Proceedings of Machine Learning Research 222, 2023 ACML 2023

Q-Match: Self-Supervised Learning by Matching Distributions
Induced by a Queue

Thomas Mulc TMULC@QGOOGLE.COM
Google
Debidatta Dwibedi DEBIDATTAQGOOGLE.COM

Google Deepmind

Editors: Berrin Yanikoglu and Wray Buntine

Abstract

In semi-supervised learning, student-teacher distribution matching has been successful in
improving performance of models using unlabeled data in conjunction with few labeled
samples. In this paper, we aim to replicate that success in the self-supervised setup
where we do not have access to any labeled data during pre-training. We introduce our
algorithm, Q-Match, and show it is possible to induce the student-teacher distributions
without any knowledge of downstream classes by using a queue of embeddings of samples
from the unlabeled dataset. We focus our study on tabular datasets and show that Q-
Match outperforms previous self-supervised learning techniques when measuring downstream
classification performance. Furthermore, we show that our method is sample efficient—in
terms of both the labels required for downstream training and the amount of unlabeled data
required for pre-training—and scales well to the sizes of both the labeled and unlabeled data.
Keywords: Self-Supervised Learning

1. Introduction

Tabular data is the most common form of data for problems in industry. While many robust
techniques exist to solve real-world machine learning problems on tabular data, most of these
techniques require access to labels. Leveraging unlabeled data to learn good representations
remains a key open problem in the tabular domain. In this work, we propose a flexible and
powerful framework using deep learning that helps us use unlabeled data in the tabular
domain.

Deep learning has been successful in processing data in many different domains like
images, audio, and text. Learning non-linear features using deep architectures has been shown
to be a key feature in improving performance across a wide variety of problems like image
recognition (Krizhevsky et al., 2017), speech recognition (Deng et al., 2013), and machine
translation (Singh et al., 2017). Until recently, achieving state-of-the-art performance would
not have been possible without large, manually annotated datasets. However, a class of
learning algorithms called self-supervised learning (Wu et al., 2018; Devlin et al., 2018) has
shown that highly performant features can be learned without large-labeled datasets as well.
In this work, we propose a new self-supervised learning algorithm and study its effectiveness
in the tabular data domain.

In self-supervised learning, a task known as the pretext task is first solved on a dataset
that is typically large and unlabeled. The aim of self-supervised learning is to learn an
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encoding function f parameterized by 6 that captures variances and invariances in the dataset
without the need for human-annotated labels. This initial training is usually referred to as
the pre-training stage. The parameters learned from the pretext task during pre-training are
then used to solve a new objective called the downstream task. Concretely, f is a function
with parameters 6 that maps a sample z from the input dimensionality d’ to an embedding
size d that is f : (X,0) — R? where x is a single data-point in the input space X. After
the pretext algorithm updates the model parameters 6 during the pre-training stage, the
downstream data (typically a manually annotated dataset) is either used to fine-tune 6 or
learn the parameters of a linear classifier on the output of f.

Recently proposed self-supervised approaches for tabular data (Darabi et al., 2021; Yoon
et al., 2020; Arik and Pfister, 2021; Lee et al., 2020) have shown encouraging results. In
this work, we propose a novel method for self-supervised learning called Q-Match which is
closely related to the semi-supervised learning framework called FixMatch (Sohn et al., 2020).
For labeled data, FixMatch uses the standard supervised learning loss. For unlabeled data,
FixMatch proposes to match the student and teacher distributions over the set of classes used
in the downstream task. In a self-supervised setup, however, access to the relevant classes or
any labeled data during pre-training is limited. For this reason, Q-Match uses a queue of
embeddings instead of known classes to induce the teacher and the student distributions.
The queue is implemented similar to MoCo He et al. (2020) and NNCLR (Dwibedi et al.,
2021) by updating a list of embeddings with newer embeddings and discarding older ones as
training proceeds. We use individual samples (via their embeddings) to generate the student
and teacher distributions required for training. We find Q-Match leads to improvements
not only in the final performance of the downstream model, but also reduces the number of
labeled samples required for the downstream task.

