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In this supplementary material, we provide detailed proof of the results presented in the main
paper.

Appendix A. Additional notation

Before beginning the proof, we first define good events on estimates µ̂i(t) and Thompson samples
µ̃i(t) for any ϵ > 0,

Ai(t) = Ai,ϵ(t) :=

{
{µ̂1(t) ≥ µ1 − ϵ}, if i = 1,

{µ̂i(t) ≤ µi + ϵ}, otherwise,

Bi(t) = Bi,ϵ(t) := {|µ̂i(t)− µi| ≤ ϵ},
B̃i(t) = B̃i,ϵ(t) := {|µ̃i(t)− µi| ≤ ϵ},

M(t) := {m(t) = m̃(t)},

Note that for all i ∈ [K] and t ∈ N, Bi(t) ⊂ Ai(t) holds.
Next, let us define another random variables D1 = D1,ϵ := maxi ̸=1Di,ϵ where

Di = Di,ϵ := sup
t≥2K+1

1[Bci,ϵ(t)]Ni(t)d (µ̂i(t), µ̂1(t))

denotes the supremum of Na(t)d (µ̂a(t), µ̂1(t)) when Bci,ϵ(t) occurs. In other words,

{Na(t)d (µ̂a(t), µ̂1(t)) ≥ Di,ϵ} =⇒ {1[Bi,ϵ(t)] = 1}.

We further define d1 = d(µ1 − ϵ, µ2 + ϵ) and for i ̸= 1

di = min
µ∈[µ′i,µ′1],

µ′i≤µi+ϵ, µ′1≥µ1−ϵ,
d(µ′i,µ)≥d(µ′1,µ)

d(µ′i, µ). (14)
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Appendix B. Proof of Lemma 1: Subdifferentials

Here, we derive the subdifferential of the objective function g.
Proof By abuse of notation, we define a characteristic function IΣK

: RK → R,

IΣK
(x) =

{
0, if x ∈ ΣK

−∞, if x ̸∈ ΣK .

Then, the problem in (3) can be written as

sup
w∈ΣK

min
i ̸=1

fi(w;µ) = max
w∈RK

{
min
i ̸=1

fi(w) + IΣK
(w)

}
. (15)

Then, the set of differential of (15) is

∂

(
min
a̸=1

fa(w) + IΣK
(w)

)
=

{
q + r : q ∈ ∂min

i ̸=a
fa(w), r ∈ ∂IΣK

(w)

}
.

Let ∂IΣK
(w) denote the set of subgradient v of IΣK

at point (w;µ). Then, ∂IΣK
(w) is written as

∂IΣK
(w) = {v ∈ RK : ∀x ∈ RK , IΣK

(x) ≤ IΣK
(w) + v⊤(x−w)} (16)

From the definition of IΣK
, if x ̸∈ ΣK , the inequality constraint in (16) always holds for any

v ∈ RK . Thus, it suffices to show that

∂IΣK
(w) = {v ∈ RK : ∀x ∈ ΣK , IΣK

(x) ≤ IΣK
(w) + v⊤(x−w)}

= {r1 : r ∈ R}, (17)

which implies that all subgradients v can be written as a multiple of the K-dimensional all-one
vector 1 = [1, . . . , 1]. To show the equivalence, we will show that

(B1) : {r1 : r ∈ R} ⊂ ∂IΣK
(w)

(B2) : {r1 : r ∈ R} ⊃ ∂IΣK
(w).

B.1. Case (B1)

Note that 0 ∈ ∂IΣK
(w), which implies ∂IΣK

(w) ̸= ∅. Since x ∈ ΣK , v ∈ ∂IΣK
(w) satisfies

0 ≤ v⊤(x −w) for all x ∈ ΣK . One can see that {r1 : r ∈ R} ⊂ ∂IΣK
(w) for w ∈ ΣK since∑K

i=1wi =
∑K

i=1 xi = 1 from the assumption.

B.2. Case (B2)

Then, we need to show the equality in (17) for w ∈ IntΣK . At first, let assume K ≥ 2 and
v = r1+

∑K
i=1 aiei, where ei is a standard basis for RK and ai ∈ R. Then, ∀x ∈ ΣK ,

0 ≤
K∑
i=1

ai(xi − wi) (18)
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holds. We will prove the equality in (17) by contradiction, i.e., we assume that there exists i ̸=
j ∈ [K] such that ai ̸= aj . From the definition of IntΣK , we can take a positive constant ϵ ∈ R+

satisfying 0 < ϵ < min(miniwi, 1−maxi(wi)).1

Define two K dimensional vectors as

x1 = (xi)
K
i=1 =


wi, if i ∈ [K] \ {i1, i2},
wi + ϵ, if i = i1,

wi − ϵ, if i = i2,

and

x2 = (xi)
K
i=1 =


wi, if i ∈ [K] \ {i1, i2},
wi − ϵ, if i = i1,

wi + ϵ, if i = i2,

where i1 ̸= i2 ∈ [K]. Then, both x1 and x2 are in ΣK . From (18), this implies that two inequalities

0 ≤ ϵ(ai1 − ai2) and 0 ≤ −ϵ(ai1 − ai2)

hold at the same time. Thus, ai1 = ai2 should hold. However, we can make these kinds of vectors
for every pair of bases, which means that ̸ ∃i ̸= j ∈ [K] such that ai ̸= aj . This is a contradiction,
and thus (17) holds.

B.3. Conclusion

Consequently, it holds ∀w ∈ IntΣK that

∂g =
{
q + r1 : q ∈ Co

⋃
{∂fi(w;µ) : fi(w;µ) = g(w;µ)}, r ∈ R

}
=
{
q + r1 : q ∈ Co

⋃
{∇wfi(w;µ) : fi(w) = g(w)}, r ∈ R

}
,

where Co
⋃ {∇wfi(w;µ) : fi(w;µ) = g(w;µ)} is the convex hull of the union of superdifferen-

tials of all active function at w. Let us define the set

J (w;µ) := argmin
i ̸=1

fi(w;µ) = {i ∈ [K] : fi = g},

which concludes the proof. ■

Appendix C. Comparison with other optimality notions

In this section, we provide more detail that completes Sections 4 and 5.

1. Note that such ϵ always exists by Archimedean property if w is in the interior of the probability simplex, i.e., ∀i ∈
[K], wi ̸= 0, 1.
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C.1. Two-armed bandits

Firstly, let us introduce a function that enables us to derive a more explicit formula for w∗(µ), for
any i ̸= 1,

ki(x;µ) = d

(
µ1,

1

1 + x
µ1 +

x

1 + x
µi

)
+ xd

(
µi,

1

1 + x
µ1 +

x

1 + x
µi

)
.

As demonstrated in Garivier and Kaufmann (2016), this function is a strictly increasing bijective
mapping from [0,∞) onto [0, d(µ1, µa)). Therefore, one can define li as the inverse function of ki
for any i ̸= 1 and l1 as a constant function, which is

k−1
i = li : [0, d(µ1, µi)) 7→ [0,∞) (19)

l1 : [0, d(µ1, µi)) 7→ 1.

Then, Garivier and Kaufmann (2016) provided the following characterization of w∗(µ).

Lemma 5 (Theorem 5 in Garivier and Kaufmann (2016)) For every i ∈ [K],

w∗
i (µ) =

li(y
∗)∑K

a=1 la(y
∗)
,

where y∗ is the unique solution of the equation Fµ(y) = 1, and where

Fµ : y 7→
K∑
i=2

d
(
µ1,

µ1+li(y)µi
1+li(y)

)
d
(
µi,

µ1+li(y)µi
1+li(y)

)
is a continuous, increasing function on [0, d(µ1, µ2)) such that Fµ(0) = 0 and Fµ(y) = ∞ when
y → d(µ1, µ2).

