Cy and T, we jointly minimize the loss
in Eq. (5). Our final loss function is:

ﬁdnt(ev ¢a ¢) = Ecls(ea ¢) + A Eint(ea ¢7 ¢)7 (5)

where A is a regularization hyperparameter. Training a DG model with only L. is the

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

Table 1: Baselines and Our models

Baseline Our corresponding model variant
DeepAll : L DNT: L, Lint
Mixup: Les, Lmixup DNT: L, Lint
Manifold Mixup: Leis, Lmanifoldmixup DNT: Las, Lint
DIRT: £c157 l:dirt DRINT: Eds, Edirtv ['int
DGER: L, Lager DGNT: Las, Lager, Lint

same as performing empirical risk minimization on the aggregated training data across all
domains. It is referred to in the literature as DeepAll (Zhang et al., 2022; Nguyen et al.,
2021; Carlucci et al., 2019; Dou et al., 2019). It is used as a building block for every DG
algorithm. We refer to the standalone variant of our interpolation robustness model with
nonlinear interpolation as DNT (DeepAll + iNTerpolation : Lgs + Lint) and describe it in
Algorithm 1. Our method can also be used as a meta approach with other DG methods that
use invariant representation. Namely, we consider DIRT (Nguyen et al., 2021), DGER (Zhao
et al., 2020). We describe these variants as DIRT with interpolation robustness; DRINT:
(Leis + Lint + Laire) and DGER with interpolation robustness; DGNT: (Lcis + Lint + Ldger)-
Lairy and Lyger were proposed in Nguyen et al. (2021) and Zhao et al. (2020) respectively.

3.2. Experiments

We perform experiments to demonstrate the effectiveness of our proposed method. We
discuss baseline methods, datasets used, and the experimental settings. We also provide the
experimental results, followed by a few visualizations of the latent space.

3.2.1. BASELINES

DeepAll performs empirical risk minimization over the aggregated training data from all
the domains. It is commonly used as a baseline in DG literature (Carlucci et al., 2019; Dou
et al., 2019; Nguyen et al., 2021; Zhang et al., 2022).

DIRT (Nguyen et al., 2021) enforces invariance on z through domain invariant density
transformations and is one of the best performing models in its model family. We chose this
model as one of our baselines to demonstrate its performance deterioration due to limited
training data.

DGER (Zhao et al., 2020) enforces conditional invariance (p;(y | z = f(x)) = q(y |
z = f(x)) for all domains i on the representation z via an entropy regularization term.
We chose DGER as a baseline because it combines multiple regularization techniques like
entropy regularization and adversarial learning, and we want to show that our method can
be used with a complex model that performs invariant representation learning to improve
its performance.

DGER and DIRT perform invariant representation learning. We use our interpolation
idea in combination with the representation learning used in these respective methods. We
compare DeepAll, DIRT, and DGER with our model variants DNT, DRINT, and DGNT,

respectively. We also compare our method with two Mixup based baselines described below.

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

Mixup-DG (Yan et al., 2020) combines images and their labels in the input space
within samples in the training data to solve the problem of distribution shift. We included
Mixup-DG (referred to as Mixup from now) as a baseline because it also utilizes interpolation
to improve generalization in DG.

Manifold Mixup-DG (Verma et al., 2018) is a mixup-based model that performs
interpolation in latent space instead of the input space. Manifold Mixup performs better
than Mixup for in-distribution generalization. However, it has not been used in the context
of DG. We adapt Yan et al. (2020) by replacing the pixel-based interpolation with latent
space interpolation to create a Manifold Mixup baseline for DG (referred to as Manifold
Mixup from now). We compare Mixup and Manifold Mixup with DNT, our model discussed
in Algorithm 1. We summarize the baselines and our model variants in Table 1.

3.2.2. DATASETS

We ran our experiments on 4 benchmark datasets in DG: PACS, VLCS, RotatedMNIST,
and OfficeHome. We discuss 3 of them here. Experiments on the OfficeHome dataset are
discussed in the supplementary material.

PACS (Liet al.,, 2017a) dataset consists of 9991 images from 7 classes. These images
come from one of the four domains: art painting (A), cartoon (C), photo (P), and sketch
(S). This dataset provides a good generalization gap between the domains.

VLCS (Ghifary et al., 2015) dataset contains 10,729 images from 4 domains, where
each domain itself is a dataset of natural images. They are VOC2007 (V), LabelMe (L),
Caltech-101 (C), and SUN09 (S). The images are distributed across 5 classes.

