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Abstract

Finding diverse solutions to combinatorial optimization problems is beneficial for a deeper
understanding of complicated real-world problems and for simpler and more practical math-
ematical modeling. For this purpose, it is desirable that every solution is far away from one
another and that solutions can be found in time not depending polynomially on the size of
the family of feasible solutions. In this paper, we investigate the problem of finding diverse
sets in the sense of maximizing the minimum of weighted Hamming distance between set
pairs. Under a particular assumption, we provide an algorithm that gives diverse sets of
almost µ/2-approximation in expectation in the sense of maximization of the minimum of
the expected value, where µ ∈ [0, 1] is a parameter on a subroutine. We further give a
hardness result that any approximation ratio better than 2/3 is impossible in polynomial
time under the assumption of P ̸= NP.

Keywords: Diverse solutions; Hamming distance; Multiplicative weight update

1. Introduction

Combinatorial optimization appears in various situations in daily life, such as working
schedules of employees (Ernst et al., 2004), matchings (Edmonds, 1965), and facility loca-
tion problems (Drezner and Hamacher, 2004). In many cases, modeling real-world problems
by mathematical optimization precisely is quite difficult (e.g., Hanaka et al. (2022a,b)). For
example, when a company decides on a working schedule for employees, it should consider
various aspects, e.g., each employee’s requests for a day off, their technical level, enough
rest time, and the working schedule pattern prohibited or avoided in principle. Moreover, in
real-world applications, personal relationships among employees may influence the quality
of work, and it is quite difficult to deal with these kinds of matters enough when making
a working schedule. Another example is the facility location problem. When considering
the construction of new facilities, many aspects should be considered, such as distance from
each house, an arrangement that is not biased, and feasibility constraints.

Owing to the above complexity of real-world problems, it is difficult to model them
as mathematical formulations incorporating all detailed conditions and objectives. If the
mathematical optimization problem does not reflect real-world conditions, then it is ex-
pected that an output (single solution) does not fulfill the user’s wishes.
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One approach to tackle the above issue is taking multiple diverse solutions (see, e.g.,
Hanaka et al. (2022a,b)). Finding diverse solutions has been studied in various fields such
as , document summarization (Carbonell and Goldstein, 1998), ranking (Yang et al., 2019),
data selection (Moumoulidou et al., 2021), search results (Gollapudi and Sharma, 2009;
Drosou and Pitoura, 2010; Qin et al., 2012), matching (Hanaka et al., 2021; Fomin et al.,
2023), and recommender systems (Kaminskas and Bridge, 2016; Kunaver and Požrl, 2017;
Castells et al., 2021). In order to make decisions for real-world problems, diverse solutions
are often helpful. By examining multiple diverse solutions, one can look out over diverse
possibilities for solutions, and they may help find omitted constraints or components that
should be considered in an objective function and recognize what is actually one would like
to model as a mathematical optimization.

There have been existing works on problems of finding diverse sets. For the class of
solutions, there have been mainly two types; taking diverse elements in a ground set
(e.g., Erkut et al. (1994); Ravi et al. (1994)) and taking diverse sets in a given set fam-
ily (e.g., Hanaka et al. (2022a,b)), where the set family itself may not be given, and this
type includes the setting that the information of the set family is given as a membership
oracle. For the class of objective function, which reflects the measure of diversity, two com-
monly considered forms are the sum of the distance between pairs (max-sum type) (e.g.,
Hanaka et al. (2022a,b)) and the minimum of the distance between pairs (max-min type)
(e.g., Erkut et al. (1994); Fomin et al. (2023)). As this distance, weighted Hamming dis-
tance is a widely used one (e.g., Hanaka et al. (2022a,b)). More details will be given later
in this section.

Our algorithm possesses both of the following characteristics: (i) time complexity which
is in polynomial order in the size of the input ground set (not the size of the candidate
set family), the reciprocal of a parameter that affects the property of the output of the
algorithm, and the maximum value of the weight of elements, and (ii) the distance of the
nearest pair being considered (our algorithm deals with the maximization of minimum
weighted Hamming distance between set pairs using the expected value on the algorithm
and applicability for problems with certain assumptions).

Let us introduce some notation for describing our problem setting precisely. Let V be
a finite set. For sets X,Y ⊆ V , let us denote the symmetric difference of X and Y by
X△Y := (X \Y )∪ (Y \X). For w : V → R≥0, weighted Hamming distance between X and
Y is

∑
v∈X△Y w(v), and this is denoted by dw(X,Y ). For X ⊆ V , we denote

∑
v∈X w(v) by

w(X). Let W stand for maxv∈V w(v). For a domain D, we call an oracle a µ-approximation
oracle for the maximization problem on D if for any nonnegative function f : D → R≥0, it
returns D ∈ D satisfying f(D) ≥ µmaxD∗∈D f(D∗).

