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Abstract

Multi-objective combinatorial optimization problems (MOCOP) are commonly encoun-
tered in everyday life. However, finding the optimal solution through traditional exact
and heuristic algorithms can be time-consuming due to its NP-hard nature. Fortunately,
deep reinforcement learning (DRL) has shown promise in solving complex combinatorial
optimization problems (COP). In this paper, we introduce a new Multi-objective Adaptive
Dynamics Attention Model (MOADAM) that aims to better approximate the whole Pareto
set. We modify the encoder and decoder of the model to better utilize dynamic information,
and we also design a new weight sampling method to improve the model’s performance for
extreme solutions. Our experimental results demonstrate that our proposed model outper-
forms the current state-of-the-art algorithm in terms of solution quality on multi-objective
vehicle routing problems with capacity constraints (MOCVRP).

Keywords: Vehicle routing problems with capacity constraints (CVRP), Multi-objective
combinatorial optimization problems (MOCOP), Deep reinforcement learning (DRL), At-
tention mechanism, Weight.

1. Introduction

MOCVRP is a combination of two different problems, namely CVRP and MOCOP. In
CVRP, there is a set of goods that need to be transported from the depot to various
customers, each with a specific demand. The transportation is carried out using a certain
number of vehicles with a predetermined capacity limit. The objective of the problem is to
determine the optimal set of routes that can deliver all the goods required by the customers.
Each customer can only be visited once, and the vehicle must not exceed its capacity limit
during transportation, except for the depot. For MOCOP, a general definition is as follows:

f(x) = (f1(x), f2(x), . . . , fm(x))

s.t. x ∈ X
(1)

MOCOP consists of different objective functions and a decision space X ∈ Rn. As these
objectives often conflict, improving one objective may lead to a decrease in the results of
other objectives. Therefore, they must be coordinated and compromised to achieve the best
possible values for each sub-objective. This is known as the Pareto optimal solution. For
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two solutions u, v ∈ Rm, if and only if ui ≤ vi for ∀i∈ {1, 2, . . . ,m} and there exists at least
one j ∈ {1, 2, . . . ,m} such that ui < vi, then u is said to dominate v. If a solution is not
dominated by any other solution in the Pareto set (PS), it is known as a Pareto optimal
solution x∗ ∈ X. All Pareto optimal solutions form a Pareto set.
Decomposition is the mainstream strategy for solving MOCOP. It divides the multi-

objective problem into multiple sub-problems. Zhang and Li (2007) and its variants Trivedi
et al. (2016) collaboratively solve these sub-problems and generate a limited Pareto set to
approximate the Pareto front. The most commonly used method for constructing single-
objective sub-problems is weight-based scalarization ( Ehrgott (2005), Miettinen (2012)).
For an m-objective optimization problem, the weight vector of the objective function can

be defined as λi ∈ Rm, subject to the constraints λi ≥ 0 and
m∑
i=1

λi = 1. Multi-objective

optimization decomposition methods are generally divided into weighted sum aggregation
and weighted Chebyshev aggregation.
Weighted sum aggregation is the simplest method, which defines the minimized ag-

gregation function associated with λ as follows:

fws(x | λ) =
m∑
i=1

λifi(x) (2)

Weighted Chebyshev aggregation is another method, defined as follows:

fws(x | λ) = m
max
i=1

{λi | fi(x)− z∗i |} (3)

Here, z∗i = minx∈X fi(x) represents the ideal value of fi(x).
We are faced with the question of whether the weights are known or not for MOCOP.

Training a model with specific weights is not practical as it can only solve specific sub-
problems that have predetermined weights for each objective. Therefore, we consider the
scenario where the weights are not known in advance. We can generate a Pareto set based
on different weights using the decomposition method.
In recent years, researchers have proposed many methods to solve MOCVRP, such as

