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Abstract 
Reducing the memory usage and computational complexity of high-performance deep neural 

networks while minimizing degradation of accuracy is a key issue in implementing these models on 

edge devices. To address this issue, partial quantization methods have been proposed to partially 

reduce the weight parameters of neural network models. However, the accuracy of existing methods 

degrades rapidly with increasing compression ratio. Although retraining can compensate for this 

issue to some extent, it is computationally very expensive. In this study, we propose a mixed-

precision quantization algorithm without retraining or degradation in accuracy. In the proposed 

method, first, the difference between values after and before quantization losses of each channel in 

the layers of the pretrained model is calculated for all channels. Next, the layers are divided into two 

groups called semilayers according to whether the loss difference is positive or negative. The 

priorities for quantization in the semilayers are determined based on the Kulback-Leibler divergence 

derived from the probability distribution of the softmax output after and before quantization. The 

same process is repeated as a mixed-precision quantization while gradually decreasing the bitwidth, 

for example, with 8-, 6-, and 4-bit quantizations, and so forth. The results of an experimental 

evaluation show that the proposed method successfully compressed a ResNet-18 model by 81.44%, 

a ResNet-34 model by 84.25%, and a ResNet-50 model by 80.39% on image classification tasks 

using the ImageNet dataset, and a ResNet-18 model by 80.56% on image classification tasks using 

the CIFAR-10 dataset, with no degradation of the inference accuracy of the pretrained models. 

Keywords: convolutional neural network; mixed-precision quantization; sensitivity analysis; 

without retraining; without accuracy degradation 
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1. Introduction  

Edge AI describes AI systems embedded in devices operated by users, especially mobile devices. 

Recently, systems designed to make inferences with neural networks have implemented models on 

this edge device side to reduce communication with the cloud as much as possible. This approach 

has attracted attention owing to some notable advantages such as real-time performance and 

improved security. In general, larger neural network models are required to achieve sufficiently 

high inference accuracy (Bianco et al. (2018a); Kaplan et al. (2020a)). However, the computational 

resources of edge devices such as power consumption and memory usage are typically relatively 

limited. In general, neural network structures become more difficult to implement on simple edge 

devices. To overcome such problems, neural network models must be sufficiently compressed 

while minimizing the degradation of the accuracy of inferences. Compression methods such as 

quantization (Wu et al. (2016)) and pruning (Li et al. (2016)) have been proposed to reduce the size 

and computational cost of such models. In particular, quantization is an effective compression 

method because it can flexibly reduce the size of neural network models, as well as their memory 

usage and computational cost. However, there is a tradeoff between the compression ratio of the 

model and the accuracy of the compressed model. In other words, there is a limit to the extent that 

quantization can compress a network because the accuracy decreases as the compression ratio 

increases. 

In previous studies on the quantization of neural networks (Jacob et al. (2018); Wu et al. (2020)), 

models were uniformly quantized with the same bitwidth. As this approach does not specifically 

consider important portions in the model, accuracy is easily degraded with quantization to a lower 

bitwidth. Partial quantization, in which a portion of the model is selectively quantized (e.g., a layer), 

can resolve the tradeoff between accuracy and compression ratio; sensitivity analysis (Wu et al. 

(2020)) has been proposed to solve problems with per-layer (Tsuji et al. (2021, 2022)) and per-

channel (Choukroun et al. (2019); Lee et al. (2018); Okado et al. (2022)) quantization. In these 

works, the difference between the accuracy (∆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) or the loss (∆𝑙𝑜𝑠𝑠) of the model after and 

before quantization was used to represent sensitivity. Furthermore, to resolve the tradeoff between 

accuracy (or loss) and compression ratio, retraining after quantization is used to improve the 

compression ratio while maintaining accuracy (Chen et al. (2021)). However, the computational 

cost involved in retraining neural networks is generally high, and many users may lack abundant 

computational resources. Therefore, quantization methods that do not require retraining are 

preferable. Given this background, several previous studies (Huang et al. (2021); Okado et al. 

(2022); Tsuji et al. (2021, 2022)) have proposed quantization methods without retraining. However, 

compressing learning models sufficiently while maintaining high inference accuracy remains 

challenging. 