RotatedMNIST (Ghifary et al., 2015; Ilse et al., 2020). Each domain of this dataset
consists of 1000 samples of MNIST digits (LeCun and Cortes, 2010) with 100 from each
class rotated at a specific angle. There are 6 such domains with the following degrees of
rotation: 0°,15°,30°,45°,60° and 75°.

3.2.3. EXPERIMENTAL SETTINGS.

After splitting the dataset into train, validation, and test splits, we trained our models on
the training data. To address the limited data scenario, we opted to reduce the size of our
training dataset. We followed proportional sampling that does not modify the distribution
of the class labels across domains (Py(y)). For PACS, VLCS, and RotatedMNIST datasets,
we randomly sampled subsets from each of the following sizes: 20%, 10%, and 5% of the
training data while keeping P;(y) intact. 5% was the smallest subset we could choose while
ensuring a representative sample from every class and domain. We scaled down training and
validation data. We did not modify the test data.

Implementation Details. For the PACS dataset, we chose E; as Resnet-18 (He et al.,
2016) for experiments related to DeepAll, DIRT, and DGER and Resnet-50 for Mixup and
Manifold Mixup. For the VLCS dataset, we chose Alexnet (Krizhevsky et al., 2012) as Ey
for the experiments related to DIRT and DeepAll, Resnet-18 for DGER, and Resnet-50 for
Mixup and Manifold Mixup. For the RotatedMNIST dataset, we used the standard MNIST
CNN as Ey across all models, where the feature network consists of two convolutional layers

Table 2: Prediction accuracy % on PACS. Our methods: DNT, DRINT, and DGNT

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

outperform DeepAll, DIRT, and DGER, respectively

PACS
100% 20% 10% 5% Average

Model Ey Acc £ Std Err Acc £+ Std Err Acc £ Std Err Acc + Std Err Acc
DeepAll Resnet 18 80.25 + 0.5 69.17 + 0.8 64.77 = 1.3 58.50 4+ 2.2 68.18

DNT o 82.92 4+ 04 72.62+12 68.66+ 13 61.29+ 18 71.37

DIRT Resnet 18 82.81 + 0.3 73.02 £ 0.7 66.58 + 1.6 59.98 4+ 2.6 70.60
DRINT 84.03 £ 0.4 74.63 £ 1.0 70.56 + 1.3 64.80 + 2.0 73.50
DGER Resnet 18 80.85 + 0.4 73.80 + 1.0 69.79 + 1.2 65.00 + 1.5 72.36
DGNT 81.08 £ 0.4 75.00 £ 1.0 72.31 £ 1.0 68.24 £ 1.5 74.16

Table 3: Prediction accuracy % on VLCS. Our methods: DNT, DRINT, and DGNT

outperform DeepAll, DIRT, and DGER, respectively.

VLCS
100% 20% 10% 5% Average

Model E, Acc £ Std Err Acc £ Std Err Acc £+ Std Err Acc £ Std Err Acc
DeepAll 71.56 + 0.8 68.71 + 0.9 67.81 + 1.3 63.13 + 1.1 67.80

DNT e 72.93 + 0.4 69.88 + 1.2 68.68 + 1.1 63.60 + 1.5 68.77

DIRT Alexnet 73.11 + 0.4 69.91 + 1.0 68.19 + 1.6 63.54 + 1.3 68.69
DRINT xh 73.57 + 0.4 70.21 + 0.7 68.46 + 1.4 65.93 + 1.2 69.54
DGER oo o 75.87+04 73.84 + 0.5 72.72 + 0.7 71.24 + 1.0 73.42
DGNT 76.47 + 0.4 74.03 + 0.5 72.77 + 0.7 71.72 + 1.0 73.74

and one dense layer. Cy is a single layer dense network preceded by a ReLU layer activation
for all datasets across all models. We made these modeling choices for a fair comparison
with the baselines. T, is a 3 layer convolutional neural network. Experimental details like
the dimension of the latent space, optimization algorithm used, hyperparameter A, and other
training information are provided in the supplementary material. Since we are the first to
introduce a limited data setting in DG, we had to re-train all the baselines.

3.2.4. EXPERIMENTAL RESULTS

Accuracy on test domains. We used the leave-one-domain-out evaluation scheme, where
one of the domains is chosen as the target domain and kept aside for evaluation and the
model is trained on the rest of the domains. We repeated this procedure for every domain in
the dataset. Data from the training domains were randomly split into the train (90%) and
validation (10%) sets. We computed test accuracy corresponding to the model with the best
validation set performance. We repeated the experiments over 5 runs to calculate the mean
accuracy and standard error. Finally, we report the average prediction accuracy obtained
over all the domains on the baselines: DeepAll, DIRT, and DGER, and our respective
counterparts: DNT, DRINT, and DGNT in Table 2, Table 3, and Table 4 for PACS, VLCS,
and RotatedMNIST, respectively. Prediction accuracies on the individual domains are
provided in the supplementary material.