In this paper, when constructing an algorithm in Section 2, we assume the following:
there exists a µ-approximation oracle for finding S ∈ S maximizing

∑k
i=1 γidw(S, Si) for

any γ ∈ ∆k(:= {x ∈ Rk | xi ≥ 0 (i = 1, . . . , k),
∑k

i=1 xi = 1}) and S1, . . . , Sk ∈ S, which
takes time θ. (Note that by this assumption, for any integer k′ satisfying 1 ≤ k′ ≤ k, we

can find S ∈ S with
∑k′

i=1 γidw(S, Si) ≥ µ ·maxS′∈S
∑k′

i=1 γidw(S
′, Si) for any γ ∈ ∆k′ with

time θ by the above oracle.) Section 2.3 introduces a specific example which shows that this
assumption holds if two certain conditions (one on the emptyset and the other on weight
maximization) hold. Our problem setting is the following.
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Problem 1 Given a finite set V , a weight function w : V → R≥0, and an integer k ∈ Z>0,
and the information of S ⊆ 2V is fixed but S itself is not explicitly given as an input, find
S1, . . . , Sk with Si ∈ S (i = 1, . . . , k) maximizing min1≤i<j≤k dw(Si, Sj).

Our contributions in this paper are as follows (details are explained in the following
sections):

• We provide an algorithm which takes time polynomial in |V |, 1/δ, and W whose
output satisfies

min
1≤i<j≤k

Edw(Si, Sj) ≥
µ

2
Ψ− δ.

Here, E stands for the expectation over internal randomness of our algorithm (Algo-
rithm 1), µ is a parameter on an oracle on the approximation of maximization of the
weighted sum of weighted Hamming distances, Ψ is the optimal value of our problem,
and δ is an arbitrary input parameter. Also, we show that our algorithm runs in

O
(
|V |2W 2k log k

δ2
(θ + |V |k)

)
time, where θ denotes the time complexity of the oracle

approximately solving the corresponding maximization problem. The main point of
our contribution is that we propose a framework combining MWU and Ravi et al.
(1994)’s algorithm, giving diverse solutions satisfying the above inequality in time
polynomial in |V |, 1/δ, and W under a particular assumption on the maximization
of the weighted sum of weighted Hamming distances. We give applications of our
framework in Section 2.4.

• We show that our problem setting does not allow a polynomial-time approximation
algorithm whose approximation ratio is better than 2/3 under the assumption of
P ̸= NP.

Our algorithm utilizes the framework of multiplicative weight update (MWU) method.
The framework of MWU is well-studied and utilized in various fields (e.g., Arora et al.
(2005); Bailey and Piliouras (2018)). For MWU, see, for example, Arora et al. (2012) as a
survey.

1.1. Problem Categories

There have been many types of problems for finding diverse solutions. Here, we categorize
common types of problems and clarify the position of our problem and results.

1.1.1. Input and Solution

First, we categorize problems by the form of the input and the output. For a given ground
set V , the following two types of problems have been commonly considered:

Taking elements in a given set Given a set V and an integer k ∈ Z>0, find v1, . . . , vk ∈
V with a required property.

Taking sets in a given set family Given a set V , the information of a set family
S ⊆ 2V , and an integer k ∈ Z>0, find S1, . . . , Sk ∈ S with a required property.
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1.1.2. Objective Function

Next, we categorize the type of the objective function. Although the purpose is to find
diverse solutions in the following cases, mathematical formulations differ. Here, we write
for the problem of taking sets in a given set family, but that of taking elements in a given
set can be considered analogously. Here, we denote a distance by d : S × S → R≥0.

Maximizing summation Maximizing the sum of the distance between set pairs, that
is, maxS1,...,Sk∈S

∑
1≤i<j≤k d(Si, Sj).

Maximizing minimum Maximizing the minimum distance between set pairs, that is,
maxS1,...,Sk∈S min1≤i<j≤k d(Si, Sj).

1.1.3. Distance

One key point for problems of taking diverse sets or elements is how to define the distance
between pair of sets or elements. The following four types appear often.

Arbitrary distance An arbitrary function d : S×S → R≥0 which satisfies (i) d(X,X) = 0
holds for all X ∈ S and (ii) d(X,Y ) = d(Y,X) holds for all X,Y ∈ S.

Distance satisfying the triangle inequality A distance d : S × S → R≥0 satisfying
the above (i) and (ii) such that (iii) d(X,Y ) + d(Y, Z) ≥ d(X,Z) holds for all X,Y, Z ∈ S.