2. Proposed Approach

Motivation. Our self-supervised approach is based on the success of the semi-supervised
learning algorithm FixMatch (Sohn et al., 2020). In their method, the authors show it
is possible to leverage a large unlabeled dataset and a few labeled samples to improve
the performance of the model on a downstream task. They do so by matching the class
distributions of the student and teacher views produced by augmenting the input in two
different ways. We hypothesize that it might be possible to adapt their framework to the
self-supervised setup by removing the dependency on the known classes during training.
To do so, we keep a queue of past embeddings that can serve as a proxy for classes. We
use this queue to produce the target and student distributions used to train a model. The
training then proceeds by performing continuous knowledge distillation from the teacher to
the student model such that the student ultimately learns to predict the distribution induced
by the teacher.

Method. In Figure 1, we outline our method for the pretext training approach used in
Q-Match. We corrupt the input x; two times independently using the method proposed in
VIME (Yoon et al., 2020) to produce the student view x; s and the teacher view x;;. We pass
x;,s through the student model to produce the student embedding z; 5. Similarly, we pass
x; ¢+ through the teacher model to produce the teacher embedding z; ;. We want this pair of
embeddings to induce similar probability distributions over a representative set of samples of
the dataset. In other words, we want our encoder to maintain similar relationships between
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Figure 1: Q-Match Training Method. The network is trained by performing continuous
self-distillation by minimizing the cross-entropy between student-teach distributions. The
two slanted lines denote a stop-gradient operation. The queue is updated with z; at each
training step.

different data samples in spite of the corruption introduced while generating the views. As
the dataset can be quite large, we maintain a fixed size queue @Q of past embeddings like
MoCo (He et al., 2020) and NNCLR (Dwibedi et al., 2021). A stop-gradient is applied to the
teacher embeddings, so only the student weights are updated at each iteration. We multiply
the student embeddings and the teacher embeddings with the embeddings in the queue to
produce the student and teacher logits. After taking the softmax of these logits, we produce
the student distribution, p; s, and the teacher distribution, p;;. The teacher distribution, p;,
is the target distribution which the student distribution, p; s, should match. We define the
distribution matching loss as

E?M =H(pit,pis) = H (softmax (zi’t : Q) , softmax (Z”Q>>

Tt Ts

where 73 is a scalar temperature value that controls the sharpness of the distribution produced
by the teacher, 75 is a scalar temperature value that controls the sharpness of the student
distribution, Q € R¥™ is the queue of m many previous teacher embeddings, and H (p, q) is
the cross-entropy loss between two distributions p and ¢q. We normalize the views z; s and z; ;
using L2 normalization. The queue size is constant and is refreshed at every training iteration
with the previous batch of teacher embeddings while the oldest embeddings are removed
from the queue. The parameters of the teacher model are updated using the Exponential
Moving Average (EMA) of the student model parameters. Empirically, we observe that
corrupting the teacher with a smaller probability leads to better performance (discussed later
in Section 3.3).

Model Architecture. In all experiments, we use an MLP as our encoding function f. We
follow the same architecture from i-Mix (Lee et al., 2020) which includes five fully-connected
layers (2048-2048-4096-4096-8192). The final layer uses a 4-set max-out activation (Goodfellow
et al., 2013). All layers except the output layer have batch normalization followed by a ReLu.
We use a linear projector of 128 dimensions on top of the encoder in all our experiments.
Similar to i-Mix, we added a 2-layer (512-128) MLP projection head, but we noticed that it
performed similarly to the model without the projection head for Q-Match training.

Data Preprocessing. For data preprocessing, we compute the normalization statistics by
using a batch normalization layer without the learnable parameters of scale and bias just after
the input layer. During evaluation, the accumulated exponential moving average statistics are
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applied to the original inputs normalizing them. We found this method works just as well as
normalizing the data by calculating the statistics on the full dataset. For categorical features,
we one-hot encoded all categorical features. Additionally, we experimented with quantile
transformation (Gorishniy et al., 2022) of the inputs. However, this only showed benefits in
the Adult dataset. Hence, we do not use quantile transformation for other datasets.

3. Experiments

Datasets. In this work we use the following datasets: Higgs (Baldi et al., 2014), Cover
Type Asuncion and Newman (2007), Adult (Kohavi et al., 1996) and MNIST (LeCun et al.,
2010). We take various subsets of the original datasets for different experiments. For the
exact splits used in different experiments, please refer to Table 8 in the Appendix.
Implementation. We implement our method in JAX (Bradbury et al., 2018). The
experiments were conducted on single V100 and P100 GPUs.

3.1. Comparison with Baselines

In this section, we want to measure how our method compares with other self-supervised
methods that have been evaluated on tabular data. We find that different papers evaluate
their approach on different datasets with different split settings. The pretext set size and
labeled set size vary in the original experiments conducted in these papers. To be fair in our
comparison to prior work, we report the performance of Q-Match with the same downstream
dataset sizes as used by the original authors.