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

Table 4: Prediction accuracy % on RotatedMNIST. Our methods: DNT, DRINT, and
DGNT outperform DeepAll, DIRT, and DGER, respectively.

RotatedMNIST
100% 20% 10% 5% Average
Model Ey Acc £+ Std Err Acc £+ Std Err - Acc £ Std Err Acc
DeepAll 92.69 + 0.3 80.80 + 0.6 73.95 + 0.8 67.99 £ 0.8 78.86
DNT MNIST CNN 97.36 £ 0.1 84.48 + 0.6 78.89 + 0.6 73.51 + 0.5 83.66
DIRT 98.75 £ 0.1 84.95 £ 0.4 77.29 £ 0.8 70.24 £ 0.9 82.81
DRINT MNIST CNN 98.83 + 0.1 86.15 + 0.3 79.36 + 0.5 74.27 + 0.6 84.65
DGER MNIST CNN 95.61 + 0.1 79.89 + 0.5 73.69 + 04 68.78 + 0.8 79.49
DGNT 95.92 + 0.1 83.85 + 0.5 77.27 £ 0.4 72.38 +£ 0.8 82.36

Table 5: Comparison of DNT with other interpolation-based methods

100% 20% 10% 5% Average

Dataset Model Ey Acc + Std Err Acc £ Std Err Acc + Std Err Acc £ Std Err Acc
Mixup 84.60 £+ 0.6 75.81 + 1.6 71.84 + 3.0 57.93 + 2.8 72.54

PACS Manifold Mixup Resnet 50 84.20 £ 1.1 76.07 £ 1.5 73.40 £ 2.2 65.77 £ 3.7 74.86
DNT 86.57 + 0.5 77.42 £ 0.7 73.71 £ 1.1 66.92 £+ 2.6 76.15

Mixup 76.84 £ 1.2 73.16 £ 1.6 7234 £ 1.9 66.77 + 2.6 72.28

VLCS Manifold Mixup Resnet 50 77.58 £ 1.0 74.16 £ 1.7 7244 £ 1.2 66.70 = 2.4 72.72
DNT 77.56 £ 0.5 76.08 £ 0.5 75.13 £ 0.9 73.66 £ 1.0 75.61

Rotated Mixup 92.98 £ 0.3 80.81 + 0.6 75.60 = 0.4 69.80 = 0.8 79.80
Manifold Mixup MNIST CNN 92,98 &+ 0.3 80.81 £ 0.5 75.56 + 0.4 69.85 + 0.8 79.80
MNIST DNT 97.36 £ 0.1 84.48 + 0.6 78.89 + 0.6 73.51 £ 0.5 83.66

Mean accuracy and standard error for the complete training data are under the column
100% of Tables 2, 3, and 4. We report the mean accuracy and standard error when the
training dataset size is scaled down to 20%, 10%, and 5% of its original size. Moving
rightwards over the columns under each split, we can observe an accuracy gain from just over
1% to 5% between DIRT and DRINT for the PACS dataset. A similar trend follows for VLCS
and RotatedMNIST datasets with some variations. Our DNT wvariant alone outperforms
DIRT when the data is low, and it confirms our hypothesis that the performance of DIRT
is worse than other methods with limited training data. However, through interpolation
robustness loss, we overcome this limitation in DRINT. The other baselines: DeepAll and
DGER, also experienced a reduction in their performance with lesser data, and it can be
seen from the tables that our models, through interpolation loss, their performance across
all splits of data improved. We observed lower standard errors for our methods compared
to the baselines, a characteristic of a stable model.

Comparison with Mixup based methods. We compared our model DNT with Mixup
(Yan et al., 2020) and Manifold Mixup. Mixup was originally proposed for domain adaptation,
and Gulrajani and Lopez-Paz (2021) adapted it for domain generalization. We followed their
setup and used Resnet-50 to model our Ey. We tuned the mixing coefficient hyperparameter
across (0.1, 0.2, 0.5, 0.9) and picked 0.1. We report the mean accuracy and standard error
for PACS, VLCS, and RotatedMNIST datasets in Table 5.