Weighted Hamming distance

d(Si, Sj) :=
∑

e∈Si△Sj

w(e).

(Unweighted) Hamming distance

d(Si, Sj) := |Si△Sj |.

This distance can be captured as the weighted Hamming distance with w(v) = 1 for all
v ∈ V .

1.2. Why We Deal with This Problem Setting

Maximizing summation and maximizing minimum In our problem setting, we max-
imize the minimum weighted Hamming distance between set pairs. As written above, there
are two types of commonly studied objective functions; summation maximization and min-
imum maximization. Although both problem settings have been well-studied, for obtaining
diverse patterns of solutions, minimum maximization may be suitable for what the user
wants in some cases. In Section 5 in Baste et al. (2019), they gave an example showing that
maximizing summation might not output what one may expect. We shortly explain this
Baste et al. (2019)’s example. For an even number r, given a path of 2r − 2 vertices, they
consider taking r vertex covers each size of which is at most r − 1. Then they showed that
for the case of r = 6, only two kinds of solutions appear (three copies of each solution).
Baste et al. (2019) cites another example: taking points in a given square (Ulrich et al.,
2010). In this example, if one wants to maximize the summation of pairwise distance, then
the points are only on boundaries, and this may not be suitable for one’s purpose.
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Set family and computational complexity In our problem setting, we take sets
S1, . . . , Sk from a set family S ⊆ 2V , where V is a given ground set. Although the set
family version can be captured as a set version by considering S as a new ground set V ′

and we take S1, . . . , Sk ∈ V ′, what we would like to emphasize is that the time complexity
of our algorithm depends on |V |, 1/δ, and W in polynomial order and not on |S| (which
can be 2|V | in the worst case) in polynomial order.

Weighted Hamming distance Hamming distance is often used to describe the dis-
tance between two sets. Weighted Hamming distance is a natural quantitative extension of
(unweighted) Hamming distance and has been used in various fields. A distance with the
triangle inequality or an arbitrary distance are more general, but finding diverse solutions
for these distances is often highly difficult. For example, for a maximizing minimum version
of taking elements in a given set, if we consider an arbitrary distance, then constant factor
approximation is impossible under P ̸= NP (Ravi et al., 1994). Even for the same problem
with a distance with the triangle inequality, an approximation ratio of more than 1/2 is
NP-hard (Ravi et al., 1994).

1.3. Related Works

Problems of taking diverse things have been well-investigated. Two standard objective
functions for maximization are the sum of pairwise distances and the minimum of pairwise
distances. For both objective functions, Ravi et al. (1994) gave algorithms and hardness
results for a problem of taking elements in a given set. Chandra and Halldórsson (2001)
gave several approximation algorithms and hardness results for diversification problems.

Max-min problems are also called dispersion problems, and heuristics have also been
studied, see, e.g., Erkut et al. (1994). For max-min problems, Addanki et al. (2022) dealt
with fair Max-Min diversification problem, which was introduced by Moumoulidou et al.
(2021), the problem considering distinct categories and selecting the predetermined number
of elements from each group. Akagi et al. (2018) proposed exact algorithm for the max-
min k-dispersion problem which takes exponential time. Amano and Nakano (2020) gave
a 1/4

√
3-approximate algorithm for the max-min type problem, which considers not only

the nearest point but also the second nearest point. Araki and Nakano (2022) dealt with
a problem of max-min type dispersion on a line. Chen et al. (2019) gave an algorithm for
a problem of an online version of a max-min type problem. Horiyama et al. (2021) gave
algorithms for a problem of taking three points in max-min type. Kobayashi et al. (2021)’s
topic is also a problem of taking three points in max-min type, but their work dealt with
that on a convex polygon. Kobayashi et al. (2022) consider the same problem on a point
set in a convex position. Singireddy and Basappa (2022) tackled a generalization of this
problem: that of taking k points in max-min type. Fomin et al. (2023) dealt with max-min
type weighted problems on matroid bases and independent sets, showed their NP-hardness,
and gave FPT algorithms for them.