NSGA-II Deb et al. (2002) and MOEA/D Zhang and Li (2007). However, these methods
usually require carefully crafted and specialized heuristics for each problem, which can be
very labor-intensive in practice. At the same time, these evolutionary algorithms require
iterative solutions for each different instance, and once there is a new instance, they need to
be resolved, which lacks timeliness, such as Pareto Local Search (PLS) Angel et al. (2004)
and Multi-Objective Genetic Local Search Algorithm (MOGLS) Jaszkiewicz (2002).
To effectively solve MOCVRP, machine learning technology is a promising approach as

it helps to learn patterns behind problem instances. DRL is a rapidly growing technology
that utilizes neural networks to approximate solutions to MOCOP. A recent study by Lin
et al. (2021) uses a hypernetwork to generate different decoder parameters for different ob-
jective weight vectors, which inspired our research. This paper introduces a new attention-
based DRL model called MOADAM that is designed to efficiently obtain the Pareto set
for MOCVRP using a single model. The main objective of this research is to create a uni-
versal model that can effectively utilize existing information, rather than increasing model
complexity. Our experiments have shown that incorporating such information as input can
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significantly improve the model’s learning ability. To address the MOCVRP challenge, we
break down the problem into two parts: CVRP and MOCOP. We first improve the perfor-
mance of CVRP before expanding the model to tackle MOCVRP for further optimization.
The key contributions of this paper can be summarized as follows:
1) In terms of CVRP optimization, we propose a new model which can effectively ag-

gregate critical information. Our approach involves reordering the encoder component and
incorporating new modules to optimize edge information utilization. Additionally, we have
enriched the context embedding of the decoder component by integrating dynamic infor-
mation to enhance the decoding process.
2) In terms of MOCOP optimization, we first introduced a novel approach of incorporating

weight information through a simple MLP to generate weight embeddings. By combining
these weight embeddings with node embeddings, they serve as input to the encoder com-
ponent, allowing for the encoder to adapt to different weight combinations. Furthermore,
we have also designed a new weight sampling method, which enhances the model’s ability
to learn more extreme solutions. Both improvements can improve the convergence of the
Pareto set.
3) Experimental results show that our proposed model outperforms the current state-of-

the-art DRL learning-based methods in MOCVRP, exhibiting better solution quality.

2. Related work

MOCVRP is a combination of both CVRP and MOCOP, and we first focus on CVRP
before expanding to MOCVRP. In the past few decades, numerous solvers have been pro-
posed for CVRP, which can be broadly classified into two categories: exact solvers and
approximate solvers.
Exact solvers: Exact solvers, such as the algorithm proposed by Desrochers et al.

(1992) based on branch and bound and pricing strategies for solving solve vehicle routing
problems (VRP). There are also some exact algorithms for solving VRP, such as Ropke and
Pisinger (2006), Subramanian and Ukkusuri (2014), Focacci et al. (2007). Although these
exact solvers can provide optimal solutions, they have long running times and are difficult to
handle large-scale problems. In addition, these algorithms typically require higher expertise,
making them difficult for general users to use.
Approximate solvers: Approximate solvers can be divided into two categories: those

based on heuristic search algorithms and those based on end-to-end solvers using DRL.
For the former, a complete set of solutions is first initialized, and in each iteration, this set

is modified using search operators to obtain another complete set of solutions. This process
continues until an approximate solution to the global optimal solution is achieved. Heuristic
search-based solvers for CVRP can be classified into several types, such as the greedy algo-
rithm, genetic algorithm, simulated annealing algorithm, taboo search algorithm, simulated
particle swarm, ant algorithm, and local search. Scholars have also found that combining
multiple algorithms can complement each other’s strengths. CVRP can be transformed
into MOCVRP by using a fitness function, and heuristic solvers can generate a Pareto set
through non-domination sorting or crowding distance comparison. Classic solvers such as
NSGA-II Deb et al. (2002), MOEA/D Zhang and Li (2007). Wang et al. (2015) used the
multi-objective local search and multi-objective memetic algorithm to solve simultaneous
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pickup and delivery and time windows. Although using these solvers can obtain a Pareto set,
they lack flexibility and need to be reinitialized when encountering new problem instances.
For the latter, we first train a neural network model, which takes the problem instance as