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

’ W 25
° 0 w
A
s S| S
S T R, .
10 5 o 5 10
(¢c) DNT - 100%
15 = =;§=; o " v
oy,
10 ¢ ° :‘v M
10 o 4

(d) DeepAll - 5% (e) Manifold Mixup - 5%

Figure 5: 2D visualization of z. Fig. 5 (a), (b), and (c) show z where source domains were
trained with 100% of data. Fig. 5 (d), (e), and (f) show z trained with 5% of data. Colors
denote classes and markers denote domains. We can observe that the classes are better
separated among the source domains in DNT over DeepAll and Manifold Mixup.

The results show that DNT fares better than Mixup and Manifold Mixup in the full
data settings and the limited data settings. Unlike the baselines, we performed interpolation
of data only within the same class. We targeted invariance across different domains within
the same class. We considered a path of interpolation rather than a fixed coeflicient for
mixing the data. Moreover, we performed nonlinear interpolation in the latent space rather
than linear interpolation in the pixel space. We conclude that these reasons would have
contributed to the better performance of DNT.

Visualization of the latent space. We visualize the latent representations obtained
from DeepAll, Manifold Mixup, and DNT to compare their ability (i) to separate classes of
the source domains and (ii) to create invariance between domains. Fig. 5 and Fig. 6 display
the 2D view of the latent space Z plotted via TSNE (Van der Maaten and Hinton, 2008).

We compare the representations learned by DeepAll, Manifold Mixup, and DNT in 2
settings: 100% and 5% training data. We sampled 500 data points for visualization from the
validation set and obtained the z samples by passing them through the encoders of all the
models. We use different colors to denote the classes and different marker styles to denote
the domains. Figure 5 demonstrates the separation of classes achieved by DeepAll, Manifold
Mixup, and DNT in the 100% and 5% training data settings. We can observe that data
from different domains are closer for DNT within each class. Moreover, the classes are well
separated in the latent space. In the 5% data scenario, the class separation is comparatively
less pronounced than in the 100% case. Nonetheless, in both settings, our model DNT
performs the separation of classes better than DeepAll and Manifold Mixup.

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

WSS Domain: C WM Domain:P WEN Domain: S WSS Domain: C WM Domain:P WEN Domain: S
Class : 0 Class: 1 Class : 2 Class: 3 Class: 4 Class: 5 Class : 6 Class : 0 Class: 1 Class : 2 Class: 3 Class: 4 Class: 5 Class : 6

B oo 1 20 o 20 o 0 10 0 10 o 0 10 EEEEY 20 o o o 1 o 0 1

(a) DeepAll - 100% Data (b) DeepAll - 5% Data
E Domain: C MM Domain: P WEE Domain: S WM Domain:C MMM Domain: P WM Domain: S
Class : 1 Class : 2 Class : 3 Class : 4 Class: 5 Class : 6 Class : 0 Class : 1 Class : 2 Class: 3 Class : 4 Class : 5
” o . o0
=) e & oot 1]
* o0 A
WS, |
8 -ﬁ o
3| 5
L)
Elih A
(c) Manifold Mixup - 100% Data (d) Manifold Mixup - 5% Data

mmm Domain: C WM Domain: P mmm Domain: S m Domain:C mEm Domain: P mEE Domain: S

Class : 0 Class : 1 Class : 2 Class: 3 Class: 4 Class : 5 Class: 6 Class : 0 Class : 1 Class : 2 Class : 3 Class : 4. Class : 5 Class : 6

(e) DNT - 100% Data (f) DNT - 5% Data

Figure 6: Class-wise distribution of z from DeepAll, Manifold Mixup, and DNT trained on
100% and 5% data of PACS. Domains are visually well separated for DeepAll and Manifold
Mixup but blended together for DNT, indicating better invariance to domain information.

DG techniques that learn domain invariant representations from the data must ignore
redundant information from individual domains and focus on the similarity between domains.
This can be evaluated based on the similarity between representations of images belonging to
the same class but from different domains. A well-learned invariant representation algorithm
will map the inputs from various domains to nearby areas in the latent space, provided they
are in the same class. We plot the representations of the domains within each class of the
PACS dataset in Fig. 6 to observe domain invariance within a class. Fig. 6 displays how
the latent representations from different domains lie in each of the 7 classes. We compare
DeepAll and Manifold Mixup with DNT in 2 training size settings: 100% and 5%. Each
of the 3 source domains can be clearly differentiated between themselves in the DeepAll
and Manifold Mixup models. The distinction is more apparent in the case of limited data
settings (Fig. 6 (b),(d)). Visualizations from the DNT model, have lesser distinction (more
invariance) among the domains than the others. DNT reduces the separation between

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

the different domains by bringing them closer within a class. This is more evident in the
limited data setting. Due to limited data, there is an increase in the variance between the
representations z. Interpolation introduces new data around the existing data and can help
bridge the variance between representations achieving tighter class-specific representations.