For max-sum problems, Hanaka et al. (2021, 2022b) gave frameworks for finding diverse
solutions. Hanaka et al. (2022a) dealt with a framework and applied the framework to some
combinatorial problems. Gillenwater et al. (2015) defined submodular Hamming metrics,
an extension of weighted Hamming distance, and gave an approximation algorithm for a
problem with this metric.
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Algorithm 1 Proposed algorithm

Input (V,w, the information of S, k; δ(> 0))
take S1 ∈ S arbitrarily.
for l = 2, . . . , k do

Set an output of Algorithm 2 to Sl.
end for
Output S1, . . . , Sk

We explain the difference and relation between our work and the work of Hanaka et al.
(2022a). Hanaka et al. (2022a) gave a framework for a max-sum type problem. Their
framework provides a constant factor approximation ratio for a problem for which top-k
enumeration can be done in polynomial time. Note that for a ground set V , a membership
oracle of S ⊆ 2V , and a weight function w : V → R, the procedure top-k enumeration finds
S1, . . . , Sk ∈ S such that for any i ∈ [k] and any S ∈ S \ {S1, . . . , Sk}, w(Si) ≥ w(S) holds.
On the other hand, the framework of our work deals with a max-min type problem. The
output of our algorithm satisfies min1≤i<j≤k Edw(Si, Sj) ≥ µ

2Ψ − δ and our algorithm can
be used for problems for which µ-approximation of maximization of the weighted sum of
weighted Hamming distances can be done in time θ.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we propose an algorithm for
obtaining diverse solutions, analyze the time complexity of the algorithm, explain a special
case on the oracle, and introduce applications of our algorithm. Section 3 gives a hardness
result on Problem 1. We give some concluding remarks in Section 4.

2. Algorithm

For Problem 1, we propose an algorithm output of which satisfies a certain inequality on
weighted Hamming distance between set pairs (details appear in Theorem 1 later.) Our
algorithm as a whole is Algorithm 1. In Algorithm 1, Algorithm 2 is used as a subroutine
repeatedly. Algorithm 2 utilizes the framework of MWU and decides the output Sl prob-
abilistically; for each l, candidates of Sl are listed as S(t) (t ∈ [1, T ]) (the same set can
appear repeatedly) and we pick Sl from them with probability in proportion to the number
of appearances as S(t).

2.1. Approximation Performance Using Expected Value

For Problem 1, we provide the following result on the approximation ratio.

Theorem 1 Let Ψ be the optimal value of Problem 1. Then, Algorithm 1 achieves the
following inequality:

min
1≤i<j≤k

Edw(Si, Sj) ≥
µ

2
Ψ− δ.

Here, E in this theorem denotes the expectation taken with respect to the internal randomness
of Algorithm 1, and δ is an input parameter.
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Algorithm 2 Step for taking Sl

Input (V,w, the information of S, l; δ(> 0);S1, . . . , Sl−1)

W := maxv∈V w(v), T := max
{⌈

4|V |2W 2 log(l−1)
δ2

⌉
, 1
}
, η := min

{
1
2 ,

δ
2|V |W

}
β(1) = 1,γ(1) = 1

l−11
for t = 1, . . . , T − 1 do

Take S(t) ∈ S such that
∑l−1

i=1 γ
(t)
i dw(S

(t), Si) is larger than or equal to µ times the
maximum.
for i = 1, . . . , l − 1 do

β
(t+1)
i = β

(t)
i

(
1− η · dw(S(t),Si)

|V |W

)
end for
for i = 1, . . . , l − 1 do

γ
(t+1)
i = β

(t+1)
i /

∑l−1
i′=1 β

(t+1)
i′

end for
end for
Take S(T ) ∈ S such that

∑l−1
i=1 γ

(T )
i dw(S

(T ), Si) is larger than or equal to µ times the
maximum.
Output Sl which is S(t) with the probability of frequency of appearances in rounds t =
1, . . . , T .

In order to prove Theorem 1, we use Lemmas 2 and 3.

Lemma 2 Output Sl of Algorithm 2 satisfies

min
i∈[l−1]

ESl
dw(Sl, Si) ≥ µ ·max

S∈S
min

i∈[l−1]
dw(Si, S)− δ.

The next lemma corresponds with Theorem 2 in Ravi et al. (1994) in the sense that we
adapt this theorem in Ravi et al. (1994) to the case of maximization of the minimum of
weighted Hamming distance between set pairs.

Lemma 3 (Ravi et al. (1994)) Let Ψ be the optimal value of Problem 1 with the input
(V,w, the information of S, k). Then, for arbitrary given S1, . . . , Sl−1 ∈ S, it holds that

max
S∈S

min
i∈[l−1]

dw(Si, S) ≥
Ψ

2
.

Now we write proofs of Lemmas 2 and 3. First, we write a proof of Lemma 2.
Proof Similar to the inequality (3.5) in Arora et al. (2012), the following inequality holds.

Lemma 4 For arbitrary δ > 0, let T = max
{⌈

4|V |2W 2 log(l−1)
δ2

⌉
, 1
}
and η = min

{
1
2 ,

δ
2|V |W

}
.