input and outputs a sequence of decisions, allowing for a direct solution to the problem in-
stance. Compared to the solvers mentioned above, this solver has greater flexibility because
it can quickly generate corresponding solutions for different problem instances. Hopfield and
Tank (1985) first used the Hopfield neural network model to solve optimization problems.
With the advancement of DRL technology, recent work has sought to design solvers based
on deep neural networks. Sutskever et al. (2014) proposed a neural network-based sequence-
to-sequence learning method, also known as an encoder-decoder model. Vinyals et al. (2015)
applied this method and proposed a pointer network. Bello et al. (2017) first used the DRL
method to solve TSP and used the pointer network framework. Nazari et al. (2018) pointed
out the limitations of the pointer network and replaced it with a DRL algorithm based on
a Monte Carlo tree search. Kool et al. (2019) proposed using the transformer architecture
based on the attention model (AM) Vaswani et al. (2017) and introduced a greedy roll-
out baseline estimator for ease of training. Due to its flexibility, most subsequent work is
based on it. We plan to follow the AM to design a flexible universal framework to support
the solution of different types of CVRP. Expanding VRP to MOCVRP poses a significant
challenge for end-to-end DRL solvers. A specific DRL model can only generate optimal
solutions for that particular sub-problem. As far as we know, there is currently limited
research on applying DRL to solve MOCVRP. Li et al. (2021) first trains a specifically
weighted sub-problem and then generates other weight models through parameter trans-
fer techniques. Zhang et al. (2022) first trains a meta-model, and fine-tunes it to obtain
the corresponding weight model for each specific weight sub-problem. Although the above
methods can generate a Pareto set, they all require generating different models for each
sub-problem to generate solutions. As the number of solutions increases, the training cost
will greatly increase.
The recent work by Lin et al. (2021) proposed a novel and advanced method that only

needs to train one model to obtain a Pareto set. They used a hypernetwork to change the
parameters of WQ,WK , and WV in the decoder, the decoder can be classified accordingly to
different weights to obtain different parameters. This method is a new principle method for
solving MOCOP and is the most advanced for MOCVRP. Inspired by this method, we have
employed a similar method to theirs in tackling MOCVRP and proposed a model called
Multi-objective Adaptive Dynamics Attention Model (MOADAM).

3. Preliminary

In this section, we briefly describe some strategies and methods for solving MOCVRP.

3.1. Benchmark Problems

To formalize MOCVRP, we first define a fully connected graph G = (N,E) with n nodes,
where N = {0, 1, . . . , n} denote the set of nodes, with 0 representing the depot node and
the rest representing customer nodes. E = {eij | i, j ∈ N, i ̸= j} denote the set of edges,
where eij denotes the Euclidean distance between node i and node j. We define K as the
set of vehicles and Q as the capacity limit of each vehicle. C = (c0, . . . , ci, . . . , cn) denote
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the set of demands for each node, and ci denotes the demand of customer node i. A solution
can be represented as π =

(
π1, . . . , πk

)
, where πk denotes the route of the k-th vehicle. For

each vehicle, the route starts from the depot and ends at the depot. The length of the route
formed by the k-th vehicle and the capacity constraints can be calculated as follows:

Lk =

nk−1∑
i=0

eπk
i π

k
i+1

+ eπk
nkπ

k
0
, Dk =

nk∑
i=1

cπk
i
≤ Q (4)

Here, k ∈ K, nk represents the total number of nodes accessed by the k-th vehicle, and πk
i

represents the i-th node in the route of the k-th vehicle. Dk is the total demand required
to be satisfied by the k-th vehicle in its current route.
Similar to Castro-Gutierrez et al. (2011), we choose the total distance f1(π) and the

longest route (referred to as the makespan) f2(π) among all routes as our optimization
objectives.

f1(π) =

K∑
k=1

Lk , f2(π) = max (L1, L2, . . . LK) (5)

Our objective is to:
min f(π) = (f1(π), f2(π)) (6)

3.2. Decomposition Strategy

In Section 1, we discussed the decomposition strategy for MOCOP. We compared two
methods in our experiments and found that using weighted sum aggregation for decompo-
sition could achieve better results. Finally, our reward function is as follows:

fws
(
π | λj

)
= λj

1f1(π) + λj
2f2(π)

s.t. λj
1, λ

j
2 ≥ 0, λj

1 + λj
2 = 1

(7)