However, to derive a more explicit formula for the maximizer of (11), we require another function
for any i ̸= 1

hi(z;µ) = (1− z)d(µ1, (1− z)µ1 + zµi) + zd(µi, (1− z)µ1 + zµi),

whose domain is [0, 1]. The derivative of this function is

h′i(z;µ) = d(µi, (1− z)µ1 + zµi)− d(µ1, (1− z)µ1 + zµi).

Thus, hi(z;µ) is a concave function with hi(0;µ) = 0 and hi(1,µ) = 0. It reaches its maximum
at

z∗i (µ) : d(µi, (1− z∗i )µ1 + z∗i µi) = d(µ1, (1− z∗i )µ1 + z∗i µi). (20)

Therefore, one can see that γ = z∗2 . From the definitions of fi, ki, and hi, one can find the following
relationship

fi(w;µ) = w1ki

(
wi
w1

;µ

)
= (w1 + wi)hi

(
wi

w1 + wi
;µ

)
. (21)
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For zi = wi
w1+wi

, the equality between hi and ki can be written as

hi(zi;µ) = (1− zi)ki

(
zi

1− zi
;µ

)
.

We further define the problem-dependent constant zi ∈ [0, 1] for i ̸= 1 satisfying

zi : ki

(
zi

1− zi
;µ

)
= k2

(
z∗2

1− z∗2
;µ

)
(22)

and z1 = 1
2 . Here, we have z2 = z∗2 and zi ≤ z∗2 since ki is strictly increasing and ki(x;µ) ≤

kj(x;µ) holds for any x ∈ R+ if µi ≤ µj (see Garivier and Kaufmann, 2016, Appendix A.3.).
Based on zi, we define a normalized proportion w ∈ ΣK by

wi(µ) =

zi
1−zi∑K
i=1

zi
1−zi

=
li(y)∑K
i=1 li(y)

, (23)

where y = ki

(
zi

1−zi
;µ
)

for any i ̸= 1. Therefore, Theorem 3 implies that the empirical proportion

of arm plays of BC-TE will converge to w, which is equivalent to g(wt; µ̂(t)) → g(w;µ). Here,
one can see that Fµ(y) ≥ 1 since

d

(
µ1,

µ1+
z2

1−z2
µ2

1+
z2

1−z2

)
d

(
µ2,

µ1+
z2

1−z2
µ2

1+
z2

1−z2

) =
d (µ1, (1− z2)µ1 + z2µ2))

d (µ2, (1− z2)µ1 + z2µ2))
= 1

holds from the definition of z2 = z∗2 in (20), which directly implies that y ≥ y∗. However, it is
important to note that from zi ≤ z∗i , it always hold that for any i ̸= 1

d (µ1, (1− zi)µ1 + ziµi))

d (µi, (1− zi)µ1 + ziµ2))
≤ d (µ1, (1− z∗i )µ1 + z∗i µi))

d (µi, (1− z∗i )µ1 + z∗i µi))
= 1.

This implies that
1 ≤ Fµ(y) ≤ K − 1, (24)

where the right equality holds only when µ2 = µ3 = . . . = µK . Here, it is important to note
that the left equality is always valid for two-armed bandit problems. In other words, BC-TE is
asymptotically optimal in the context of two-armed bandit problems.

C.2. Gaussian bandits

Here, we prove Lemma 4 based on the definitions provided in Section C.1.
Proof of Lemma 4 Since d(µ, µ′) = (µ−µ′)2

2σ2 , for any i ̸= 1 and ∆i = µ1 − µi

ki(x;µ) =

(
x

1 + x

)2 ∆2
i

2σ2
+

x

(1 + x)2
∆2
i

2σ2
=

x

1 + x

∆2
i

2σ2

hi(z;µ) = z(1− z)
∆2
i

2σ2
.
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Firstly, from (20), the maximizers of hi, z∗i satisfies

∆2
i

2σ2
(1− z∗i )

2 =
∆2
i

2σ2
(z∗i )

2,

which implies that z∗i = 1/2 for any i ̸= 1. Then, for any i ̸= 1, from the definition of zi in (22), it
holds

k2(1;µ) =
∆2

2

4σ2
= ki

(
zi

1− zi
;µ

)
=

∆2
i

2σ2
zi,

which implies zi =
∆2

2

2∆2
i

for i ̸= 1. Therefore, we obtain that wi =

∆2
2

2∆2
i
−∆2

2∑K
a=1

∆2
2

2∆2
a−∆2

2

. By letting

∆1 = ∆2, the objective function g at w can be written as

g(w;µ) = w1ki

(
zi

1− zi
;µ

)
=

1∑K
a=1

∆2
2

2∆2
a−∆2

2

∆2
2

4σ2
,

which implies that

T (µ) =
K∑
i=1

4σ2

∆2
i + (∆2

i −∆2
2)
.

C.3. Additional numerical results

Here, we first provide additional comparisons between T (µ) and T 1/2(µ).
In Figure 3.(a), we zoom in on Figure 1.(a) from the main paper specifically for K ≤ 50. It

can be observed that T (µ(1)) is closer to T ∗(µ(1)) compared to T 1/2(µ(1)). Next, we consider a
worst-case instance µ′ based on µ(1) = (0.3, 0.21), where we add additional arm µK = µ2 for
any K in Figure 3.(b). Therefore, in µ′, all suboptimal arms share the same expected rewards, e.g.,
µ′ = (0.3, 0.21, 0.21, 0.21) for K = 4. This instance is of specific interest since one can observe
that T (µ) differs from T ∗(µ) at most when all suboptimal arms have the same expected rewards
according to (24). Even in such cases, T (µ′) and T 1/2(µ′) exhibit a similar tendency, which would
make BC-TE a reasonable policy in general.

Next, for the implementation in Section 5, we focus on T-D in our experiments although there
exist two versions of the TaS policy. T-D directly tracks the optimal proportion of arm plays at each
round (N(t) ⇝ tw∗(µ̂(t))), and it has been found to outperform the version with C-tracking in
experiments, which tracks the cumulative optimal proportions (N(t) ⇝

∑
s≤tw

∗(µ̂(s))).

Appendix D. Additional experimental results

In this section, we provide additional experimental results where the rewards follow the exponential
distribution and Pareto distribution.

Exponential bandits In the first experiment, we consider the 5-armed Bernoulli bandit instance
µE
5 = (0.5, 0.45, 0.43, 0.4, 0.3) where w∗(µB

5 ) = (0.41, 0.40, 0.13, 0.05, 0.01).
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(b) Worst case instance µ′ with varying K.

Figure 3: The ratio of T (µ) and T 1/2(µ) to T ∗(µ) for different reward distributions.

Pareto bandits In the second experiment, we consider the 4-armed Pareto bandit instance µP
4 =

(5.0, 3.0, 2.0, 1.5) with unit scale σ = 1 where w∗(µP
4 ) = (0.34, 0.60, 0.04, 0.01). The density

function of the Pareto distribution with shape θ > 0 and scale σ > 0 is written as

fP(x; θ, σ) =
θσθ

xθ+1
.

Notice that since σ = 1, the shape parameter is given as θ = (1.25, 1.5, 2, 3), where the first
three arms have infinite variance. It is worth noting that the sample complexity of T3C for δ ∈
{0.01, 0.001} becomes extremely larger than other policies (e.g., more than 25,000), we exclude
the result of T3C in this section although it performs well in the Gaussian and Bernoulli bandits.