Then, for arbitrary i∗ ∈ [l − 1], it holds that∑T
t=1

∑l−1
i=1 γ

(t−1)
i dw(S

(t), Si)

T
≤ δ +

∑T
t=1 dw(S

(t), Si∗)

T
.
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Here we write a proof of Lemma 4.
Proof Let us denote

Φt :=
l−1∑
i=1

β
(t)
i .

Then, for Φt−1 and Φt, the following relation holds:

Φt =

l−1∑
i=1

β
(t)
i =

l−1∑
i=1

β
(t−1)
i

(
1− η

dw(S
(t−1), Si)

|V |W

)

= Φt−1

l−1∑
i=1

γ
(t−1)
i

(
1− η

dw(S
(t−1), Si)

|V |W

)

= Φt−1

(
1− η

l−1∑
i=1

γ
(t−1)
i

dw(S
(t−1), Si)

|V |W

)

≤ Φt−1 exp

(
−η

l−1∑
i=1

γ
(t−1)
i

dw(S
(t−1), Si)

|V |W

)
,

where the last inequality holds since e−x ≥ 1 − x holds for all x ∈ R. Let us denote

β
(T+1)
i := β

(T )
i

(
1− η · dw(S(T ),Si)

|V |W

)
and γ

(T+1)
i := β

(T+1)
i /

∑l−1
i′=1 β

(T+1)
i′ . Then,

ΦT+1 ≤ Φ1

T∏
t=1

exp

(
−η

l−1∑
i=1

γ
(t)
i

dw(S
(t), Si)

|V |W

)

= (l − 1)

T∏
t=1

exp

(
−η

l−1∑
i=1

γ
(t)
i

dw(S
(t), Si)

|V |W

)

= (l − 1) exp

(
−η

T∑
t=1

l−1∑
i=1

γ
(t)
i

dw(S
(t), Si)

|V |W

)
(1)

holds. On the other hand, for arbitrary i∗ ∈ [l − 1],

ΦT+1 =

l−1∑
i=1

β
(T+1)
i ≥ β

(T+1)
i∗ =

T∏
t=1

(
1− η

dw(S
(t), Si∗)

|V |W

)

holds. Since 0 ≤ dw(S(t),Si∗ )
|V |W ≤ 1 and 0 < η ≤ 1/2, 1− η dw(S(t),Si∗ )

|V |W ≥ (1− η)
dw(S(t),Si∗ )

|V |W holds

for each t ∈ [T ]. Thus,

T∏
t=1

(
1− η

dw(S
(t), Si∗)

|V |W

)
≥ (1− η)

∑T
t=1

dw(S(t),Si∗ )

|V |W (2)

holds. Therefore, from (1) and (2),

T∑
t=1

dw(S
(t), Si∗)

|V |W
log(1− η) ≤ log(l − 1)− η

T∑
t=1

l−1∑
i=1

γ
(t−1)
i

dw(S
(t), Si)

|V |W
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holds. Hence,

η

T∑
t=1

l−1∑
i=1

γ
(t−1)
i

dw(S
(t), Si)

|V |W
≤ log(l − 1)−

T∑
t=1

dw(S
(t), Si∗)

|V |W
log(1− η)

= log(l − 1) +

T∑
t=1

dw(S
(t), Si∗)

|V |W
log

1

1− η

≤ log(l − 1) +

T∑
t=1

dw(S
(t), Si∗)

|V |W
(η2 + η)

holds. Here, the last inequality holds by 0 < η ≤ 1/2. Therefore, we obtain

T∑
t=1

l−1∑
i=1

γ
(t−1)
i dw(S

(t), Si)−
T∑
t=1

dw(S
(t), Si∗) ≤

|V |W log(l − 1)

η
+ η

T∑
t=1

dw(S
(t), Si∗)

≤ |V |W log(l − 1)

η
+ η|V |WT,

where we use dw(S
(t), Si) ≤ |V |W for any t ∈ [T ] and i ∈ [l − 1]. If δ ≤ |V |W , when

T = max
{⌈

4|V |2W 2 log(l−1)
δ2

⌉
, 1
}
, η = min

{
1
2 ,

δ
2|V |W

}
,

∑T
t=1

∑l−1
i=1 γ

(t−1)
i dw(S

(t), Si)

T
≤ δ +

∑T
t=1 dw(S

(t), Si∗)

T
(3)

holds. On the other hand, since 0 ≤ dw(S
(t), Si) ≤ |V |W holds for arbitrary t and i, the

inequality (3) also holds under the condition of δ > |V |W .