Where λj denotes the specific weight of the j-th sub-problem.
For each sub-problem, we can obtain a solution, and when all sub-problems are solved,

we will obtain a Pareto set. However, there is an issue. It is obvious that f1(π) is much
larger than f2(π), and if we do not balance these two objectives, the model will tend to
minimize f1(π) without considering the weight, resulting in more solutions in the Pareto
set being concentrated on one side. This is not the result we want to see. We hope that
the solutions on the Pareto set can be more evenly distributed. In the multi-objective
reinforcement learning process, we construct n different routes for the same instance. We
select the minimum value of

{
f1
(
π1
)
, . . . , f1 (π

n)
}
and

{
f2
(
π1
)
, . . . , f2 (π

n)
}
among all the

routes, denoted as (f1(π)
∗, f2(π)

∗), to perform normalization for fws
(
π | λj

)
. The reward

function is modified as follows:

fws
(
π | λj

)
= λj

1f1(π) + λj
2

f1(π)
∗

f2(π)∗
f2(π) (8)
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3.3. Solution construction

The model defines a parameterized by θ(λ) weighted conditional random policy pθ(λ).
The aim is to learn an optimal weighted conditional policy pθ(λ)(π | s) to construct routes
with the lowest cost for each weight. The task is formalized as follows: given a problem
instance as input, we first encode nodes as node embeddings and keep them unchanged
throughout the task. Then, we perform a decoding process for N time steps. For each time
step t, the decoder selects an unvisited node, denoted as the node picked at time step t,
and represented as πt. The conditional random policy is as follows:

pθ(λ)(π | s) =
n∏

t=1

pθ(λ) (πt | s,π0:t−1) (9)

4. The proposed model: MOADAM

In this section, we mainly describe the structure of the model we propose. MOADAM is
based on the work of Lin et al. (2021) and has been improved upon. Following the order
of related work introduction in section 2, we will now introduce the improvements made to
optimize CVRP.

4.1. Optimization of CVRP
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Figure 1: (a) shows the basic framework of the Transformer encoder, (b) presents the
GTrXL model proposed in Yu et al. (2018), and (c) illustrates our encoder model.
The colored part is our improvement.
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Encoder: For each node i ∈ {0, 1, . . . , n}, where 0 represents the depot node, its feature
vector is represented as ni = [xi, yi, di]. Next, the feature vector ni of each node is mapped
to an embedding h0i of dimension dh through a linear layer.

h0i = Wini + bi (10)

Where Wi is trainable parameter matrices, and bi is trainable bias vectors. Next, N atten-
tion layers further encode the node embeddings

{
h00, . . . , h

0
n

}
. Each attention layer consists

of a multi-head attention (MHA) sub-layer and a feed-forward (FF) sub-layer. To acceler-
ate deep network training, Kool et al. (2019) used batch normalization (BN) and residual
connections in their model. To better utilize information, we have noticed that Yu et al.
(2018) proposed a Transformer variant named GTrXL. As shown in Fig. 1, they reorder
the normalization process and change the residual connections to be aggregated by gating
layers. The gating layer is implemented using a GRU gate. Inspired by this, we modified
the model proposed by Kool et al. (2019). Since we do not need to use positional encoding
and we found that using only one gating layer in the MHA sub-layer has good learning
performance, Therefore, in the FF sub-layer, we reorder the normalization layer and still
aggregate it through residual connections. In the MHA sub-layer, we directly integrate edge
information into it. First, we obtain a distance matrix between each pair of nodes:

Edis = [e00, e01 · · · , enn] (11)

Hedge = We2 (BN (We1Edis + b)) (12)

Where We1 and We2 are trainable parameter matrices, and b is a bias matrix. Therefore,
the output of each multi-head attention layer can be calculated as follows:

hli = GL
(
hl−1
i ,MHA

(
BN

(
H l−1

i

)
,Hedge

))
. (13)

Here, l ∈ {1, . . . ,N} represents the l-th sub-attention layer, and H l−1
i =

{
hl−1
0 , . . . , hl−1

n

}
represents the set of node embeddings from the (l − 1) layer. MHA is based on a self-
attention mechanism with M heads, and its calculation can be expressed as follows:

qi = W l
Qm

hl−1
im

, ki = W l
Qm

hl−1
im

, vi = W l
Vm

hl−1
im

(14)

uij =


qTi kj√

d
, if i adjacent to j

−∞, otherwise

(15)

ϵij = uij +Hij , aij =
eϵij∑n
k=0 e

ϵik
, h̃lim =

n∑
j=0

aijvj (16)