Results The overall results are presented in Table 3. Similarly to the Gaussian and Bernoulli cases,
both BC-TE and FWS-TE consistently show a better empirical performance than other optimal
policies across most risk parameters, especially when large δ is considered. Although the empirical
probability of misidentification (error rate) for each policy is less than given threshold δ for most
cases, their error rates exceed the threshold when we considered µP

4 with δ = 0.001 as shown
in Table 4. This implies that the current choice of stopping rule, β(t, δ) = log(log(t) + 1)/δ), a
widely-used heuristic, may be not appropriate when one considers the bandit instance possibly with
infinite variance.

Appendix E. Proof of Theorem 2: Convergence of empirical means

We begin the proof of Theorem 2 by introducing two lemmas that show a sufficient condition to
occur Bi(t) for i = 1 and i ̸= 1, respectively.

Lemma 6 For any constant M > 0, assume that{
m(t) = 1, j(t) = j, i(t) = j, A1(t),Bj(t),M(t), Nj(t) > max

{
M,D1/dj

}}
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Table 3: Sample complexity over 3,000 independent runs, where outperforming policies are high-
lighted in boldface using one-sided Welch’s t-test with the significance level 0.05. LB
denotes the lower bound in (2), and PLB denotes the practical version of LB considered
in Degenne et al. (2019). µE

5 denotes 5-armed Exponential bandit instance with means
(0.5, 0.45, 0.43, 0.4, 0.3) and µP

4 denotes 4-armed Pareto bandit instance with means
(5.0, 3.0, 2.0, 1.5) and unit scale.

µ δ BC-TE FWS-TE FWS T-D LMA RR PLB LB

µB
5

0.2 2910 2938 3086 3158 4092 6471 3434 747
0.1 3568 3623 3791 3840 4851 7753 4074 1579
0.01 5743 5849 5938 5977 7165 12032 6182 4046
0.001 7977 8010 8085 8023 9533 16201 8278 6194

µP
4

0.2 1164 1171 1178 1268 1695 2329 937 212
0.1 1447 1478 1457 1554 2016 2792 1120 449
0.01 2396 2379 2376 2493 3059 4323 1720 1150
0.001 3270 3249 3174 3366 4026 5792 2318 1760

Table 4: Error rate for µP
4 and δ = 0.001.

BC-TE FWS-TE FWS T-D LMA RR
0.004 0.0047 0.0073 0.005 0.008 0.005

occurred for some t. Then, for all t′ ≥ t, we have 1[B1(t
′)] = 1 and

N1(t) ≥
max{djM,D1}
d(µ1 + ϵ, µj − ϵ)

.

Lemma 7 For any constant M > 0, assume that{
m(t) = 1, i(t) = 1, Aj(t)(t),B1(t),M(t), N1(t) > max

{
M,max

i ̸=1

Di

di

}}
occurred for some t. Then, for all i ̸= 1 and t′ ≥ t, we have 1[Bi(t′)] = 1 and

Ni(t) ≥
max{diM,Di}
d(µ1 + ϵ, µi − ϵ)

.

Therefore, if both events in Lemmas 6 and 7 occurred until rounds T , only {Bi(t)} occurs for all
i ∈ [K] and t ≥ T . The proofs of these lemmas are postponed to Section E.1.
Proof of Theorem 2 Firstly, let us define another random variable TC ≤ TB such that

∀s ≥ TC : 1[B1(s)] = 1,

which implies that the mean estimate of the optimal arm is close to its true value after TC rounds. Let
D = max

{
M, D1

mina∈[K] da

}
for some positive constantM specified later and TM = max(KD,TC).
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Let us consider a subset of rounds with any fixed T > TM

S1(T ) := {s ∈ [TM , T ] ∩ N : m(s) = 1, i(s) = j(s),B1(s),Bj(s)(s),M(s)}
= {TS1 =: sS1,1, sS1,2, . . . , sS1,|S1(T )|}

S2(T ) := {s ∈ [TM , T ] ∩ N : m(s) = 1, i(s) = 1,Aj(s)(s),B1(s),M(s)}
= {TS2 =: sS2,1, sS2,2, . . . , sS2,|S2(T )|},

where sSm,k implies the round when the event occurs k-th time for m = 1, 2, respectively.
Similarly, let us define a subset of rounds with any fixed T > TM

S0(T ) :=

{
s ∈ [TM , T ] ∩ N : {B1(s),Mc(s)} ∪ {B1(s),Bci(s),M(s)}

∪ {m(s) = 1, i(s) = 1,B1(s),Ac
j(s)(s),M(s)}

∪ {m(s) ̸= 1, i(s) = j(s),B1(s),Ac
m(s)(s),Bj(s)(s),M(s)}

}
and a random variable

TS := TM +

T∑
s=TM+1

1[B1(s),Mc(s)] + 1[B1(s),Bci(s),M(s)]

+ 1[m(s) = 1, i(s) = 1,B1(s),Ac
j(s)(s),M(s)]

+ 1[m(s) ̸= 1, i(s) = j(s),B1(s),Bcm(s)(s),Bj(s)(s),M(s)],

such that TS = |S0(T )|+ TM holds.

First objective Here, we first aim to show that for t ≥ TM , it holds

1 = 1[t ∈ S0(T )] + 1[t ∈ S1(T )] + 1[t ∈ S2(T )].
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Since B1(s) always holds for s ≥ TM , it holds that

1 = 1[B1(s)]

= 1[Mc(s),B1(s)] + 1[M(s),B1(s)]

= 1[Mc(s),B1(s)] + 1[M(s),B1(s),m(s) = 1] + 1[M(s),B1(s),m(s) ̸= 1]

= 1[Mc(s),B1(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = 1] + 1[M(s),B1(s),m(s) = 1, i(s) = j(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = m(s),B1(s),Bcm(s)(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = j(s),B1(s)Ac
m(s)(s)] (25)

= 1[Mc(s),B1(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = 1,Ac
j(s)(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = 1,Aj(s)(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = j(s),Bcj(s)(s)]
+ 1[M(s),B1(s),m(s) = 1, i(s) = j(s),Bj(s)(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = m(s),Bcm(s)(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = j(s),Ac
m(s)(s),Bcj(s)(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = j(s),Ac
m(s)(s),Bj(s)(s)] (26)

= 1[Mc(s),B1(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = 1,Ac
j(s)(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = 1,Aj(s)(s)]

+ 1[M(s),B1(s),m(s) = 1, i(s) = j(s),Bj(s)(s)]
+ 1[M(s),B1(s),Bci(s)(s)]
+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = j(s),Ac

m(s)(s),Bj(s)(s)]
= 1[s ∈ S0(T )] + 1[s ∈ S1(T )] + 1[s ∈ S2(T )],

where (25) and (26) hold from

1[m(s) ̸= 1,B1(s)] = 1[m(s) ̸= 1,B1(s),Bcm(s)(s)] = 1[m(s) ̸= 1,B1(s),Ac
m(s)(s)]. (27)
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The last equality holds from

1[M(s),B1(s),Bci(s)(s)]
= 1[M(s),B1(s),Bci(s)(s),m(s) = 1] + 1[M(s),B1(s),Bci(s)(s),m(s) ̸= 1]

= 1[M(s),B1(s),Bci(s)(s),m(s) = 1, i(s) = j(s)]

+ 1[M(s),B1(s),Bci(s)(s),m(s) ̸= 1, i(s) = m(s)]

+ 1[M(s),B1(s),Bci(s)(s),m(s) ̸= 1, i(s) = j(s)]

= 1[M(s),B1(s),m(s) = 1, i(s) = j(s),Bcj(s)(s)]
+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = m(s),Bcm(s)(s)]

+ 1[M(s),B1(s),m(s) ̸= 1, i(s) = j(s),Ac
m(s)(s),Bcj(s)(s)], (28)

where we used (27) in (28) again. This implies that if T ≥ TM , then [TM , T ] ∩ N = S0(T ) ∪
S1(T ) ∪ S2(T ) holds. Note that if s = TM ≥ KD, there exists at least one arm a ∈ [K] satisfying
Na(s) ≥ D.