4. Conclusion

We introduced a framework interpolation robustness for learning a representation invariant
to the interpolation operation across domains. We demonstrated that this representation is
robust across domains and, therefore, useful for domain generalization. We also show that
the presence of our loss in DIRT (Nguyen et al., 2021) and DGER (Zhao et al., 2020) leads
to significantly better performance, especially when data is limited. A key advantage of our
proposed framework is that it can be combined with several existing domain generalization
methods that use invariant representations to improve their performance.

Acknowledgments

This research was partially supported by the Australian Government through the Australian
Research Council’s Discovery Projects funding scheme (project DP210102798). The views
expressed herein are those of the authors and are not necessarily those of the Australian
Government or Australian Research Council.

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization, 2019.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain
generalization using meta-regularization. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2224-2233, 2019.

Daniel C Castro, Ian Walker, and Ben Glocker. Causality matters in medical imaging. Nat
Commun, 11(1):3673, July 2020.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung
Lee, and Sungrae Park. Swad: Domain generalization by seeking flat minima. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-image
translation, 2018.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain
generalization via model-agnostic learning of semantic features. In NeurIPS, 2019.

DOMAIN GENERALIZATION WITH INTERPOLATION ROBUSTNESS

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain
generalization for object recognition with multi-task autoencoders, 2015.

Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow: Domain flow for adaptation and
generalization. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2472-2481, 2019.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In
International Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, 2016. doi: 10.1109/CVPR.2016.90.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised
image-to-image translation. In Proceedings of the Furopean conference on computer vision
(ECCV), pages 172-189, 2018.

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain

invariant variational autoencoders. In Medical Imaging with Deep Learning, pages 322-348.
PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep
convolutional neural networks. Neural Information Processing Systems, 25, 01 2012.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier
domain generalization. 2017 IEEE International Conference on Computer Vision (ICCV),
pages 5543-5551, 2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize:
Meta-learning for domain generalization, 2017b.

Lei Li, Veronika A. Zimmer, Wangbin Ding, Fuping Wu, Ligin Huang, Julia A. Schnabel, and
Xiahai Zhuang. Random style transfer based domain generalization networks integrating
shape and spatial information, 2020.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain
generalization via conditional invariant representations. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best sources
forward: domain generalization through source-specific nets, 2018.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain generalization via
invariant feature representation, 2013.

A. Tuan Nguyen, Toan Tran, Yarin Gal, and Atilim Gunes Baydin. Domain invariant
representation learning with domain density transformations. In Advances in Neural
Information Processing Systems, volume 34, pages 5264-5275, 2021.

PALAKKADAVATH NGUYEN-TANG LE VENKATESH GUPTA

A. Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, and Philip H.S. Torr. Tipi: Test time
adaptation with transformation invariance. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 24162-24171, June 2023.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization.
Advances in Neural Information Processing Systems, 34:20210-20229, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, loannis Mitliagkas, Aaron
Courville, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations
by interpolating hidden states, 2018.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation, 2018.

Shujun Wang, Lequan Yu, Kang Li, Xin Yang, Chi-Wing Fu, and Pheng-Ann Heng. Dofe:
Domain-oriented feature embedding for generalizable fundus image segmentation on unseen
datasets. IEEE Transactions on Medical Imaging, 39(12):4237-4248, 2020a.

Yufei Wang, Haoliang Li, and Alex C. Kot. Heterogeneous domain generalization via domain
mixup. In ICASSP 2020 - 2020 IEEFE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, may 2020b. doi: 10.1109/icassp40776.2020.9053273.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training, 2020.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn.
Improving out-of-distribution robustness via selective augmentation. In Proceeding of the
Thirty-ninth International Conference on Machine Learning, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization, 2018.

Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. Mvdg: A unified multi-view framework
for domain generalization, 2022.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain
generalization via entropy regularization. Advances in Neural Information Processing
Systems, 33:16096-16107, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial
image generation for domain generalisation, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate
novel domains for domain generalization, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks, 2020.

	Introduction
	Related Works
	Invariant Representation Learning
	Training Strategy
	Data Augmentation Techniques

	Domain Generalization via Interpolation Robustness
	Design
	Experiments
	Baselines
	Datasets
	Experimental Settings.
	Experimental Results

	Conclusion