In this study, we propose a mixed-precision quantization method that combines multiple 

quantization bitwidths to achieve sufficient compression of pretrained neural networks without 

retraining or degradation of inference accuracy. The quantization target is limited to the weights of 

the convolutional layer of the neural network. Our proposed method first derives the ∆𝑙𝑜𝑠𝑠 when 

the weights of a certain channel are quantized with multiple bitwidths. Then, each layer is divided 

into two groups, including a positive-value group and a negative-value group based on the ∆𝑙𝑜𝑠𝑠 

value. These groups are denoted as “semilayers” in this study. Because the ∆𝑙𝑜𝑠𝑠 values differ for 

each quantization bitwidth, we create multiple semilayers corresponding to each quantization 

bitwidth. In the proposed method, quantization is performed starting from semilayers with large 

quantization bitwidth values. Then, the quantization bitwidths are reduced and the compression 

ratio is improved by the appropriate quantization bitwidth for each channel. 

In the proposed approach, we adopt sensitivity analysis as a method of prioritizing quantization. 

We use the Kullback-Leibler (KL) divergence derived from the probability distribution of the 

softmax output after and before quantization. As the sensitivity of this process, we take the KL 

divergence normalized by the number of semilayer parameters. In fact, existing methods have used 
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∆𝑙𝑜𝑠𝑠 as a sensitivity parameter (Okado et al. (2022)). However, these techniques cannot account 

for changes of network outputs after quantization at an output layer. In contrast, the KL divergence 

can measure changes after and before quantization. To account for differences in the amount of 

information due to differences in the number of channels possessed by the each semilayer, the KL 

divergence is normalized by the number of parameters of the each semilayer. Hence, this sensitivity 

is effective in controlling large changes in the output of the quantization process. 

To evaluate the proposed method, we investigated image classification problems using the 

ImageNet (Deng et al. (2009)) and CIFAR-10 datasets (Krizhevsky and Geoffrey (2009)) for 

various ResNet models (He et al. (2016)). 

The contributions of this study can be summarized as follows: 

⚫ We propose a new quantization granularity referred to as semilayers for the compression 

of convolutional neural network (CNN) models. In a layer, the positive-value group has 

positive channels in ∆𝑙𝑜𝑠𝑠 and the negative-value group has negative channels in ∆𝑙𝑜𝑠𝑠. 

As a result, the negative-value groups can improve the accuracy of the model. 

⚫ In sensitivity analysis, we propose KL divergence normalized by the number of parameters 

in each semilayer as sensitivity. This approach can measure changes in network outputs 

after quantization, preventing large changes in output and thus avoiding degradation of 

accuracy due to the quantization process. 

⚫ We extend semilayer-based quantization to mixed-precision quantization with multiple 

quantization bitwidths. As a result, the optimal quantization bitwidth can be assigned to 

each channel. 

⚫ Our proposed method achieved a compression ratio of 81.44% for ResNet-18, 84.25% for 

ResNet-34, and 80.39% for ResNet-50 on image classification tasks using the ImageNet 

dataset, and 80.56% for ResNet-18 on the image classification tasks using the CIFAR-10 

dataset; inference accuracy was not degraded without retraining. 

2. Related Work  

In recent years, CNN models have been successfully used in various computer applications such as 

image classification (Simonyan and Zisserman (2014)) and object detection (Girshick et al. (2014); 

Girshick (2015)). This is mainly due to their deep layered network architecture and the large 

amounts of training data that can be processed (Krizhevsky et al. (2017)). However, the 

computational complexity of CNN models increases exponentially for both training and inference 

for increasingly deep network structures with more layers (Bianco et al. (2018); Kaplan et al. 

(2020)), which can place a heavy burden on computational resources. Executing deep convolutional 

operations on edge AI devices can be almost impossible due to their limited computational power 

and memory capacity. Therefore, the development of methods to compress CNN models and reduce 

memory usage is important to support these new applications. 

In a previous study, quantized CNN models were proposed as a framework to accelerate CNN 

models and reduce the storage space and memory usage required (Wu et al. (2016)); their results 

showed a speedup by a factor of 4-6 and compression by a factor of 15-20 compared to the 

conventional benchmark, with less than 1% degradation in image classification accuracy. This 

method also enables accurate image classification in less than one second, even on mobile devices. 