Now we move back to the proof of Lemma 2. From von Neumann (1928), the following
equality holds:

max
S∈conv(S)

min
γ∈∆l−1

l−1∑
i=1

γidw(Si,S) = min
γ∈∆l−1

max
S∈conv(S)

l−1∑
i=1

γidw(Si,S), (4)

where conv(S) denotes the convex hull of S, and for a decomposition of S to a weighted sum
of elements in S, that is, S =

∑
S′∈S′⊆S αS′S′, dw(Si,S) :=

∑
S′∈S′ αS′dw(Si, S

′). (Note

that since a problem we deal with in Algorithm 2, that is, maximizing
∑l−1

i=1 γ
(t)
i dw(S

(t), Si)
has an optimal solution in S and thus the fact that S in (4) is in conv(S) does not cause
trouble in our case.) Let us denote this value of (4) by λ∗. For an arbitrary γ, the following
inequality holds:

µλ∗ ≤
∑T

t=1(
∑l−1

i=1 γ
(t)
i dw(S

(t), Si))

T
≤ δ + min

i∈[l−1]

{∑T
t=1 dw(S

(t), Si)

T

}
,

where the former inequality holds by the definition of λ∗ (the fact that λ∗ is equal to the
right-hand side of (4)) and that S(t) attains µ times the maximum value, and the latter
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inequality holds by Lemma 4. Hence,

µλ∗ − δ ≤ min
i∈[l−1]

{∑T
t=1 dw(S

(t), Si)

T

}
= min

i∈[l−1]
Etdw(S

(t), Si)

holds. Therefore, it holds that

min
i∈[l−1]

ESl
dw(Sl, Si) ≥ µ ·max

S∈S
min

i∈[l−1]
dw(Si, S)− δ.

In order to make this paper self-contained, we write a proof of Lemma 3. The following
proof of Lemma 3 is the same kind as that of Theorem 2 in Ravi et al. (1994), and Lemma 5
corresponds with Part b of Claim 1 in Ravi et al. (1994).
Proof Let us denote an optimal solution of Problem 1 by S∗

1 , . . . , S
∗
k and

Ψ := min
1≤i<j≤k

dw(S
∗
i , S

∗
j ).

For each S∗
i (i = 1, . . . , k), let us denote

C∗
i =

{
S ∈ S

∣∣∣∣ dw(S∗
i , S) <

Ψ

2

}
.

Since S∗
i ∈ C∗

i (i = 1, . . . , k), each C∗
i is not empty. The following lemma holds.

Lemma 5 (Ravi et al. (1994)) For arbitrary i and j with i ̸= j, C∗
i ∩ C∗

j = ∅ holds.

For completeness, we write a proof of Lemma 5.
Proof Suppose that there exist i and j with i ̸= j satisfying C∗

i ∩ C∗
j ̸= ∅. Suppose

S ∈ C∗
i ∩ C∗

j . Then, by the definition of C∗
i , dw(S

∗
i , S) < Ψ/2 holds. In the same way, by

the definition of C∗
j , dw(S

∗
j , S) < Ψ/2 holds. Since S∗

i and S∗
j are elements in the optimal

solution, dw(S
∗
i , S

∗
j ) ≥ Ψ holds. Therefore, it holds that dw(S

∗
i , S)+dw(S

∗
j , S) < dw(S

∗
i , S

∗
j ),

and this inequality contradicts the triangle inequality.

We move back to the proof of Lemma 3. By Lemma 5, when the algorithm adds a new
set, the number of C∗

i including the set is at most one. Thus, at step l, the number of C∗
i

remained not taken a set inside is at least k − l − 1. Therefore, the optimal value at step l
in the algorithm is larger than or equal to Ψ/2.

Finally, we prove Theorem 1.
Proof By combining Lemmas 2 and 3, for each step taking Sl,

min
i∈[l−1]

ESl
dw(Sl, Si) ≥ µ ·max

S∈S
min

i∈[l−1]
dw(Si, S)− δ ≥ µ

2
Ψ− δ

holds. This means that
ESl

dw(Sl, Si) ≥
µ

2
Ψ− δ

holds for arbitrary l and i, and thus it holds that min1≤i<j≤k Edw(Si, Sj) ≥ µ
2Ψ− δ.
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2.2. Time Complexity

We analyze the total time complexity of Algorithm 1. First, we see the subroutine, Algo-
rithm 2 for a fixed l. Here, θ denotes the time complexity of the oracle of the procedure “Take