(1) If N1(s) ≥ D Recall the definition TS1 = inf S1(T ) and TS2 = inf S2(T ), which implies the
first round when the events in Lemmas 6 and 7 occur, respectively.

(1-i) S0(T ) is a subinterval If S0(T ) consists of consecutive natural numbers, i.e., the subinterval
in [TM , T ] ∩ N, then min(TS1 , TS2) ≤ TS + 1 holds since we can only observe events in S1(T ) or
S2(T ) for s > TS .

(1-ii) S0(T ) is not a subinterval If S0(T ) is not a subinterval of [TM , T ]∩N, this directly implies
that min(TS1 , TS2) ≤ TS from [TM , T ] ∩ N = S0(T ) ∪ S1(T ) ∪ S2(T ).
(1-iii) Summary What we have shown is min(TS1 , TS2) ≤ TS + 1. Let us consider the case
TS1 < TS2 . From the definition of TS1 where i(t) = j(t), we have for j(t) = j and a ̸= 1, j that

(N1(TS1) +Nj(TS1))d(µ̂1(TS1), µ̂1,j(TS1))

≤ N1(TS1)d(µ̂1(TS1), µ̂1,j(TS1)) +Nj(TS1)d(µ̂j(TS1), µ̂1(TS1))

= TS1fj(w
t; µ̂(TS1))

≤ TS1fa(w
t; µ̂(TS1))

≤ Na(TS1)d(µ̂a(TS1), µ̂1(TS1)).

From the assumption N1(TS1) ≥ D, it holds that

N1(TS1)d(µ̂1(TS1), µ̂1,j(TS1)) ≥ N1(TS1)d(µ̂1(TS1), µ̂1,j(TS1))
D1

mini∈[K]di

≥ D1 = max
i ̸=1

Di.

Therefore,
max
i∈[K]

Di < min
i ̸=1

Na(TS1)d(µ̂a(TS1), µ̂1(TS1)). (29)

Recall the definition Di = supt 1[Bci (t)]Ni(t)d(µ̂i(t), µ̂1(t)). Thus (29) implies that Ba(t) holds
for all t ≥ TS1 and any i ∈ [K], i.e., TB ≤ TS1 ≤ TS + 1. When TS2 < TS1 holds, TB ≤ TS2 ≤
TS + 1 can be directly derived from Lemma 7.
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(2) If Ni(s) ≥ D for i ̸= 1 From (1), one can expect that TB will be bounded at least if either
Nj(s)(s) or N1(s) satisfies the condition in (29) for any s ≤ T .

(2-i) j(s) = i holds for some s ∈ S1(T ) In this case, we have for a ̸= 1, i

N1(s)d(µ̂1(s), µ̂1,i(s)) +Ni(s)d(µ̂i(s), µ̂1,i(s)) = sfi < sfa ≤ Na(s)d(µ̂a(s), µ̂1(s)),

where we denote µ̂w
s

1,i (s) by µ̂1,i(s) for notational simplicity. From Ni(s) ≥ D,

max
a∈[K]

Da ≤ Ni(s)d(µ̂i(s), µ̂1,i(s)) ≤ min
a̸=1

Na(s)d(µ̂a(s), µ̂1(s)), (30)

which implies TB ≤ s.

(2-ii) j(s) ̸= a holds for all s ∈ S1(T ) Take arbitrary t′ ∈ (TM ,∞) ∩ N and assume that there
exists an arm j′ ̸= 1 and a round s′ ≥ t′ such that 1[Bcj′(s′)] = 1 holds. Note that whenever
Nj(s)(s) ≥ D holds, substituting a = j(s) in (30) leads to the same inequality, which implies
TB ≤ s.

(2-iii) Summary Therefore, for all j ̸= 1,
∑

s∈S1(T )
1[j(s) = j] ≤ D should hold since∑

s∈S1(T )
1[j(s) = j] > D admits the existence of s ∈ S1(T ) such that satisfies (30), which contra-

dicts to the assumption of the existence of such s′. In other words,
∑

s∈S1(T )
1[j(s) = j] ≤ D is a

necessary condition to satisfy the assumption of the existence of j′ and s′ satisfying 1[Bcj′(s′)] = 1.
From the definition of S1(T ), for any s ∈ S1(T ), Nj(s)(s + 1) = Nj(s)(s) + 1 holds. Hence, at
worst, if |S1(T ) ∩ [TM , t

′)| ≥ (K − 2)D holds at some round t′, there exists s ∈ S1(T ) ∩ [TM , t
′)

such that Nj(s)(s) ≥ D. Therefore, TB is at most the round until S1(T ) occur (K − 2)D times.
Similarly, if the event in S2(T ) occurs D times at some round t′′, then N1(t

′′) ≥ D holds from
the sampling rule. This implies that Bi(s) holds for all i ∈ [K] for s ≥ t′′ from (29), i.e., TB is at
most the round until S2(T ) occur D times.

(3) Conclusion In summary, we have [TM , T ]∩N = S0(T )∪ S1(T )∪ S2(T ) and there exists an
arm i satisfying Ni(t) ≥ D. If N1(s) ≥ D, then TB ≤ TS+1 holds. If Ni(s) ≥ D holds for i ̸= 1,
then TB is at most the round sS1,(K−2)D when the event in S1(T ) occurs (K − 2)D times or sS2,D

when the event in S2(T ) occur D times. Hence, we have

TB ≤ TS + (K − 2)D +D + 1,

where TS = TM + |S0(T )| = max(TC ,KD) + |S0(T )|. Then, we have

E[TB] ≤ E[TS ] + (K − 1)E[D] + 1

≤ E[TC ] + (2K − 1)E

[
sup
i ̸=1

sup
s≥t

1[Bc
i (s)]Ni(s)d(µ̂i(s), µ̂1(s))

]

+ E

[
T∑

t=TM

1[Mc(t)] + 1[m(t) = 1, i(t) = 1,B1(t),Ac
j(t)(t),M(t)]

+ 1[m(t) ̸= 1, i(t) = j(t),B1(t),Ac
m(t)(t),Bj(t)(t),M(t)]

+ 1[B1(t),Bci(t)(t),M(t)]

]
+ 1.

Then, the following five lemmas conclude the proofs. ■
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Lemma 8 For a bounded region of parameters R ⊂ R, it holds that for arbitrary µ′ ∈ R and
i ∈ [K]

E

[
sup

n∈N,µ′∈R
1[|µ̂i,n − µi| ≥ ϵ]nd(µ̂i,n, µ

′)

]
= O

(
d−1
ϵ

)
,

where µ̂i,n is the empirical mean reward of the arm i when it is played n times.

Here, note that µ̂i,n is different from µ̂a,b(t) that denotes the weighted average of their empirical
mean. Lemma 8 provides the finiteness of the expectation of Di for any i ∈ [K].

Lemma 9 For the finite number of arms K and any T ∈ N, it holds that

E

[
T∑
t=1

1

[
m(t) = 1, i(t) = 1,B1(t),Ac

j(t)(t),M(t)
]]

≤ O
(
Kd−1

ϵ

)
,

E

[
T∑
t=1

1

[
i(t) = j(t),Ac

m(t)(t),Bj(t)(t),M(t)
]]

≤ O
(
K2d−1

ϵ

)
.