Higgs Dataset. First, we compare Q-Match against three other self-supervised methods
for tabular data on the Higgs (Baldi et al., 2014) dataset: TabNet (Arik and Pfister, 2021),
i-Mix (Lee et al., 2020), and CORE (Han and Ranganath, 2021). We report the results of
this experiments in Table 1. Q-Match outperforms all the baselines under all the different
splits. In particular, we observe that Q-Match outperforms TabNet with a pretext dataset
size that is 100 times smaller.

Cover Type Dataset. Next, we compare the performance of our method with baselines
on the Cover Type dataset (Asuncion and Newman, 2007). We report the results of our
experiment in Table 2. There are two commonly used splits: Cover Type 10% and Cover
Type 15k. In the fine-tuning setup, we observe that Q-Match outperforms Contrastive MixUp
by a margin of about 10%. We hypothesize this gain in performance is due to the fact that in
the contrastive loss the encoder mistakenly considers samples belonging to the same class as
negatives. The Q-Match loss does not suffer from this problem. The encoder is free to learn
the similarities between different samples and does not consider all items in the batch as
negatives. In the linear evaluation setup, we observe Q-Match is about 0.7% to 1.6% better
than two versions of i-Mix that use the contrastive loss. Q-Match is slightly worse (0.3%)
than i-Mix BYOL in the linear evaluation setup.

MNIST 10% Dataset. Next, we perform a similar comparison on the MNIST (LeCun
et al., 2010) dataset. While it is an image dataset, prior work (Yoon et al. (2020); Darabi
et al. (2021) has used MNIST 10% for research in tabular domain by converting the pixels in
an image into a flattened vector. In the past, only 10% of the training set is used as labeled
data while the rest 90% of the training set is used as pretext data. We report the results of
this experiment in Table 3. We observe that while Q-Match outperforms VIME by a margin
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Method Pretext Labeled Accuracy
Examples | Examples

CORE (Han and Ranganath, 2021) 50k 5k 66.92 £ 0.55
Q-Match (Ours) 50k 5k 68.13 + 1.02
TabNet (Arik and Pfister, 2021) 10M 10k 68.96 £ 0.39
Q-Match (Ours) 10M 10k 71.13 + 0.21
TabNet (Arik and Pfister, 2021) 10M 100k 73.19 £ 0.15
i-Mix (Lee et al., 2020) 100k 100k 72.9
Q-Match (Ours) 100k 100k 73.27 £ 0.19

Table 1: Higgs experiments. CORE, TabNet, and Q-Match all report fine tuning accuracy,
while i-Mix reports the linear classification accuracy.

of about 2%, our method is comparable in performance with the Contrastive Mixup method
without using the MixUp augmentation.

Method Cover Type 10% | Cover Type 15k
Accuracy Accuracy

Constrastive MixUp (Darabi et al., 2021) | 80.41 + .205 -

i-Mix N-Pair (Lee et al., 2020) - 72.1 £ 0.2

i-Mix MoCo v2 (Lee et al., 2020) - 73.1 £0.1

i-Mix BYOL (Lee et al., 2020) - 74.1 + 0.2

Q-Match Finetune (Ours) 90.26 + .11 82.76 + .07

Q-Match Linear (Ours) - 73.79 + .22

Table 2: Cover Type experiments. For Cover Type 15k, i-Mix uses a linear classifier on
top of the pretext features. For Constrastive MixUp, the evaluation uses fine tuning. We
present results of Q-Match for both tasks.

Method ‘ Accuracy
VIME (Yoon et al., 2020) 95.77 £ .22
Constrastive MixUp (Darabi et al., 2021) | 97.58 £+ .08
Q-Match (Ours) | 97.67 £ .21

Table 3: MNIST 10% experiments. Fine tuning accuracy for VIME, Constrastive MixUp,
and Q-Match.

3.2. Data Scaling Experiments

In the previous subsection, we show that Q-Match either outperforms or is at par with the
other self-supervised baselines when the pretext size is large and all the samples in the labeled
downstream dataset are used for evaluation. In this experiment, we want to measure how
these methods perform if the amount of labeled data and the pretext dataset size changes.
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To compare fairly against all the baselines, for this set of experiments, we re-implement the
following methods: TabNet, VIME, and i-Mix (N-Pair version).