S(t) ∈ S such that
∑l−1

i=1 γ
(t)
i dw(S

(t), Si) is lagrer than or equal to µ times the maximum.”
(Note that 1 ≤ l − 1 ≤ k.) We repeat solving weight-maximization problem approximately
(time complexity: θ) and updating β(t) and γ(t) (time complexity: O(l|V |)) for T − 1 times

and find S(T ) (time complexity: θ). Since T = max
{⌈

4|V |2W 2 log(l−1)
δ2

⌉
, 1
}
, time complexity

of Algorithm 2 (round l) is O
(
|V |2W 2 log l

δ2
(θ + l|V |)

)
. Taking the sum from l = 2 to k and

also summing time complexity for taking S1, by
∫
x log xdx = 1

4x
2(2 log x − 1) + C, total

time complexity of Algorithm 1 is

O

(
|V |2W 2k log k

δ2
(θ + |V |k)

)
.

2.3. Special Case: Reduction to Weight Maximization for the Oracle

In the above, we assume that there exists a µ-approximation oracle for maximizing the

function
∑l−1

i=1 γ
(t)
i dw(S

(t), Si) in time θ. We show that for a certain class, S(t) can be
calculated in polynomial time concretely.

Theorem 6 Suppose the following two conditions hold for S ⊆ 2V :

(i) ∅ ∈ S and

(ii) for any w′ : V → R, we can find S′ ∈ S such that
∑

e∈S′ w′(e) is larger than or equal
to µ times the maximum in polynomial time.

Then, we can find S(t) ∈ S such that
∑l−1

i=1 γ
(t)
i dw(S

(t), Si) is larger than or equal to µ times
the maximum in polynomial time.

Proof Let

w′′(i, e) =

{
w(e) (e /∈ Si)

−w(e) (e ∈ Si)

and let us denote w̃(e) =
∑l−1

i=1 γ
(t)
i w′′(i, e). Then, it holds that

l−1∑
i=1

γ
(t)
i dw(S, Si) = w̃(S) +

l−1∑
i=1

γ
(t)
i w(Si).

Let S∗ ∈ S be the maximizer of
∑l−1

i=1 γ
(t)
i dw(·, Si). Since the value

∑l−1
i=1 γ

(t)
i w(Si) does

not depend on S∗, the maximizer of w′(·) is also S∗. Since we assume (i) and it holds
that w′(∅) = 0, w̃(S∗) ≥ w̃(∅) = 0. By the assumption (ii), we can find Ŝ ∈ S such that
w̃(Ŝ) ≥ µw̃(S∗) holds by the oracle. Then, it holds that

w̃(Ŝ) +
l−1∑
i=1

γ
(t)
i w(Si) ≥ µw̃(S∗) +

l−1∑
i=1

γ
(t)
i w(Si) ≥ µ

(
w̃(S∗) +

l−1∑
i=1

γ
(t)
i w(Si)

)
.
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Thus, Ŝ satisfies the statement in the theorem, and we can find Ŝ in polynomial time.

Remark 7 Assumptions (i) and (ii) in Theorem 6 are one pair forming a sufficient condi-
tion, and actually, these can be loosened. For example, (i) can be replaced with “there exists
S ∈ S with w̃(S) ≥ 0”.

2.4. Applications

2.4.1. Matching

Matching is one of the most fundamental structures in graphs, and it has been well-
investigated in various fields. Let G = (V,E) be an undirected graph and w : E → R
be a weight function on edges. A set M ⊆ E is called a matching if any distinct pair
of elements in M do not share endpoints. For a given integer r, the following problem is
considered.

Problem 2 (Maximum weight matching) Given an undirected graph G = (V,E), a
weight function w : E → R, and an integer r ∈ Z>0, find a maximum weight matching of
size less than or equal to r in G with respect to edge weight w.

A diverse version of weighted matchings is formulated as follows.

Problem 3 Given an undirected graph G = (V,E), a weight function w : E → R, and inte-
gers k, r ∈ Z>0, find matchings M1, . . . ,Mk ⊆ E of size less than or equal to r maximizing
min1≤i<j≤k dw(Mi,Mj).

Note that for the problem similar to Problem 3 whose feasible solutions M1, . . . ,Mk are of
size r and whose objective function is

∑
1≤i<j≤k dw(Mi,Mj), Hanaka et al. (2022a) gave a

max{1− 2/k, 1/2}-approximate algorithm, but our problem setting is max-min type.
By Edmonds (1965), maximum weight matching of size r can be found in polynomial

time. Thus, from this Edmonds (1965)’s result and Theorem 1, the following corollary is
obtained.

Corollary 8 For Problem 3, by applying Algorithm 1, the output M1, . . . ,Mk satisfies

min
1≤i<j≤k

Edw(Mi,Mj) ≥
ΨDM

2
− δ,

where ΨDM is the optimal value of Problem 3 and δ is a parameter in Algorithm 1 which
the user determines.