Lemma 10 For the finite number of arms K and any T ∈ N, it holds that

E

[
T∑
t=1

1

[
Bci(t)(t),M(t)

]]
≤ O

(
Kd−1

ϵ

)
.

The proofs of Lemmas 8–10 are provided in Section E.2.

Lemma 11 For the finite number of arms K and any T ∈ N, it holds that

E

[
T∑
t=1

1[Mc(t)]

]
≤ O

(
K2d−2

ϵ

)
.

The proof of Lemma 11 is given in Section E.3.

Lemma 12 Under Algorithm 1, it holds for any ϵ ∈
(
0, µ1−µ22

)
that

E[TC ] ≤ C(πj,µ, ϵ) + 4d−3
ϵ ,

where C(πj,µ, ϵ) specified in Lemma 15.

The proof of Lemma 12 is given in Section E.4, where we adapt the analysis in Korda et al. (2013)
to our problem.

E.1. Proofs of technical lemmas for Theorem 2: Sufficient conditions for the convergence of
estimates

Here, we provide the proof of Lemmas 6 and 7.
Proof of Lemma 6 Since i(t) = j implies

d(µ̂j(t), µ̂1,j(t)) ≥ d(µ̂1(t), µ̂1,j(t)),
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we have

d(µ̂j(t), µ̂1,j(t)) ≥ dj ,

from the definition of dj in (14).
Then, we have

tfj(w
t, µ̂(t)) = N1(t)d(µ̂1(t), µ̂1,j(t)) +Nj(t)d(µ̂j(t), µ̂1,j(t))

≥ Nj(t)dj > D1

On the other hand, if |µ̂1(t)− µ1| ≥ ϵ and |µ̂j(t)− µj | ≤ ϵ, then

tfj(w
t, µ̂(t)) ≤ N1(t)d(µ̂1(t), µ̂j(t)) ≤ D1

by the definition of D1 = supi ̸=1Di. Therefore, |µ̂1(t)− µ1| ≥ ϵ cannot hold.
Under |µ̂1(t)− µ1| ≤ ϵ and |µ̂j(t)− µj | ≤ ϵ, we see that

Nj(t)dj ≤ tfj(w
t, µ̂(t)) ≤ N1(t)d(µ̂1(t), µ̂j(t))

≤ N1(t)d(µ1 + ϵ, µj − ϵ),

which completes the proof. ■
Proof of Lemma 7 Since j(t) = argmini ̸=m(t) tfi(w

t, µ̂(t)) and i(t) = 1, it holds for all i ̸= 1
that

tfi(w
t, µ̂(t)) ≥ tfj(t)(w

t, µ̂(t))

and

d(µ̂1(t), µ̂1,j(t)(t)) ≥ d(µ̂j(t)(t), µ̂1,j(t)(t)).

Then, we can use the same argument as Lemma 6 by exchanging the role of 1 and j. ■

E.2. Proofs of technical lemmas for Theorem 2: Boundedness of the number of rounds where
estimates do not converge

Here, we provide the proof of Lemmas 8–10. Firstly, to prove Lemma 8, we require the lemma
below, whose proof is postponed to Section F.1.

Lemma 13 Let R ⊂ R be a bounded region of parameters and fix arbitrary µ0. Then, there exists
a, b ≥ 0 such that

d(µ, µ′) ≤ ad(µ, µ0) + b

for arbitrary µ ∈ R and µ′ ∈ R.
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Proof of Lemma 8 Let P (z) := P[d(µ̂i,n, µi) ≥ z]. Then, by Chernoff bound, we have P (z) ≤
2e−nz . Therefore,

E

[
1[|µ̂i,n − µi| ≥ ϵ] sup

µ′∈R
d(µ̂i,n, µ

′)

]
≤ E[1[|µ̂i,n − µi| ≥ ϵ](ad(µ̂i,n, µi) + b)]

≤ 2be−ndϵ + a

∫ ∞

dϵ

zd(−P (z))

= 2be−ndϵ + a

(
−[zP (z)]∞dϵ +

∫ ∞

dϵ

zP (z)dz

)
≤ 2be−ndϵ + 2adϵe

−ndϵ + a

∫ ∞

dϵ

zP (z)dz

≤ 2be−ndϵ + 2adϵe
−ndϵ + 2a

[
−ze

−nz

n
− e−nz

n2

]∞
dϵ

≤ 2

(
b+ a

(
dϵ +

dϵ
n

+
1

n2

))
e−ndϵ ,

where dϵ := mini∈[K]{d(µi − ϵ, µi), d(µi + ϵ, µi)} and the first inequality holds from Lemma 13.
Since this quality decays exponentially in n, it is straightforward that

E

[
sup

n∈N,µ′∈R
1[|µ̂i,n − µi| ≥ ϵ]nd(µ̂i,n, µ

′)

]
≤

∞∑
n=1

E

[
1[|µ̂i,n − µi| ≥ ϵ] sup

µ′∈A
d(µ̂i,n, µ

′)

]
= O(d−1

ϵ ).

Proof of Lemma 9 For j(t) = j, we first consider

Dj = sup
t

{1[|µ̂j(t)− µi| ≥ ϵ]Nj(t)d(µ̂j(t), µ̂1(t))} .

Note that on B1(t), µ̂1(t) ∈ [µ1 − ϵ, µ1 + ϵ] is bounded so that we can apply Lemmas 8 and 13. We
first show the existence of a bounded constant c∗j ∈ R+ such that

N1(t) ≤ c∗jDj ,

where

c∗j = min

(
cj ,

x′j
dζ

)
for constants cj , x′j and dζ that depend on models.

(1) When µ̂j(t) ̸≈ µ̂m(t)(t) From their definitions, we have

0 ≤ Nj(t)d(µ̂i(t), µ̂1,j(t)(t)) ≤ Nj(t)d(µ̂j(t), µ̂1(t)) ≤ Di

and

N1(t)d(µ̂1(t), µ̂1,j(t)) ≤ N1(t)d(µ̂1(t), µ̂1,j(t)) +Nj(t)d(µ̂i(t), µ̂1,j(t))

= tg(wt; µ̂(t)).
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Let us consider

ψ(x; t) = xd(µ̂m(t)(t), µ̂m(t),j(x; t)) + d(µ̂j(t), µ̂m(t),j(x; t)),

where µ̂a,b(x; t) = xµ̂a(t)+µ̂b(t)
x+1 . One can see that ψ(x; t) is strictly increasing with respect to x

since ψ′(x; t) = d(µ̂m(t)(t), µ̂m(t),j(x; t)) > 0 and it tends to d(µ̂j(t), µ̂m(t)(t)) when x goes to
infinity (Garivier and Kaufmann, 2016). Then, under the condition {m(t) = 1, j(t) = j}, it holds
that

tg(wt; µ̂(t)) = Nj(t)ψ

(
N1(t)

Nj(t)
; t

)
≤ Nj(t)d(µ̂j(t), µ̂1(t))

≤ Dj .

Therefore,

N1(t) ≤
1

d(µ̂1(t), µ̂1,j(t))
Dj .

Note that there exists a constant cj such that 1
d(µ̂1(t),µ̂1,j(t))

≤ cj < ∞ when µ̂a(t) ̸≈ µ̂m(t)(t),
which shows the existence of c∗j .