Training Details. In all the experiments in this section, we first train the encoder on the
pretext task. We then proceed to the downstream tasks which can either be fine-tuning
or linear evaluation. We always compare against the supervised learning baseline. This
baseline refers to the method where we do not train a model with any pretext task but
begin downstream task training from random initialization. We perform a grid search over
relevant hyper parameters for each method. For all methods, we search over pretext task
and downstream task learning rates. For the TabNet, VIME, SimCLR, SimSiam, DINO,
VICReg, and Q-Match algorithms, we added the probability of corrupting a column (as
defined in Yoon et al. (2020)) to the grid. For the N-Pair i-Mix algorithm, we also add the
loss temperature to the grid. For the Q-Match algorithm, we also add the queue size and the
student temperature to the grid. Please refer to Table 7 in the Appendix for more details on
the parameters. We pick the best parameters according to the validation dataset for each
downstream task. For all experiments, we report the average and standard deviation over 5
trials. We train all pretext tasks using a maximum of 200 epochs with early stopping and a
patience of 32 (using the pretext validation dataset). For the supervised tasks, we train for a
maximum of 500 epochs with a patience of 32 on the validation accuracy. All tasks use a
batch size of 512 and the parameters are updated using Adam citepadamw optimizer with
weight decay. All algorithms used zero weight decay during pretraining and 10~! weight
decay during the downstream tasks. We make our code! publicly available for further details.
Corruption Function. One important factor that affects the performance is the choice of
the corruption function used to create the two augmented views. Both VIME and TabNet
augment the orignal data by randomly corrupting columns. The VIME corruption function
replaces corrupted values with samples from the pretext dataset while the TabNet corruption
function replaces values with zeros. We always use the VIME corruption function in all
our experiments. Even for our implementation of the TabNet algorithm, we use the VIME
corruption function as we found the VIME corruption performed better. Unless otherwise
stated, we do not corrupt the teacher view and only corrupt the student view.

Few Shot Learning. In this experiment, we compare the representations learned by
different learning algorithms by only using 1% of the total available labels for evaluation.
This scenario is common in industry when number of available labels for a downstream task
might be less but there might a lot of unlabeled data available to learn an encoder. In addition
to the tabular self-supervised algorithms we used as comparisons for other experiments, we
also include results from our implementations of the following methods that have previously
been used for image self-supervision tasks: SImCLR (Chen et al., 2020b), SimSiam (Chen
and He, 2021), DINO (Caron et al., 2021), and VICReg (Bardes et al., 2021). For SimCLR,
we also include a large batchsize (4096) version, since this has been found to be helpful (Chen
et al., 2020b). For all datasets, we only use one-percent of the original labels for downstream
training and keep the rest of the data for pretext training and validation. We report the
performance of learning a linear classifier in Table 4 and fine-tuning the entire encoder in
Table 5. For the Linear Classification Task, Q-Match outperforms all other methods on
all datasets except VICReg on MNIST, which it performed similarly. For the Finetuning
task, Q-Match was competitive on all datasets, but did especially well on the CoverType
and Higgs datasets.

1. https://github.com/google-research/google-research/tree/master/q_match
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\ Dataset Rank

Algorithm | Cover Type 1%  Higgs100k 1%  Adult 1% MNIST 1% |

Supervised Baseline ‘ 70.45 £+ 0.18 60.39 + 0.39 78.63 £+ 0.20 85.97 + 0.15 ‘ 5.3
TabNet 51.28 £+ 3.51 61.15 £ 0.56 76.46 + 0.41 24.20+ 6.57 8.8
DINO 57.18 £+ 4.61 56.87 £ 1.66 76.84 £+ 0.85 64.63 + 3.59 8.5
i-Mix 67.90 £+ 0.45 60.19 £+ 0.40 75.62 £ 0.79 90.66 £+ 0.32 7.3
SimCLR (large batch) 66.87 £ 0.25 64.22 £ 1.08 76.66 £ 1.95 91.01 £+ 0.68 6.0
SimSiam 64.66 + 1.22 60.11 £ 1.55 78.75 £ 2.28 92.98 + 0.53 5.8
VIME 68.42 + 0.31 64.37 £ 0.62 79.01 £ 2.26 88.02 £ 0.59 4.3
VICReg 64.86 + 0.16 65.81 4+ 0.34 76.67 £ 1.93 97.36 + 0.25 | 4.3
SimCLR 69.66 + 0.16 65.42 £+ 0.22 76.87 £ 0.52 91.84 £ 0.16 3.8
Q-Match (Ours) 70.90 £+ 0.36 66.84 + 0.34 80.33 + 0.47 97.13 + 0.23 1.3

Table 4: Linear classification accuracy of our method versus other pretext algorithms.