Here, m represents the m-th head in the multi-head attention mechanism. W l
Qm

,W l
Km

, and

W l
Vm

are trainable parameter matrices. hl−1
im

represents the node embedding for the i-th
node in the m-th head at l − 1 layer. d is defined as d = dh/M . Hij represents the edge
embedding for eij . We directly aggregate the edge embedding with the self-attention layer
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to enable the self-attention layer to modify the attention towards each node based on edge
information. Finally, we aggregate the information from all M heads.

h̃liM = MHA
(
BN

(
H l−1

i

)
,Hedge

)
=

M∑
m=1

W l
om h̃

l
im (17)

Here, W l
om represents the trainable parameter matrix for the output projection layer. The

gating layer performs aggregation using the following equation:

h̃li = GL
(
hl−1
i , h̃liM

)
=
(
Sigmoid

(
Wgh

l−1
i + bg

)
∗ h̃liM + hl−1

i

)
. (18)

After aggregation, we further apply a fully connected layer (FF layer).

hli = h̃li +W l
2ReLU

[
W l

1

(
BN

(
h̃li

))
+ bl1

]
+ bl2 (19)

After N attention layers, we obtain the final embeddings as HN
i =

{
hN0 , . . . , hNn

}
.Next, we

need to provide context embeddings for the input of the decoder.
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Figure 2: The colored sections represent the additional information we added to the context
embedding.

Decoder: As shown in Fig. 2, the decoder is a recursive decoder that updates its current
state with information related to the selected node. To implicitly capture dynamic informa-
tion, we aim to pass updated information to the decoder through context embeddings. Pre-
vious context embeddings only utilized static information. For example, Kool et al. (2019)
averaged all node embeddings to obtain a graph embedding hNg = mean

(
hN0 , . . . , hNn

)
, which

was then aggregated with the current node embedding to form the context embedding. Our
aim is to extract more effective information from the current state.
We observe that the mask in the state can serve as a dynamic source of information that

can be utilized. Although the mask can be utilized to mask visited nodes in later attention
layers, we aim to capture the information provided by the mask in advance to enhance the
decoding ability of the decoder. To achieve this, we partition the graph embedding based
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on the mask into two parts: the embedding of unvisited nodes and the embedding of visited
nodes. Furthermore, previous studies have not considered the depot node as an input.
We believe that the model should consider whether to return to the depot when selecting a
path, rather than solely relying on exceeding the capacity limit to force vehicles to return to
the depot. Therefore, we include the depot node embedding in the context embedding. We
aggregate this information using an adaptive aggregation method and also add the dynamic
information of the remaining capacity of the vehicles to the context embedding. Ultimately,
we obtain a more comprehensive and rich dynamic context embedding.
The visited graph embedding is shown as follows:

HN
v = Wv

(
mt−1

v ∗HN
i ∗ Softmax

(
HN

i

))
(20)

Here, Wv is a trainable parameter matrix. mt−1
v is a binary code that represents the masked

state information of the graph. The visited nodes are marked as 1, and the unvisited nodes
are marked as 0. AA represents Adaptive Aggregation, which is an aggregation method
proposed by us for this dynamic graph embedding. The process is as follows:

hNv = AA(HN
v ) = sum(

(
reshape

(
softmax

(
WA

(
flat

(
HN

v

)))))
∗HN

v ) (21)

First, we flatten the HN
v , pass it through a fully connected layer to obtain a weight vector,

and then reshape the weight vector to its original dimension. Finally, we perform aggrega-
tion through weighted summation. Similarly, the unvisited graph embedding hNu can obtain
in this way. Finally, our context embedding can be defined as follows:

hNc = Wc concat
((

hNπt−1
+ hN0 + hNv + hNu

)
, dt−1

)
(22)

Here, dt−1 represents the remaining capacity of the current vehicle and Wc is a trainable
parameter matrix. The purpose of this matrix is to remap the merged context embedding
back to the dh dimension. Finally, we input the context embedding hNc into the decoder.
For the second part of the decoder, we utilize the model proposed by Lin et al. (2021).