(2) When µ̂j(t) ≈ µ̂m(t)(t) Here, i(t) = 1 implies that

d
(
µ̂1(t), µ̂

wt

1,j(t)
)
≥ d

(
µ̂j(t), µ̂

wt

1,j(t)
)
. (31)

Note that as w1(t)
wj(t)

increases, RHS of (31) decreases and LHS of (31) increases simultaneously.
Therefore,

∀t ∈ N, ∃x∗j,t ∈ R+ s.t.
w1(t)

wj(t)
= x∗j,t ⇔ d(µ̂1(t), µ̂

wt

1,j(t)) = d(µ̂j(t), µ̂
wt

1,j(t)).

Note that x∗j,t depends on the distribution of reward and history Ht until round t, e.g., ∀t ∈ N,
x∗j,t = 1 for the Gaussian distribution. Since µ̂1(t) is bounded under {B1(t)} and µ̂j(t) ∈ (µj +
ϵ, µ̂1(t)] ⊂ (µj + ϵ, µ1 + ϵ] holds under {B1(t),Ac

j(t),m(t) = 1}, there exists x′j ∈ R+ such that
for any t ∈ N

N1(t) > x′jNj(t) =⇒ d(µ̂1(t), µ̂1,j(t)) < d(µ̂j(t), µ̂1,j(t)), i.e., i(t) = j.

Let consider a bounded region R = [µ1 − ϵ, µ1 + ϵ] ⊂ R and a random variable

Dj = sup
t∈N

sup
µ′∈A

{
1[|µ̂j(t)− µj | ≥ ϵ]Nj(t)d(µ̂j(t), µ

′)
}
, j ∈ [K] \ {1}.

Since m(t) = 1 holds under the condition, we have

sup
µ′∈A

d(µ̂j(t), µ
′) = max{d(µ̂j(t), µ1 − ϵ), d(µ̂j(t), µ1 + ϵ)}

and µ̂1(t) > µ̂j(t). Let ζ(ϵ) ∈ A be a point such that d(ζ, µ1 − ϵ) = d(ζ, µ1 + ϵ) = dζ . Then, it
holds that

sup
µ′∈A

d(µ̂j(t), µ
′) > dζ .

Note that dζ and x′j only depend on the models. Therefore, there exists a constant c∗j ∈ R+ such
that

N1(t) ≤
x′j
dζ
Dj ≤ c∗jDj .
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(3) Conclusion From Lemma 8, we obtain

E

[ ∑
i∈[K]\{1}

τ∑
t=1

1

[
m(t) = 1,i(t) = 1,B1(t), j(t) = i,Ac

j(t)(t),M(t)

]]

≤ E

 ∑
i∈[K]\{1}

∞∑
t=1

1[i(t) = 1, N1(t) ≤ c∗iDi]


≤

∑
i∈[K]\{1}

c∗jE[Dj ] ≤ O(Kd−1
ϵ ),

which concludes the first case.
Similarly, the second case can be bounded by considering Rj = [µj − ϵ, µj + ϵ] and

Dm(t),j = sup
n

sup
µ′∈Rj

{1[|µ̂m(t)(n)− µm(t)| ≥ ϵ]nd(µ̂m(t)(n), µ
′)}

for every m(t) ∈ [K] and j ∈ [K] \ {m(t)}. Since µ̂j(t) ∈ Rj holds under {Bj(t)}, we can apply
Lemmas 8 and 13 by exchanging the role of m(t) and j, which concludes the proof. ■
Proof of Lemma 10 From the Chernoff bound, it holds for any arm i ∈ [K] that

P[|µ̂i(t)− µi| ≥ ϵ|Ni(t) = n] ≤ 2e−ndϵ , (32)

where dϵ is defined in (10). One can rewrite the expectation as

E

[
T∑
t=1

1

[
Bci(t)(t),M(t)

]]
= E

[
K∑
i=1

T∑
t=1

∞∑
n=1

1

[
i(t) = i,Bci(t)(t),M(t), Ni(t)(t) = n

]]
.

= E

[
K∑
i=1

T∑
t=1

∞∑
n=1

1 [i(t) = i,Bci (t),M(t), Ni(t) = n]

]

For every arm i ∈ [K], an event {i(t) = i,Ni(t) = n} could happen at most once for any n ∈ N.
Therefore, by applying (32), one has

E

[
T∑
t=1

1

[
Bci(t)(t),M(t)

]]
≤

K∑
i=1

∞∑
n=1

2e−ndϵ ≤ O(Kd−1
ϵ ),

which concludes the proof. ■

E.3. Proof of technical lemma for Theorem 2: An upper bound on the number of rounds
where TE occurs

Here, we provide the proof of Lemma 11, which shows that the expected number of rounds where
Thompson samples and the empirical mean estimates disagree is finite. Before beginning the proof,
we present the posterior concentration result when we employ the Jeffreys prior in the SPEF.
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Lemma 14 (Theorem 4 in Korda et al. (2013)) For the Jeffreys prior and dϵ defined in (10), there
exists constants C1,a = C1(θa, A) > 0, C2,a = C2(θa, A, ϵ) > 0 and N(θa, A) such that for any
Na(t) ≥ N(θa, A),

1[Ba(t)]P[B̃ca(t)|Xa,Na(t)] ≤ 2C1,aNa(t)e
−(Na(t)−1)(1−ϵC2,a)dϵ

whenever ϵ is such that 1− ϵC2,a(ϵ) > 0. Note that A is a convex function in (1).

Proof of Lemma 11 Let us define L(θ) := 1
2 min(supy p(y|θ), 1) and an event

Ẽa(t) =

∃1 ≤ s′ ≤ Na(t) : p(xa,s′ |θa) ≥ L(θa),

∣∣∣∣∣∣
∑Na(t)

s=1,s ̸=s′ xa,s

Na(t)− 1
− µa

∣∣∣∣∣∣ ≤ ϵ

 .

Consider
T∑
t=1

1[Mc(t)] =

T∑
t=1

∑
i∈[K]

1[i(t) = i,Mc(t)]

=
T∑
t=1

∑
i∈[K]

1[i(t) = i, Ẽca(t),Mc(t)] + 1[i(t) = i, Ẽa(t),Mc(t)]

It is shown by Korda et al. (2013) that

E

[
T∑
t=1

1[i(t) = i, Ẽci (t),Mc(t)]

]
≤

∞∑
t=1

P(p(xi,1|θa) ≤ L(θa))
t +

∞∑
t=1

2te−(t−1)dϵ

≤ O
(
d−2
ϵ

)
. (33)

Then, consider

T∑
t=1

1[i(t) = i, Ẽi(t),Mc(t)] =

T∑
t=1

(
1[i(t) = i, B̃i(t), Ẽi(t),Mc(t)]

+ 1[i(t) = i, B̃ci (t), Ẽi(t),Mc(t)]

)
.

On Ẽi(t), the following holds for a constant N(θi, A) from Lemma 14.

E

[
T∑
t=1

∑
i∈[K]

1[i(t) = i, B̃ci (t), Ẽi(t),Mc(t)]

]

≤
∑
i∈[K]

N(θi, A) +
∑
i∈[K]

T∑
t:i(t)=i

Na(t)≥N(θi,A)

2C1,ie
−(Ni(t)−1)(1−ϵC2,i)dϵ+log(Ni(t))

≤
∑
i∈[K]

N(θi, A) +
∑
i∈[K]

∞∑
n=N(θi,A)

2C1,ine
−(n−1)(1−ϵC2,i)dϵ

≤ O
(
Kd−2

ϵ

)
,
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where the second inequality holds since Ni(t) increases when {i(t) = i} happens.
Finally, we will show that

T∑
t=1

∑
i∈[K]

1[i(t) = i, B̃i(t), Ẽi(t),Mc(t)] ≤ O
(
K2d−2

ϵ

)
.