‘ Dataset Rank

Algorithm | Cover Type 1%  Higgs100k 1%  Adult 1% MNIST 1% |

Supervised Baseline ‘ 71.63 £+ 0.25 58.41 + 0.14 78.14 £ 0.72 88.98 + 0.30 ‘ 6.8
TabNet 70.58 £+ 0.63 61.80 + 1.00 77.25 £ 1.28 86.70 + 1.33 8.0
SimCLR (large batch) 69.73 £ 0.71 58.18 £ 1.99 77.72 £ 1.66 92.54 + 0.62 8.0
SimSiam 71.80 £+ 0.11 60.87 4+ 1.96 68.99 £+ 6.52 93.05 £+ 0.46 6.0
i-Mix 71.30 £ 0.35 61.98 £+ 0.45 77.83 £ 0.88 92.00 £+ 0.22 6.0
DINO 72.43 + 0.5 55.76 £+ 3.17 78.22 £+ 0.66 89.58 + 0.93 5.8
VICReg 68.66 + 0.34 60.86 + 4.09 80.36 + 0.29 97.47 4+ 0.10 | 5.0
SimCLR 71.77 +£ 0.30 63.49 + 0.60 79.09 £ 0.78 93.13 £+ 0.27 3.5
VIME 71.51 £ 0.24 64.42 + 0.80 80.50 £+ 1.74 93.54 £+ 0.12 3.0
Q-Match (Ours) 72.42 + 0.37 66.03 + 1.01 77.75 £ 1.89 96.44 + 0.41 3.0

Table 5: Finetuning accuracy of our method versus other pretext algorithms.

Varying Downstream Dataset Size. In this experiment we want to measure how down-
stream task performance changes as more labels are available. We increase the fraction of
labeled data available in the Higgs dataset and train the downstream task. Note that in this
experiment the pretext size is fixed for all methods at 100k samples. We report the results of
this experiment in Figure 2. We observe that Q-Match outperforms other methods across
different fractions of labeled data in both the fine-tuning and linear evaluation tasks. The
difference in performance between Q-Match and other methods increases as the number of
labeled samples becomes less. In other words, Q-Match is more sample efficient in terms of
labels required. Also note that in the low labeled data regime, self-supervised pre-training
using Q-Match provides a good initialization for the downstream task. This initialization
leads to about 10% improvement in performance than simply performing supervised learning
from random initialization.

Varying Pretext Dataset Size. In this experiment we want to measure how downstream
task performance changes as more unlabeled data is available for the pretext task training. We
increase the fraction of unlabeled data available in the Higgs dataset and run both the pretext
training and downstream task training. Note that in this experiment the downstream labeled
set size is fixed for all methods at 100k samples. We report the results of this experiment
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in Figure 3. We observe that Q-Match outperforms other methods. The difference in
performance is especially stark when fewer samples are available. In other words, Q-Match
is more sample efficient even in terms of unlabeled data requirements. Depending on the
amount of unlabeled data available, Q-Match can increase the performance on downstream
task by 5%-8% in the finetuning setup.

Fine Tuning Accuracy vs Labeled Dataset Size Linear Classification Accuracy vs Labeled Dataset Size
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Figure 2: Classification performance as the size of the labeled data increases for the Higgs100k
dataset.
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Figure 3: Accuracy for different sizes of the pretext set for the Higgs dataset.

3.3. Sensitivity Analysis

In this subsection, we study how some hyperparameter choices affect downstream task
performance. In particular, we find our method’s final performance is affected significantly
by the corruption probability and the queue size. Below we report how sensitive the learning
algorithm is for these datasets: Higgs and Cover Type.

Corruption Probability. We experiment varying the corruption probability in both views
in Q-Match. The linear classification results are shown in Figure 4. The more yellow/bright
the color of the grid, the better the performance while more blue/dark means the performance
is worse. Note that in both the Cover Type and the Higgs experiments, there appears be
both a maximum teacher and student corruption probability that is beneficial for pre-training
with Q-Match. After this maximum value, there is too much corruption of the original input
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to learn a useful representation. Additionally, there is also a critical maximum value of the
sum of both probabilities going beyond which, the model fails to learn useful representations
using Q-Match. In other words if both the student and teacher are corrupted with high
corruption probability, it leads to sub-optimal performance. We recommend using a small
or zero value for the teacher corruption, and a moderate value for the student corruption to
achieve optimal downstream performance.