Specifically, they pass the weight vector through an hypernetwork to generate the param-
eters and for the multi-head attention layer. By connecting the weights and the decoder,
we can generate different decoders by inputting different weights. Through this approach,
a single model can approximate the Pareto set.

hN+1
c = MHA

(
Q = WQ(λ)h

N
c ,K = WK(λ)HN

i , V = WV (λ)H
N
i

)
(23)

Here, Q,K, and V refer to the query, key, and value of the multi-head attention layer,
respectively. The calculation method is similar to that described above, except that we
need to mask the previously visited nodes by using a mask that satisfies two constraints:
(1) the node has been visited before and (2) the demand of the next customer exceeds the
remaining capacity of the current vehicle. Finally, a single-head attention layer is used to
calculate the probability of selecting each city.

ui =


C ∗ tanh

((
hN+1
c

)T
hNi√

d

)
, i is not masked

−∞ , otherwise

(24)
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pθ(λ) (πt = i | π0:t−1) =
eui∑n
j=0 e

uj
(25)

We use C=10 Bello et al. (2017) to prune the final results. we choose the next customer
node based on the calculated probabilities and update the state s(t−1) for the next decoding
step. If the next node to visit is the depot, we reset the vehicle information and proceed to
the next decoding step until all customer nodes have been visited. For a given instance s,
the sequence solution can be obtained from the policy pθ(λ)(π | s) based on the probability
chain rule.

4.2. Optimization of the MOCOP

input

embedding

weight

weight_embed Encoder

Figure 3: The yellow part is the
module we added.

ours

Figure 4: Sigmoid function and its variant.

Weight-encoder: To improve MOCOP, we propose a new approach for model enhance-
ment. In the past, models acquired more models with different weights through transfer
technology to generate a Pareto set. Hence, weight size was not significant for each model
as they were only used to provide a weight for each objective in a decomposition-based
approach to obtain a reward value. However, for approximating a Pareto set with a single
model, we need to train the model with different weights simultaneously. Therefore, weight
should also be integrated into the model as effective information. As depicted in Fig. 3,
we add the weight as an input to the encoder to directly affect its output. This implies
that different embedding results will be obtained for the same instance with different input
weights. In contrast to other existing DRL solvers, where the encoder outputs are fixed,
and the encoding results are the same for any weight, our encoder is more flexible, and
dynamic, and can express more information.

To integrate weight information into the encoder, we do not use a complex network.
Instead, we simply map the weight to an embedding through a simple MLP layer and then
aggregate it with the node embedding. The specific implementation is as follows:

hλ = w2
λ

(
w1
λλ

i + b1
)
+ b2 (26)
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Where W 1
λ and W 2

λ are trainable parameter matrices and b1 and b2 are bias vectors. There-
fore, the true input to the formula. 10 should be:

h0i = h0i + hλ (27)

Weight distribution: weight = (λ1, λ2). Previously, weight distribution was generated
based on uniform sampling. λ1 was uniformly sampled between 0 and 1, and λ2 was set to
1−λ1. Under normal circumstances, extreme solutions like (λ1, λ2) ∈ {(0.1, 0.9), (0.9, 0.1)}
are difficult to train. However, based on the uniform sampling method, the weights have
the same probability of occurrence, resulting in the same training degree of the model for
all weights. Such a sampling method is not efficient enough. So we decide to design a
more efficient weight sampling method. We find inspiration from the Sigmoid function. As
shown in Fig. 4, we first uniformly sample x from −8 to 8, then convert it to y using the
Sigmoid function. This method increased the probability of weights falling into the (0, 0.2]
or [0.8, 1) intervals. However, the weight distribution obtained by sampling through the
ordinary sigmoid function does not meet our expectations. To obtain a more satisfactory
weight distribution, we fine-tune the Sigmoid function parameters to 0.7, resulting in a
smoother probability distribution for each weight. By changing the weight distribution
through the Sigmoid sampling method, we have improved the efficiency and effectiveness
of the model, making it better equipped to handle extreme solutions. This leads to higher
quality solutions overall. We will temporarily name the weight generated through this
method as Sigmoid sampling. The implementation is as follows:

λ1 =
1

1 + e−0.7x
, λ2 = 1− λ1 (28)

The two improvements we proposed above may not be helpful for CVRP, but they perform
well on MOCOP. They can effectively improve convergence and can be generalized to other
MOCOP.