2.4.2. Matroid

A pair M = (E, I) of a ground set E and a set family I ⊆ 2E is called a matroid if the
following three conditions hold: (i) ∅ ∈ I, (ii) Y ∈ I =⇒ X ∈ I holds for all X ⊆ Y ⊆ E,
and (iii) there exists e ∈ Y \X such that X ∪ {e} holds for all X,Y ∈ I with |X| < |Y |.
The family B of maximal elements of I is called a base family of M, and each element in
B is called a base. The concept of matroids includes many fundamental concepts, and thus
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it is crucial to analyze problems on matroids; e.g., if a matroid is a graphic matroid, which
corresponds to a certain graph, each base of the matroid corresponds to a spanning tree in
the graph.

In Fomin et al. (2023), Weighted Diverse Bases problem was considered. Here, we state
an optimization version of a similar problem (the above problem in Fomin et al. (2023) is
a decision problem).

Problem 4 Given a matroid M = (E, I), a weight function w : E → R, and an integer
k ∈ Z>0, find independent sets I1, . . . , Ik ∈ I of M maximizing min1≤i<j≤k dw(Ii, Ij).

For the version of Problem 4 whose objective function is
∑

1≤i<j≤k dw(Bi, Bj) where
B1, . . . , Bk are bases, Hanaka et al. (2022b) gave a polynomial-time algorithm, but again,
our problem setting is different.

By Rado (1957), for a given matroid M = (E, I) and a weight function w : E → R,
a maximum-weight base can be found in polynomial time. Thus, from this Rado (1957)’s
result and Theorem 1, we obtain the following corollary on Problem 4.

Corollary 9 For Problem 4, by applying Algorithm 1, the output I1, . . . , Ik satisfies

min
1≤i<j≤k

Edw(Ii, Ij) ≥
ΨDI

2
− δ,

where ΨDI is the optimal value of Problem 4 and δ is a parameter in Algorithm 1 which the
user determines.

3. Hardness on Approximation

For the hardness of Problem 1, we show the following statement on the approximation ratio.

Theorem 10 Under the assumption of P ̸= NP, for any ϵ > 0, there does not exist (2/3+
ϵ)-approximation algorithm for Problem 1.

Proof We utilize 3D MATCHING problem for reduction.

Problem 5 (3D MATCHING) Given a hypergraph H = (V1, V2, V3; E) with E ⊆ V1 ×
V2×V3 and an integer k′, find M ⊆ E such that |M| = k′ and that arbitrary pair of distinct
elements in M are disjoint.

Each solution of Problem 5 is called a 3-dimensional matching. By Karp (1972), Problem 5
is NP-complete. Let us consider that an arbitrary input (V1, V2, V3; E ; k′) of Problem 5 is
given. Then, we reduce this instance to an instance of Problem 1 as follows: V := V1∪V2∪V3,
S := {{v1, v2, v3} | (v1, v2, v3) ∈ E}, k := k′, and w(v) := 1 (∀v ∈ V ). Then, the relation
between the instance (V,S, k, w) (hereafter we call this instance (A)) of Problem 1 and the
original instance (V1, V2, V3; E ; k′) (hereafter we call this instance (B)) of Problem 5 is

• the optimal value of (A) is six ⇐⇒ (B) has a 3-dimensional matching of size k′, and

• the optimal value of (A) is less than or equal to four ⇐⇒ (B) does not have a
3-dimensional matching of size k′.
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If there exists (2/3+ϵ)-approximation algorithm for Problem 1, by applying the algorithm to
(A), if the function value of the output solution is larger than four, (B) has a 3-dimensional
matching with size k′, and if the function value of the output solution is less than or equal
to four, (B) does not have a 3-dimensional matching with size k′. Thus, it means Problem 5,
which is NP-complete, is solved in polynomial time. Therefore, under the assumption of
P ̸= NP, there does not exist (2/3 + ϵ)-approximation algorithm for Problem 1.

4. Concluding Remarks

In this paper, we give an algorithm for the problem of finding diverse sets in the sense of
maximization of the minimum weighted Hamming distance between set pairs. Also, we
gave a hardness result on the approximation ratio.

As future works, both better algorithms and hardness directions can be considered. For
the former, better approximation algorithms are hoped, which may be an algorithm such
that the expected value of the minimum distance is lower bounded, or the left-hand side
is the same as our result but the right-hand side is larger than our result (µ/2)Ψ − δ. For
the latter, since our hardness result may not be tight, we think further investigation on the
hardness of our problem is a worthwhile research direction.
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