Many other compression methods utilizing model quantization have also been proposed. Along 

these lines a previous study introduced per-channel quantization instead of per-layer quantization, 

and stated that 8-bit quantization could be performed while minimizing the accuracy degradation 

due to quantization (Lee et al. (2018)). In another study (Choukroun et al. (2019)), per-channel 

quantization was shown to be effective for 4-bit quantization with low bitwidths by solving a 
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minimum mean square error problem. Furthermore, a method of quantization designed to minimize 

cross-entropy error has been proposed (Nahshan et al. (2021)). A method of quantization that 

approximates a loss function and optimizes a rounding problem has also been proposed (Nagel et 

al. (2020)). As another approach (Wu et al. (2020)), a partial quantization which investigates the 

sensitivity of individual layers was considered. One of the studies referring to this partial 

quantization is the greedy search algorithm (GSA) (Tsuji et al. (2021, 2022)), which formulated 

the partial quantization of neural networks as a simple combinatorial problem. This algorithm was 

inspired by the submodular function and achieves both compression and speedup in quantization. 

Other works have considered an analysis of the ∆𝑙𝑜𝑠𝑠 function (DLA) (Okado et al. (2022)). In this 

study, we use a sensitivity analysis method based on the idea that accuracy can be improved by 

using the per-channel ∆𝑙𝑜𝑠𝑠 in the convolutional layer, and aim to improve the tradeoff between 

accuracy and compression ratio. These studies have mainly focused on quantization at a single 

bitwidth. Furthermore, several studies have found that assigning different bitwidths to layers or 

channels of quantization can contribute to the compression ratio. One example is the constraint 

optimization algorithm (COA) (Chen et al. (2021)) for mixed-precision quantization that utilizes 

the Hessian and achieves a high compression ratio yet uses retraining. In addition, hardware-

friendly mixed quantization (MXQN) (Huang et al. (2021)) has also been applied to deep 

convolutional neural networks without retraining or finetuning. However, this technique does 

degrade the inference accuracy of the pretrained model. 

In contrast, our proposed method uses multiple bitwidths of quantization to provide sufficient 

compression of the pretrained model without retraining or degradation of inference accuracy. 

3. Semilayer-Wise Mixed-Precision Quantization Algorithm 

In this section, we describe the proposed mixed-precision quantization method, which combines 

multiple quantization bitwidths. We also illustrate the application of our approach with a case study 

utilizing a ResNet-18 (He et al. (2016)) model and the ImageNet dataset (Deng et al. (2009)). 

3.1 ∆𝒍𝒐𝒔𝒔 per Channel 

The ResNet-18 model used in this study includes 16 convolutional layers in the hidden layer. The 

convolutional layers are designated as layers 1, 2, ..., 16, starting with the convolutional layer 

closest to the input layer. A pre-trained model (PytorchDevTeam (2015)) was prepared on the 

ImageNet dataset for quantization. First, the first channel of layer 1 was quantized and tested using 

validation data. The value ∆𝑙𝑜𝑠𝑠  is defined as the difference of the cross-entropy loss after 

quantization 𝐿(𝒘 + ∆𝒘) and the cross-entropy loss before quantization 𝐿(𝒘). 

∆𝑙𝑜𝑠𝑠 = 𝐿(𝒘 + ∆𝐰) − 𝐿(𝒘), (1) 

 

Figure 1: ∆𝒍𝒐𝒔𝒔 distribution for all channels in the convolution layer of a ResNet-18 model. The red line 

represents a ∆𝒍𝒐𝒔𝒔 value of zero. The left side of the red line represents channels with negative 

∆𝒍𝒐𝒔𝒔 values, which may improve accuracy in the model. 
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where ∆𝒘  is a quantization error, which is the difference in the weights after and before 

quantization. The quantization method is the same as the “qint” cast in PyTorch (PytorchDevTeam 

(2022)). 

We evaluate ∆𝑙𝑜𝑠𝑠  for all channels in the model. Figure 1 shows the ∆𝑙𝑜𝑠𝑠  distribution of 

ImageNet image classification when 4-bit quantization was applied to all channels on a ResNet-18 

model. The horizontal axis represents the ∆𝑙𝑜𝑠𝑠 and the vertical axis represents the number of 

channels. Figure 1 shows that about half of the channels have negative ∆𝑙𝑜𝑠𝑠 values. This indicates 

that quantization may be expected to improve the inference accuracy for about half of the channels 

in the pretrained model. 