On Mc(t), i(t) ∈ {m(t), m̃(t)} holds so that

T∑
t=1

∑
i∈[K]

1[i(t) = i, B̃i(t), Ẽi(t),Mc(t)] ≤
T∑
t=1

∑
i∈[K]

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t)]

+

T∑
t=1

∑
i∈[K]

1[i(t) = m̃(t) = i, B̃i(t), Ẽi(t),Mc(t)].

Let us define NA = maxa∈[K]N(θa, A). For any i ∈ [K], we have

T∑
t=1

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t)]

≤ NA +

T∑
t=1

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA]

and

T∑
t=1

1[i(t) = m̃(t) = i, B̃i(t), Ẽi(t),Mc(t)]

≤ NA +
T∑
t=1

1[i(t) = m̃(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA].

Consider

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA] =∑
j∈[K]\{i}

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA, m̃(t) = j, Ẽj(t)]︸ ︷︷ ︸
(⋇)

+ 1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA, m̃(t) = j, Ẽcj (t)]︸ ︷︷ ︸
(⋆)

.

Similarly to (33), it holds that E [
∑

t(⋆)] ≤ O
(
d−2
ϵ

)
. On Mc(t), {i(t) = m(t)} implies that

{Nm(t)(t) ≤ Nm̃(t)(t)}, i.e., Nj(t) ≥ Ni(t) ≥ NA so that one can apply Lemma 14. Hence,∑
t

E[(⋇)] ≤ O(d−2
ϵ ) +

∑
t

E
[
1[i(t) = m(t) = i, B̃i(t), Ẽi(t)]

· 1[Mc(t), Ni(t) ≥ NA, m̃(t) = j, Ẽj(t), B̃j(t)]
]
.
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From its definition, on Ẽi(t), the empirical mean reward of arm i is well concentrated around its
true mean. Thus,

m(t) = i, Ẽi(t), Ẽj(t) =⇒ i > j.

However, on {B̃i(t), B̃j(t), m̃(t) = j}, i < j holds, which is a contradiction. Therefore,

1[i(t) = m(t) = i, B̃i(t), Ẽi(t),Mc(t), Ni(t) ≥ NA, m̃(t) = j, Ẽj(t), B̃j(t)] = 0,

which leads to

E

[
T∑
t=1

1[Mc(t)]

]
= O

(
K2d−2

ϵ

)
.

E.4. Proof of technical lemma for Theorem 2: Analysis with TS

Here, we provide the proof of Lemma 12.
Proof of Lemma 12 Let us define an event

C(t) :=
∞⋃
s=t

{Bc1(s)}

so that Cc(t) = ⋂∞
s=t{B1(s)} implies only B1(s) occurs for s ≥ t, meaning that C(t) ⇔ {TC ≥ t}.

Therefore.

E[TC ] =
∞∑
s=1

P[TC ≥ s] =

∞∑
s=1

P[C(s)]

=
∞∑
s=1

P[C(s), N1(s) ≤
√
s] + P[C(s), N1(s) ≥

√
s].

From the Chernoff bound, we can derive the upper bound of the second term as
∞∑
s=1

P[C(s), N1(s) ≥
√
s] ≤

∞∑
s=1

∞∑
n=

√
s

P[|µ̂1,n − µ1| ≥ ϵ]

≤
∞∑
s=1

∞∑
n=

√
s

2e−ndϵ

≤
∞∑
s=1

2

dϵ
e−

√
sdϵ

≤ 2

dϵ

∫ ∞

0
e−

√
sdϵds =

2

dϵ

∫ ∞

0
2xe−dϵxdx

= 4d−3
ϵ .

Then, the Lemma 15 below concludes the proof. ■

Lemma 15 For the finite number of arms K <∞, and ϵ ∈
(
0, µ1−µ22

)
, there exists some constants

C(πj,µ, ϵ) <∞ such that
∞∑
s=1

P[C(s), N1(s) ≤
√
s] ≤ C(πj,µ, ϵ).

The proof of Lemma 15 is given in F.2.
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Appendix F. Proofs of additional lemmas

In this section, we provide proofs of additional lemmas that prove the lemmas for proving Theo-
rem 2.

F.1. Proof of technical lemma for Lemma 8: Lemma 13

Proof of Lemma 13 It holds from the expression of KL divergence that

d(µ, µ′)− d(µ, µ0) = A(θ(µ0))−A(θ(µ′)) + (θ(µ′)− θ(µ0))µ

≤ A(θ(µ0))− inf
x∈R

A(θ(x)) + |µ| sup
x∈A

|θ(x)− θ(µ0)|.

Since d(µ, µ0) is convex with respect to µ, there exist constant a′, b′ ≥ 0 such that |µ| ≤ a′d(µ, µ0)+
b′. Letting a := 1 + a′ supx∈A |θ(x) − θ(µ0)| and b := b′ supx∈A |θ(x) − θ(µ0)| + A(θ(µ0)) −
infx∈AA(θ(x)) concludes the proof. ■

F.2. Proof of technical lemma for Lemma 12: Lemma 15

Here, we present the proof of Lemma 15, where we adapt the proof techniques considered in Kauf-
mann et al. (2012) and Korda et al. (2013). Before beginning, we introduce some results in Korda
et al. (2013).

The following Lemma shows the concentration inequality when an arm is played sufficiently.

Lemma 16 (Lemma 10 in Korda et al. (2013)) For every a ∈ [K] and ϵ > 0, there exist constants
C ′
a = C ′(µa, ϵ, A) and N such that for t ≥ NK ,

P[∃s ≤ t,∃a ̸= 1 : |µ̂a(s)− µa| ≥ ϵ,Na(s) > C ′
a log t] ≤

2(K − 1)

t3

P[∃s ≤ t,∃a ̸= 1 : |µ̃a(s)− µa| ≥ ϵ,Na(s) > C ′
a log t] ≤

4(K − 1)

t3
.

Note that we use the upper bound with the order of O(t−3) differently from the original lemma
whose order is O(t−2). This can be done simply by changing the constant term with a multiplication
of 3/2.

The following lemma holds for the SPEF.

Lemma 17 (Lemma 9 in Korda et al. (2013)) There exists a constant C = C(πj) < 1, such that
for every (random) interval I and for every positive function ℓ, one has

P[∀s ∈ I, µ̃1(s) ≤ µ2 + ϵ, |I| ≥ ℓ(t)] ≤ Cℓ(t).

Proof of Lemma 15 Let τn denote n-th time when arm 1 is played and ξn = (τn+1 − 1) − τn be
the time between n+ 1-th and n-th time of arm 1 playing. From the definition, it holds that

P[N1(t) ≤
√
t, C(t)] ≤

⌊
√
t⌋∑

n=0

P[ξn ≥
√
t− 1, C(t)].

For simplicity, let us define an event

Gn := {ξn ≥
√
t− 1, C(t)} = {ξn ≥

√
t− 1, {∃n ≥ N1(t) : |µ̂1,n − µ1| ≥ ϵ}}
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so that

P[N1(t) ≤
√
t, C(t)] ≤

⌊
√
t⌋∑

n=0

P[Gn].

On Gn, we define an index set In and its subset In,l

In := [τn, τn + ⌈
√
t− 1⌉] ⊂ [τn, τn+1]

In,l :=

[
τn +

⌈
l − 1

K
(
√
t− 1)

⌉
, τn +

⌈
l

K
(
√
t− 1)

⌉]
, l ∈ [K].