4.3. Multi-objective reinforcement learning

Given an instance s, the objective is to minimize the values of all weights:

J (θ | s) = Eλ∼Λ,π∼pθ(λ)(π | s)fws(π | λ) (29)

Where Λ is the Sigmoid distribution that we proposed.

∇J
(
θ | λj , s

)
= Eπ∼p0(λ)(π | s)

[(
fws

(
π | λj , s

)
− b

(
s | λj

))
∇θ(λj) log pθ(λj)(π | s)

]
(30)

The term b (s | λȷ) represents the baseline expected reward used to reduce the variance
of the expectation. This gradient is estimated through Monte Carlo sampling Beasley and
Martin (1984). In each training cycle, a weight λj is randomly agsigned to each batch
instance {s1, . . . , sB} ∼ S, with λjϵ

{
λ1, . . . , λ′} ∼ Λ. The customer nodes of each in-

stance are sequentially visited as the first node to create a circuit, enforcing different
circuits [43]. Thus, n distinct circuits

{
π1
i , . . . , π

n
i

}
∼ pθ(λ) (π | si) are formed, and the
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expected reward is approximated by the mean reward of the n circuits, given by
(
si | λj

)
=

1
N

∑N
n=1 f

Ws
(
πn
ji | λi, si

)
. The gradient approximation is as follows:

∇J (θ) ≈ 1

JBN

J∑
j=1

B∑
i=1

N∑
n=1

[(
fws

(
πn
ji | λj , si

)
− b

(
si | λj

))
∇θ(λ) log pθ(λj) (π

n
i | si)

]
(31)

5. Experiments: MOCVRP

In this section, we will provide a brief overview of the model and some parameter settings
used during training. We trained our model on a Geforce RTX 3090.

5.1. Experimental settings

MOADAM Hyperparameters: We compared our trained MOADAM model with
other frameworks that use DRL attention models. Therefore, the hyperparameters of our
model were designed based on AM Kool et al. (2019). The dimension dh of node embeddings
was set to 128. The number of attention layers N in the encoder was 6. For each multi-head
attention module in each layer, the number of heads M was set to 8.
Training Dataset: We used MOCVRP instances with 3d inputs [x, y, d] as our training

data. For problems with 20, 50, and 100 customer nodes, we set the capacity of the vehicles
to 30, 40, and 50, respectively, to be consistent with some prior works. The coordinates
[x, y] of any node were generated from a uniform distribution over [0, 1], while the demand
d of customer nodes was randomly sampled from integers in the range [1, 10].
Training Parameter Settings: The training period of the model was 200 epochs.

For each batch size during training, we randomly generated a weight. We used the Adam
optimizer with a learning rate of η = 10−4and weight decay is 10−4.
PF Subproblems: We set the number of weight vectors N in the Pareto front construc-

tion to 101, uniformly distributed between (0,1). Specifically, λ1 = (1, 0), λ2 = (0, 1).
Evaluation Metrics: We used Hypervolume (HV), Gap, and C-metric to compare the

performance of different algorithms. HV is an important metric that evaluates both the
convergence and diversity of the PF. For 20, 50, and 100 nodes, we set the reference point
to [15,3], [40,3], [60,4]. The gap is the ratio of the difference in HV relative to the best
result. C-metric means solution set coverage.

We compared our trained MOADAM with classic solvers NSGA-II Deb et al. (2002),
MOEA/D Zhang and Li (2007) and other advanced frameworks that use DRL attention
models. We use AM-MOCO proposed by Li et al. (2021) to train multiple AM models for
different weights. We first train a single AM model with weights [0,1] for 100 epochs, then
transfer its parameters to models of adjacent sub-problems over five epochs, and so on to
obtain models with different weights. ML-AM proposed by Zhang et al. (2022) generated
a meta-model by transferring parameters for different weights, then fine-tuned the meta-
model for 10 steps to obtain sub-models for different weights. P-MOCO proposed by Lin
et al. (2021) used a hypernetwork to directly generate a Pareto set through a single model.
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5.2. Experimental result

We further evaluated the performance of our model on MOCVRP. MOCVRP20, MOCVRP50,
and MOCVRP100 models were trained on instances with 20, 50, and 100 nodes. The ex-
perimental results are shown in Table.1.