Figure 2 shows the ∆𝑙𝑜𝑠𝑠 distribution of the 512 channels of the 16th convolutional layer of 

ResNet-18 as an example. Experiments were conducted using 8-bit, 6-bit, and 4-bit quantizations. 

The vertical axis represents the ∆𝑙𝑜𝑠𝑠  quantized by a single channel and the horizontal axis 

represents the L1 norm of the quantization error ∆𝒘 at that time. In Figure 2, when the same channel 

was quantized with different quantization bitwidths, we experimentally confirmed that the ∆𝑙𝑜𝑠𝑠 

values with different quantization bitwidths had different values of ∆𝑙𝑜𝑠𝑠 even in the same channel. 

In quantization, the weights 𝒘 are shifted by a quantization error ∆𝒘. In this case, ∆𝑙𝑜𝑠𝑠 is 

approximated as a quadratic function (Nagel et al. (2020)). 

∆𝑙𝑜𝑠𝑠 ≈ ∆𝒘T ∙ 𝒈 +
1

2
∆𝒘T ∙ 𝑯 ∙ ∆𝒘, (2) 

where 𝒈 is the gradient and 𝑯 is the Hessian. From Figure 2, it may be observed that for a single 

channel, there are different values of ∆𝑙𝑜𝑠𝑠 obtained by quantization. The results also confirmed 

that there exists an excellent quantization bitwidth for which the value takes the minimum, i.e., a 

given model is considered to have a high affinity for a certain quantization bitwidth. In the proposed 

method, quantization is performed sequentially starting from the value with the largest quantization 

(8-bit quantization in this paper) bitwidth. Then, gradually decreasing the quantization bitwidth 

exploits a smaller ∆𝑙𝑜𝑠𝑠 value with high quantization affinity for each channel. 

 

Figure 2: Scattering plots of ‖∆𝒘‖𝟏 and ∆𝒍𝒐𝒔𝒔 for all channels in layer 16 of a ResNet-18 model. Blue 

dots represent 8-bit quantization, orange dots represent 6-bit quantization, and gray dots 

represent 4-bit quantization. The yellow quadratic curve shows the ∆𝒍𝒐𝒔𝒔 values for the 63-rd 

channel as an example. 

3.2 Semilayer-Wise Quantization 

Each layer is divided into two semilayers based on the positive and negative values of ∆𝑙𝑜𝑠𝑠. A 

schematic diagram of a single layer divided into semilayers is shown in Figure 3. This process is 

applied to all hidden convolutional layers. For example, ResNet-18 has 16 hidden convolutional 

layers, for a total of 32 semilayers. The purpose of this operation is to divide each layer into 

channels for which quantization may be expected to improve accuracy and channels for which there 

is some possibility of decreasing accuracy. Table 1 summarizes the ∆𝑙𝑜𝑠𝑠  value at 6-bit 

quantization of an entire semilayer for layer 1, layer 5, layer 9, and layer 13 in ResNet-18. We 

observed that all negative semilayers exhibited negative loss values, and vice versa. 
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The semilayer is recombined with each quantization bitwidth and quantized semilayer because 

different quantization bitwidths have different values of ∆𝑙𝑜𝑠𝑠. For example, after quantizing an 8-

bit semilayer to 8 bits, the semilayer was recombined to a 6-bit semilayer and quantized to 6 bits. 

This process may result in channels that were not quantized with 8-bit quantization being quantized 

with 6-bit quantization. This is intended to further increase the compression ratio. In our method, 

8-, 6-, and 4-bit quantization bitwidths are selected. 

 

Figure 3: Schematic diagram of one layer divided into semilayers. Red channels represent positive ∆𝒍𝒐𝒔𝒔 

and blue channels represent negative ∆𝒍𝒐𝒔𝒔. 

Table 1: ∆𝒍𝒐𝒔𝒔 analysis of semilayer corresponding to the group with positive and negative ∆𝒍𝒐𝒔𝒔 and 

negative ∆𝒍𝒐𝒔𝒔 in convolution layer 1, layer 5, layer 9, and layer 13. 