On the other hand, we find the fine-tuning results to be fairly robust to these parameters.
The initialization found by performing Q-Match with different values of corruption probability
is good enough for downstream fine-tuning to achieve optimal performance.

Linear Classification Accuracy
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Figure 4: Linear classification accuracy as corruption of the features changes for both the
student and the teacher views.

Queue size. We examine the effect of changing the size of the queue used in Q-Match for
the Higgs, Cover Type, and MNIST datasets. The linear classification performance (in the
few shot setting) as a function of the queue size is shown in Figure 5. First, we observe that
when the queue size becomes very small, the final performance declines. Second, we note as
the queue size increases, there is the less variance in the downstream results. We recommend
using a larger queue (> 103) to achieve optimal performance.

Cover Type Linear Classification Accuracy Higgs Linear Classification Accurac MNIST Linear Classification Accurac
0.71 0.975
0.650
> > > 0.950
® 0.70 ® 0.625 <]
=] = 5 0.925
u u U
] g 0.600 9]
< 069 < < 0.900
0.575
0.875
10* 102 103 10t 102 103 10t 102 103 104
Queue Size Queue Size Queue Size
(a) CovType 1% (b) Higgs 1% (¢) MNIST 1%

Figure 5: Effect of the queue size on the linear classification accuracy.
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3.4. ImageNet Experiments

As our proposed approach is domain-agnostic, it can also be used to learn image features
in a self-supervised manner. We pre-train a ResNet-50 model with the Q-Match loss
on the ImageNet dataset (Deng et al., 2009). We use the multi-crop training setup of
NNCLR Dwibedi et al. (2021) and SWAV Caron et al. (2020) where 2 crops of 224 x 224
and 6 crops of 96 x 96 are used in a single batch. The two larger sized images serve as the
teacher views. We pre-train the model for 800 epochs. We use a student temperature of
0.1 and teacher temperature of 0.04. We do not use any color jitter augmentation on the
teachers’ view to produce the weakly augmented view. Crop augmentation is used on both
views. We use a queue size of 98304, embedding size of 256, momentum of 0.99, and the
same projection MLP used in NNCLR.

We report the results of linear evaluation of the 2048-d output from the ResNet-50 model
in Table 6. We find that training with the Q-Match loss results in better performance
than training with the baseline methods. In particular, the performance improvement over
DINO is interesting because both DINO and Q-Match use the student-teacher distribution
matching loss. While DINO uses learnable prototypes to induce these distributions, Q-Match
uses a queue of past embeddings. This further validates the utility of the queue in the
student-teacher distribution matching framework. Furthermore, even though Q-Match was
developed primarily with tabular datasets with a low number of downstream classes, it is
capable of strong performance on image datasets with a larger number of classes.

Method ‘ Accuracy
SWAV (Caron et al., 2020) 75.3
DINO (Caron et al., 2021) 75.3
NNCLR (Dwibedi et al., 2021) 75.6
Q-Match (Ours) | 76.0

Table 6: ImageNet Linear Evaluation. Linear evaluation accuracy for NNCLR, SWAV,
and Q-Match.

4. Discussion and Related Work

Contrastive Self-supervised Learning. In the context of self-supervised learning, a class
of approaches that have been effective are built on top of the InfoNCE loss (Oord et al.,
2018) where for any data point x; and its corresponding embedding z; = f(x;, ) there exists
a set of positives P; and negatives N;, loss L%nfONCE is defined as follows:

Zz*GP,- exp (z; - 27 /7)

Ez‘*’E'Pi exXp (ZT ’ Z+/7_) + ZZ_GM exp (Zl ’ Z_/T)
where (z;, Z;L ) are positive pairs, (z;, z7) are negative pairs and 7 is the softmax temperature.
This loss aims to attract the positives closer to each other while repelling the negatives
farther from each other. In SImCLR (Chen et al., 2020a), the positives are two views of the
same data and negatives are all the other elements in the current mini-batch. In MoCo (He
et al., 2020), the positives are the same as SimCLR but the negatives are derived from a
queue of past embeddings produced by the model.