Table 1: Experimental results on two-objective MOCVRP instances.
MOCVRP20 MOCVRP50 MOCVRP100

Methods HV Gap HV Gap HV Gap

NSGAII 9.420 14.13 % 26.846 19.48 % 36.323 22.10 %
MOEA/D 8.971 19.44 % 25.388 26.34 % 35.865 23.66 %

AM-MOCO(101 models) 10.449 2.54 % 30.924 3.84 % 42.552 4.36 %
ML-AM(101 weights) 10.256 4.48 % 30.336 5.85 % 41.526 6.93 %
P-MOCO(101 weights) 10.561 1.45 % 31.692 1.33 % 43.831 1.27 %

MOADAM(101 weights) 10.715 0.0% 32.076 0.0% 44.352 0.0%

Our proposed model, MOADAM, outperforms other models in solving problems with
different numbers of nodes. For AM-MOCO, only 5 epochs to transfer to the new weight
sub-problem may not be perfectly matched, but transferring 100 different weights already
requires 600 epochs, if you continue to increase the transfer epoch will cost too much time.
For ML-AM, the results were slightly worse as it only fine-tuned for 5 iterations, but it
required much less transfer time than AM-MOCO. However, training the meta-model
required a lot of time as it needed to fine-tune for various weights. Currently, P-MOCO is
considered the most advanced and effective method, as demonstrated in Table 2 and Fig.5.
We compare our results with P-MOCO to highlight the effectiveness of our improvement.

Table 2: Evolutionary history between MOADAM and P-MOCO.

MOCVRP20 MOCVRP50 MOCVRP100

Methods HV f1 f2 HV f1 f2 HV f1 f2

P-MOCO 10.561 6.1866 1.7783 31.692 10.8511 1.9057 43.831 16.4445 1.9893
ADAM(Ours) 10.674 31.983 44.244

MOADAM(Ours) 10.715 6.0628 1.7781 32.076 10.5533 1.905 44.352 15.9905 1.9890

We conduct a comparison between our proposed model MOADAM and P-MOCO, and
validate the effectiveness of our model improvements by gradually incorporating different
modules. Initially, we focus on the improvement of CVRP and named the enhanced model
ADAM. As shown in Table.2, our proposed model significantly outperform P-MOCO in
HV for varying numbers of nodes. Subsequently, we introduce the optimization of MO-
COP, resulting in the formulation of our final model, MOADAM. The results show that
MOADAM generates better HV values than ADAM, indicating that improvements in
both CVRP and MOCOP are feasible solutions for enhanced results.
To evaluate the effectiveness of our model, we perform a single-objective CVRP with

weights set to (1, 0) and (0, 1). The results demonstrate that our proposed model outper-
forms P-MOCO in terms of both f1 and f2, particularly f1. Furthermore, we generate a
Pareto set using our proposed model and P-MOCO, as depicted in Fig. 5. Our generated
Pareto set is superior to P-MOCO in terms of diversity and convergence. To further vali-
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Figure 5: Comparison between the Pareto set of our model and P-MOCO.

date this, we utilize the evaluation metric C-metric, obtaining C (MOADAM,PMOCO) =
1 and C (PMOCO,MOADAM) = 0 for instances with varying numbers of nodes. These
results demonstrate that all solutions in P-MOCO can be dominated by some solutions
in our solution set, whereas none of the solutions in our set are dominated by them. This
further supports our claim that our proposed model, MOADAM, outperforms the current
state-of-the-art P-MOCO in terms of solution quality.

6. Conclusion

This paper proposes a novel model, MOADAM, based on reinforcement learning for
MOCVRP. In CVRP, we improve the model by reordering the encoder and enhancing the
application of edge information in the encoder part, adding more dynamic information to
refine context embeddings. This improvement is also applicable to single-objective CVRP.
In MOCOP, we design a new weight sampling method to enable the model to better solve the
extreme solution and integrate weight information into the input embedding of the encoder
through a simple MLP network. The encoder will be fine-tuned to accommodate different
weights. This improvement is a new idea put forward in the paper and can be applied
to other types of MOCOP. Overall, our model is more flexible and outperforms existing
methods in terms of performance. In the future, we plan to explore more multi-objective
combinatorial optimization problems.
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