Negative semilayer 1-negative 5-negative 9-negative 13-negative 

−20.8 × 10−4 −25.2 × 10−4 −26.9 × 10−4 −23.1 × 10−4 

Positive semilayer 1-positive 5-positive 9-positive 13-positive 

 72.7 × 10−4 51.4 × 10−4 32.4 × 10−4 28.3 × 10−4 

 

3.3 KL Divergence in Sensitivity Analysis 

For all semilayers described in subsection 3.2, we compute a KL divergence between the 

probability distribution obtained from the softmax output of the original model and that of the 

model after quantizing all channels belonging to a semilayer. The input data used for the ImageNet 

classification is 50-k validation data. This indicator is computed for all semilayers. When 

quantizing multiple parameters collectively, the effect on the output of the neural network increases 

with the number of parameters involved. Therefore, in the sensitivity analysis, we normalize the 

KL divergence by dividing the number of parameters in the entire semilayer. Resnet-18 models 

include 64 channels in convolution layers 1 to 4, 128 channels in layers 5 to 8, 256 channels in 

layers 9 to 12, and 512 channels in layers 13 to 16. Because the amount of information per-channel 

differs depending on the number of channels, the difference in the amount of information is 

considered by normalizing the number of parameters held by the semilayer. The normalized 

sensitivity is derived over multiple bitwidths such as 8-bit, 6-bit, 4-bit, and 2-bit quantizations. 

KL divergence use justification 

∆𝑙𝑜𝑠𝑠 is used as the sensitivity in sensitivity analysis, which is considered informative and effective 

in partial quantization (Okado et al. (2022)). However, when ∆𝑙𝑜𝑠𝑠 is used as the sensitivity, the 

degree of change from the original model is not considered. Alternatively, semilayers with larger 

absolute values of ∆𝑙𝑜𝑠𝑠 may have more substantial changes in the model. If the model has a 

substantial change in weight, it becomes difficult to continue compressing the model without 

degrading accuracy. Therefore, this study uses KL divergence normalized by dividing the number 

of parameters in the entire semilayer as the sensitivity to limit the change in model weights to an 

appropriate level. Figure 4 shows the correlation between KL divergence normalized by dividing 

the number of parameters in the entire semilayer and ∆𝑙𝑜𝑠𝑠 when each semilayer is quantized 

independently in ResNet-18 6-bit quantization. The correlation coefficient for the negative 

semilayer was −0.129 and for the positive semilayer was 0.834. Therefore, the larger the value of 
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the horizontal axis, the larger the absolute value of ∆𝑙𝑜𝑠𝑠. Indeed, a more negative ∆𝑙𝑜𝑠𝑠 following 

semilayer quantization improves the overall model loss performance. However, owing to 

significant model changes, this is not an effective measure of sensitivity. To mitigate this issue, we 

prioritized KL divergence as the preferred sensitivity measure. 

 

Figure 4: Correlation between KL divergence normalized by dividing the number of parameters in the 

entire semilayer and ∆𝒍𝒐𝒔𝒔 with semilayers quantized. 

3.4 Semilayer-Wise Mixed-Precision Quantization Analysis 

This section summarizes subsections 3.1 through 3.3 and describes the full algorithm. 

Accuracy Increasing Phase. 

First, 8-bit quantization is applied to all channels to derive ∆𝑙𝑜𝑠𝑠. Next, all semilayers are created. 

For these semilayers, all channels belonging to the semilayer are quantized in order of decreasing 

sensitivity. In the algorithm, postponing is introduced only once. This process ensures improved 

inference accuracy and is conducted to increase the compression ratio. If the inference accuracy 

after quantization is lower than the inference accuracy before quantization, this semilayer is not 

quantized, and is instead postponed. This is repeated for all semilayers. To achieve realistic 

computation time, the decision is made on a per-semilayer basis rather than on a per-channel basis. 