InfoNCE __
! -

—log (1)
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Both Contrastive Mixup and i-Mix N-Pair use the InfoNCE loss. We find Q-Match
outperforms both these methods consistently. This could be due to the fact the contrastive
loss mistakenly considers samples from the same class as negatives. For a dataset whose
classes are uniformly distributed, the probability that at least one sample in the batch of
negatives belongs to the same downstream class as the positives is equal to 1 — (%)(3_1)
where N is the number of classes in the downstream task and B is the batch size used during
training. This means the occurrence of this event is less in a large-scale and diverse image
datasets like ImageNet. Concretely, with a batch size of 512 and the number of downstream
classes equal to 1000, there is a probability of approximately 0.4 that an element of the same
class will be considered a negative. However in the tabular setting where the number of
classes in the downstream task is usually much less (say 10), the probability of considering
items of the same class as negatives is much higher (very close to 1). We hypothesize that
this might be the reason that using the vanilla N-pair contrastive loss usually results in
sub-par performance.

Non-Contrastive Self-supervised Learning. In order to remove the dependency on
explicit negatives during training, researchers have proposed two types of losses. The first
class of approaches like BYOL(Grill et al., 2020), SimSiam (Chen and He, 2021) aim to
directly minimize the distance between the positive embeddings using a Mean Squared Error
(MSE) loss.

L%\/ISE =—z 2z (2)

In BYOL (Grill et al., 2020), 27 is derived from a different view that is passed through
a momentum encoder while in SimSiam 2T comes from a different view passed through
the same encoder except it has a stop-grad operation to prevent embedding collapse. We
compare Q-Match with i-Mix BYOL on the Cover Type dataset in Table 2 and find it is
competitive with our method. But our implementation of i-Mix BYOL failed to achieve good
performance. We leave exploring i-Mix BYOL on low labeled data regime as future work.
The second class of losses that do not require explicit negatives use prototypes to minimize

the cross-entropy between two distributions induced by the positive pair. Examples of this
approach are SwWAV (Caron et al., 2020) and DINO (Caron et al., 2021).

L0 = H(*—, =) (3)

T T

where P is a list of learnable prototypes maintained by the model. To avoid embedding
collapse DINO uses momentum encoding with a combination of centering and sharpening
while SwAV uses Sinkhorn clustering.

Like DINO and SWAV, Q-Match also uses the cross-entropy between two distributions
to learn an encoder. But Q-Match differs from them in two aspects. First, while DINO and
SWAYV use learnable prototypes to induce the target distribution, we use a queue to produce
the target distribution. Second, instead of relying on centering and sharpening or Sinkhorn
clustering, we use a queue of past embeddings to prevent embedding collapse. Since the
queue of embeddings keeps getting refreshed, it is non-trivial for the model to collapse. We
believe this is the main reason Q-Match outperforms SWAV and DINO. It is potentially
easier for the model to overfit to the prototypes to bring the self-supervised loss down but
not as easy to do so with a queue that is continually refreshed.
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Reconstruction-based Self-supervised Learning. A commonly used approach for
self-supervised learning is using a reconstruction loss to solve a de-noising pretext task.
Methods, like VIME (Yoon et al., 2020) and (Arik and Pfister, 2021) take the original sample
in the data, and corrupt some of its values using a corruption mask sampled from a Bernoulli
distribution. They then learn an encoding function as well as a reconstruction function which
aims to reconstruct the original sample using both the learned parameters of the encoder and
the parameters specific to the reconstruction task. TabNet is pre-trained to only predict the
reconstructed values. On the other hand, VIME also proposes predicting the corruption mask
in addition to predicting the reconstructed values. We find the corruption function introduced
in these papers useful for producing student and teacher views in Q-Match. However, we
find the distribution matching loss to be more effective in the low data regime than the
reconstruction based losses.

Semi-supervised Learning Our approach is also closely related to the semi-supervised
approaches like FixMatch (Sohn et al., 2020) and PAWS (Assran et al., 2021) that learn
encoders by matching student-teacher distributions. The difference is that we focus on
the self-supervised setup where the downstream task fine-tuning happens after the self-
supervised pre-training stage. Hence, we cannot assume knowledge of any known classes
during the pre-training stage. Instead, we use a queue to induce the student and teacher
distributions. Additionally, we focus the problem in the context of tabular datasets while
the above mentioned papers are evaluated on image datasets.