As a result of this process, only semilayers the accuracy of which increases after and before 

quantization are quantized to 8 bits. The other semilayers remain at 32 bits. The next quantization 

bitwidth is reduced to 6 bits. After that, semilayers are created based on the ∆𝑙𝑜𝑠𝑠 of all channels 

derived in advance. All semilayers are quantized with postponing process. In the postponing 

process, the original bitwidth is restored, i.e., either 32 or 8 bits. As a result, the model is a mixture 

of 32-bit, 8-bit, and 6-bit channels. This process is performed while varying the bitwidth of 

quantization, such as 4-bit quantization, 2-bit quantization, and so forth. However, the goal of this 

phase is to increase inference accuracy. Therefore, if no increase in accuracy is observed, the 

method stops varying the bitwidth and moves on to the next phase. 

Postponing Phase. 

Next, quantization is performed on the 32-bit channels that have not yet been quantized. In this 

case, for the sake of realistic computation time and algorithmic simplicity, we do not perform an 

additional postponing process. Again, 8-bit quantization is chosen for the first quantization bitwidth. 

First, a semilayer is created for the remaining channels. Next, all semilayer quantizations are 

performed in order of decreasing sensitivity for each semilayer. Experiments are conducted 

independently by overwriting the quantization bitwidths. As a result, we confirm that the 

compression ratio increased for 6-bit width compared to 8 bits, and that 4 bits did not provide the 

same compression ratio as 6. Therefore, in this phase, a bitwidth of 6 was selected and the same 

processing was performed as in the stand-alone experiment. 

The algorithm is intended to improve the compression ratio by increasing the inference accuracy 

of the model in the accuracy-increasing phase and gradually degrading the inference accuracy of 

the model in the postponing phase. Algorithm 1 shows pseudocode that summarizes this subsection. 
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4. Experiments  

We evaluated experiments using ResNet-18, ResNet-34, and ResNet-50 (He et al. (2016)) for the 

proposed method. The evaluation method was based on inference results from image classification; 

the ImageNet and CIFAR-10 datasets (Krizhevsky and Geoffrey (2009)) were used with a system 
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with Nvidia Quadro RTX 8000 GPU (Nvidia (2023)). The source code of the algorithm and the 

weights of the model are available at the URL given below1. 

4.1 ResNet-18  

Figure 5 shows the results obtained by quantization with a single bitwidth and the proposed 

algorithm for the ResNet-18 model using the ImageNet and CIFAR-10 datasets. The results are 

obtained by moving from the accuracy-increasing phase to the postponing phase without changing 

the bitwidth. The horizontal axis is the compression ratio, and the vertical axis is the inference 

accuracy. Our proposed method achieved a compression ratio of 81.44% for the ImageNet dataset 

and 80.56% for the CIFAR-10 dataset to the extent that accuracy degradation is not less than the 

accuracy of the original model, exceeding the result of single bit quantization. 

  

Figure 5: Comparison of accuracy degradation in ResNet-18. The left figure shows the results when 

using the ImageNet dataset, and the right figure shows the results when using the CIFAR-10 

dataset. 

4.2 ResNet-34 

The left figure in Figure 6 shows the results obtained by quantization with a single bitwidth and 

our method when a ResNet-34 model and the ImageNet dataset were used. The proposed method 

achieved a compression ratio of 84.25% to the extent that accuracy degradation was not less than 

the accuracy of the original model, exceeding the result of the single-bitwidth quantization. 

4.3 ResNet-50 

The right figure in Figure 6 shows the results obtained by quantization with a single bitwidth and 

our method when a ResNet-50 model and the ImageNet dataset were used. The proposed method 

achieved a compression ratio of 80.39% to the extent that accuracy degradation was not less than 

the accuracy of the original model. However, it did not exceed the compression ratio of the 6-bit 

quantization. In the ResNet-50 model, many 8-bit quantization channels remain in the accuracy-

increasing phase. The 8-bit channels would be better to be selected as 6-bit quantization in the 

postponing phase in terms of compression ratio. However, all channels in the model were quantized 

at a compression ratio of 80.39%, and the inference accuracy achieved 0.136% over the original 

model baseline. This exhibits excellent performance of the proposed method in the high 

compression ratio and the high inference accuracy. 

                                                      
1 https://github.com/kenm-28/Semilayer-Wise-Mixed-Precision-Quantization/tree/main 
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Figure 6: Comparison of accuracy degradation. The left figure shows the results when using the ResNet-

34 model and the ImageNet dataset, and the right figure shows the results when using the 

ResNet-50 model and the ImageNet dataset. 

4.4 Comparison with Other Methods 

Table 2 shows the results of the proposed method compared to the conventional methods. The 

proposed method achieved a sufficient compression ratio compared to the conventional method 

within the range of accuracy degradation without retraining. The ResNet-18 and the ResNet-50 

models did not outperform the COA (Chen et al. (2021)) compression ratio, but the COA is 

computationally expensive because of the retraining process, and the accuracy was below that of 

the baseline. Our method was always superior to the baseline in terms of accuracy. 

Table 2: Results of comparison with other methods for the ImageNet dataset. “P” and “MP” respectively 

refer to partial quantization and mixed-precision quantization. The best results are bolded, and 

the underlines mark the second-best results. 

Network Dataset Method 
Baseline 

(%) 
bitwidth 

Comp. 

ratio 

(%) 

Top-1 

acc. 

(%) 

Top-1 

increase 

(%) 

Re- 

train 

ResNet-

18 

ImageNet 

FP32 69.75 − − − − No 

GSA 69.75 6P 64.34 69.79 +0.04 No 

DLA 69.75 6P 79.06 69.77 +0.02 No 

MQXN 69.75 8P 75.00 67.61 −2.14 No 

COA 69.75 3MP 87.98 69.66 −0.09 Yes 

Ours 69.75 3MP 81.44 69.77 +0.02 No 

CIFAR-

10 

FP32 92.59 − − − − No 

GSA 92.59 6P 74.16 92.60 +0.01 No 

DLA 92.59 6P 79.07 92.59 0.00 No 

Ours 92.59 4MP 80.56 92.63 +0.04 No 

ResNet-

34 
ImageNet 

FP32 73.31 − − − − No 

GSA 73.31 6P 36.36 73.33 +0.02 No 

DLA 73.31 6P 69.88 73.32 +0.01 No 

MQXN 73.31 8P 75.00 71.43 −1.88 No 

Ours 73.31 3MP 84.25 73.32 +0.01 No 

ResNet-

50 
ImageNet 

FP32 76.12 − − − − No 

GSA 76.12 6P 73.45 76.13 +0.01 No 

DLA 76.12 6P 79.36 76.13 +0.01 No 

MQXN 76.12 8P 75.00 74.06 −2.06 No 

COA 76.12 2MP 91.83 75.28 −0.84 Yes 

Ours 76.12 3MP 80.39 76.26 +0.14 No 
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4.5 Ablation Study 

We conduct an ablation study to assess the effective of the semilayers in our proposed method over 

layer-base quantization. Both experimental evaluations incorporate the postponing process and are 

compared in terms of the compression ratio to the extent that accuracy degradation was not less 

than the accuracy of the original model. The results of the ablation study are shown in Table 3. The 

compression ratios for the proposed semilayer-base method all exceed those for the layer-base one. 

It was confirmed that the introduction of semilayers can effectively compress models. 

Table3: Ablation study of the proposal method. 

Network Dataset 
Layer base Semilayer base 

Comp. ratio (%) 

ResNet-18 ImageNet 69.71 81.44 

ResNet-18 CIFAR-10 80.36 80.56 

ResNet-34 ImageNet 78.42 84.25 

ResNet-50 ImageNet 78.75 80.39 

 

5. Conclusion 

In this paper, we have proposed a new method of compressing neural networks by quantization. 

The proposed method achieved a higher compression ratio with less degradation of accuracy. The 

proposed method is not a single-bitwidth quantization, but rather a combined quantization of 

multiple bitwidths. Evaluation of the proposed method on a neural network-based image 

classification task on the ImageNet dataset showed that it improved the tradeoff between accuracy 

and compression ratio. In terms of specific results, image classification tasks using the ImageNet 

dataset, a ResNet-18 model was compressed with a ratio of 81.44%, a ResNet-34 was compressed 

with a ratio of 84.25%, and a ResNet-50 was compressed with a ratio of 80.39% by mixed-precision 

quantization. In image classification tasks using the CIFAR-10 dataset, a ResNet-18 was 

compressed with a ratio of 80.56% by the mixed-precision quantization. 
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