5. Conclusion

We introduced a new self-supervised algorithm, Q-Match, that learns new, useful represen-
tations of tabular data entirely from unlabeled data. Q-Match utilizes a queue to perform
continuous self-distillation by matching the student distribution to the teacher distribution
as training proceeds. We show that Q-Match outperforms existing self-supervised algorithms
and supervised learning on tabular datasets in terms of classification accuracy. Additionally,
we show that Q-Match is more efficient than existing methods in terms of sizes of the
unlabeled pretext dataset and of the labeled downstream dataset. Q-Match continues to
outperform other methods when the size of both the pretext and the downstream datasets is
increased.

6. Broader Impact

Q-Match has minimal assumption about the distribution or the domain of data. Hence, it
can be applied to data that is not tabular or a mix of tabular and non-tabular domains as
well (see Appendix for ImageNet results). We show that Q-Match reduces the amount of
unlabeled pretext data and labeled downstream data. This can be advantageous in domains
when collecting data itself is expensive, when samples can only be labeled after waiting a
long time, or even when the total number of possible labels are naturally limited (e.g., rare
medical diagnoses).

On the other hand, even if the encoder is learned in a self-supervised manner without
labels it might be biased against certain groups, especially if they are rarely represented in
the data. It is recommended to visualize embeddings to identify such cases. Performing
detailed group-wise analysis on the downstream task metric will also surface any bias learned
by the encoder.
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Appendix A. Appendix
A.1. Algorithm

In Algorithm 1 we show the pseudo code of our method.

A.2. Hyper Parameters

In Table 7 we show the values of hyper-parameters we search over. For each method we
perform a grid search over relevant hyperparameter values and choose the best one according
to the validation set. We use a value of Tgpr4 = 0.9 for the momentum encoder and a teacher
temperature of 7+ = 0.04 in Q-Match.

Parameter Name ‘ Search Space ‘ Relevant Algorithm
Learning rate [1075, 1074, 1073, 1072] | All
Pre-text learning rate [1075, 1074, 1073] All
Temperature, 7 [0.04, 0.10, 0.15, 0.20, .30] | i-Mix

. - VIME, TabNet, SimCLR,
Corruption probability [.3, .4, .5] SimSiam, VICReg, DINO
Student corruption [-3, 4, .5] Q-Match
Student temperature, 7 [0.05, 0.1, 0.2] Q-Match
Queue size [29, 211 Q-Match

Table 7: Hyper parameter spaces for all algorithms used during training.
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Algorithm 1 Pseudo Code for a Single Q-Match Training Step

views of the same data.
aug (x, teacher_corruption)
aug (x, student_corruption)

# Create two
teacher_view =
student_view =

# Pass views through the model.
teacher_embed = encoder (teacher_view,
student_embed = encoder (student_view,

ema_params)
params)

# Normalize embeddings.
teacher_embed_norm = stop_gradient (12_normalize (teacher_embed))
student_embed_norm = 12_normalize (student_embed)

# Compute student and teacher distributions.

teacher_logits = teacher_embed_norm E Q.T / teacher_temperature
teacher_dist = softmax(teacher_logits)

student_logits = student_embed_norm E Q.T / student_temperature
student_dist = softmax (student_logits)

# Compute loss.
loss = cross_entropy (teacher_dist,
gradients = compute_gradients (loss,

student_dist)
params)

# Update params, ema params, and queue.
params = update_params (gradients, params)
ema_params = tau * ema_params + (1 — tau)
Q = update_qgueue (Q, teacher_embed_norm)

* params

A.3. Datasets and Splits

Table 8 shows the dataset splits of each experiment. For comparison with baseline methods,
we attempt to stick to the splits used in the original papers. For data scaling and few-shot
experiments, we create our own splits and train all methods on the same splits.

Dataset Name Pretext Downstream | Downstream Experiments
Training Training Test
Set Size Set Size Set Size
Higgs 1% 98k 930 500k Few Shot, Sensitivity
Higgs 5k 50k 5k 25k Baseline
Higgs 10k 10M 10k 500k Baseline
Higgs 100k 100k 100k 500k Baseline
Higgs Variable Labeled 98k {980, 9.80k, 500k Data Scalin
19.6k, 98k} g
{10k, 40k,
Higgs Variable Pretext | 160k, 64?1{, 10k 500k Data Scaling
2.56M
Cover Type 1% 113400 1134 429812 Few Shot, Sensitivity
Cover Type 10% 464809 46480 116203 Baseline
Cover Type 15k 11340 11340 565892 Baseline
Adult 1% 8170 86 16281 Few Shot
MNIST 1% 57k 600 10k Few Shot, Sensitivity
MNIST 10% 60k 10k 10k Baseline

Table 8: Dataset splits.
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