Note that the inclusion on In holds under Gn. In the analysis of Thompson sampling (Agrawal and
Goyal, 2012; Kaufmann et al., 2012; Korda et al., 2013), an arm a is called saturated if Na(t) ≥
C ′
a log t for a constant C ′

a that depends on the model.
In this chapter, we call an arm i is saturated if Ni(t) ≥ maxa∈[K]Ca log t for a constant Ca

such that

Ca ≥ C ′
a

d(µ2 + ϵ, µK − ϵ)

da
.

Note that Ca’s are also constants that only depend on the model, and Ca ≥ C ′
a holds from the

definition of da, so that Lemma 16 is still applicable. For each interval In, let introduce

• Fn,l: the event that by the end of the interval In,l at least l suboptimal arms are saturated.

• rn,l: the number of playing unsaturated suboptimal arms, which is called interruptions during
In,l.

Let us consider
P[Gn] = P[Gn, Fn,K−1]︸ ︷︷ ︸

(D1)

+P[Gn, F cn,K−1]︸ ︷︷ ︸
(E1)

. (34)

F.2.1. BOUNDS ON (D1)

From the definition, one can rewrite

(D1) = P[{∃s ∈ In,K ,∃a ̸= 1 : µ̃a(s) ≥ µ2 + ϵ}, Gn, Fn,K−1]

+ P[{∀s ∈ In,K ,∀a ̸= 1 : µ̃a(s) ≤ µ2 + ϵ}, Gn, Fn,K−1]

≤ 2(K − 1)

t3
+

(D2)︷ ︸︸ ︷
P[{∀s ∈ In,K ,∀a ̸= 1 : µ̃a(s) ≤ µ2 + ϵ}︸ ︷︷ ︸

=:Dn,K

, Gn, Fn,K−1],

where the inequality holds from Lemma 16. Here, (D2) can be decomposed as

(D2) = P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∃s ∈ In,K : Bca(s) ∪ B̃ca(s)}]
+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}].



LEE HONDA SUGIYAMA LEE HONDA SUGIYAMA

From Lemma 16, we obtain

(D2) ≤ 6(K − 1)

t3
+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}]

≤ 6(K − 1)

t3

+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s), m̃(s) ̸= 1}]
+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}

, {∃s ∈ In,K : m̃(s) = 1}]

≤ 6(K − 1)

t3
+ C

√
t−1
K

+
P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}

, {∃s ∈ In,K : m̃(s) = 1}]

}
(D3),

where the last inequality holds from Lemma 17. Next, one can see

(D3) = P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1, ∀s ∈ In,K : Ba(s) ∩ B̃a(s)}
, {∃s ∈ In,K : m̃(s) = 1,m(s) = 1}]

+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1, ∀s ∈ In,K : Ba(s) ∩ B̃a(s)}
, {∃s ∈ In,K : m̃(s) = 1,m(s) ̸= 1}]

≤ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}
, {∃s ∈ In,K : m̃(s) = 1,m(s) = 1}]

+ P[Dn,K , Gn, Fn,K−1, {arm 1 is saturated}, {∃s ∈ In,K : Bc1(s)}] (35)

where (35) holds from Thompson exploration since i(t) ̸= 1 on Mc(t) implies that N1(t) ≥ Ni(t),
i.e., arm 1 is saturated. From Lemma 17, it holds that

(D3) ≤ 2(K − 1)

t3
+ P[Dn,K , Gn, Fn,K−1, {∀a ̸= 1,∀s ∈ In,K : Ba(s) ∩ B̃a(s)}

, {∃s ∈ In,K : m̃(s) = m(s) = 1}]

=
2(K − 1)

t3
+ (D4),

where (D4) denotes the second term. Note that Thompson exploration with {m(s) = 1} will
choose only j(s) under the event Gn, i.e., only {i(s) = j(s)} happens during In for any n when
m(s) = m̃(s) holds. It holds that

(D4) ≤
∑

s∈In,K

K∑
a=2

P[m(s) = 1, i(s) = j(s) = a,A1(s),Ba(s),M(s), Gn]︸ ︷︷ ︸
(D5)

+
∑

s∈In,K

K∑
a=2

P[m(s) = 1, i(s) = j(s) = a,Ac
1(s),Ba(s),M(s)]

︸ ︷︷ ︸
(D6)

.
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From Lemma 7, if an event in (D5) occurs for some s, then it implies that B1(t) holds for all t ≥ s
such that for all t ≥ N ′, C∗

a log t ≥ max{M,D1/da} for all a ∈ [K]\{1} holds, which contradicts
to the event Gn that implies the existence of t ≥ s such that Bc1(t) holds. Therefore, we have

(D5) = 0.

Note that (D6) is the form considered in Lemma 9. Therefore, we have

(D6) ≤
√
t− 1

K

K∑
a=2

P [Na(s) ≤ c∗aDa] ,

for some constants c∗a and random variables Da in Lemma 9 such that its expectation is finite. Let
Nµ,A(ϵ) be a constant that depends on the model and epsilon such that for t ≥ Nµ,A(ϵ), it holds for
any a ∈ {2, . . . ,K}

C∗
a log t ≥ c∗aDa,

i.e., the event in (D6) cannot occur for t ≥ Nµ,A(ϵ). Hence, there exist some constantCD(πj,µ, b, ϵ) <
∞ such that

T∑
t=1

⌊
√
t⌋∑

n=0

(D1) ≤ max
{
N ′, Nµ,A(ϵ)

}
+

∞∑
t=Nµ,A(ϵ)+1

8(K − 1)

t2
√
t

+
√
tC

√
t−1
K

≤ CD(πj,µ, b, ϵ). (36)

F.2.2. BOUNDS ON (E1)

By adapting the proof of Kaufmann et al. (2012); Korda et al. (2013), we prove (E1) is upper
bounded by some constants through the mathematical induction, i.e., we will show

P[Gn, F cn,K−1] ≤ (K − 2)

(
10(K − 1)

t3
+ k(µ, b, n, t)

)
,

where k is a function such that
∑

t≥1

∑
n≤

√
t k <∞.

First, for the base case, it can be easily seen that for t ≥ Nµ,b such that

∀t ≥ Nµ,b,

⌈√
t− 1

K2

⌉
≥ C∗ log t,

where C∗ = maxa̸=1Ca since only suboptimal arms are selected during In,l under Gn. Then, for
t ≥ Nµ,b,

P[Gn, F cn,1] = 0.

We refer the reader to Kaufmann et al. (2012) for more explanations in the base case. Then, we
assume that for some 2 ≤ l ≤ K − 1 if t ≥ Nµ,b, then

P[Gn, F cn,l−1] ≤ (l − 2)

(
10(K − 1)

t3
+ k(µ, b, n, t)

)
.

Therefore, we remain to show that

P[Gn, F cn,l, Fn,l−1] ≤
10(K − 1)

t3
+ k(µ, b, n, t).
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On the event (Gn, F cn,l, Fn,l−1), there are exactly l−1 saturated suboptimal arms at the beginning of
interval In,l and no new arm is saturated during this interval, which implies that rn,l ≤ KC∗ log t.
For the set of saturated suboptimal arms Sl at the end of In,l, it holds that

P[Gn, F cn,l, Fn,l−1] ≤ P[Gn, Fn,l−1, {rn,l ≤ KC∗ log t}]
≤ P[Gn, Fn,l−1, {∃s ∈ In,l, a ∈ Sl−1 : B̃ca(s) ∪ Bca(s)}]

+
P[Gn, Fn,l−1, {rn,l ≤ KC∗ log t},
{∀s ∈ In,l, a ∈ Sl−1 : B̃a(s) ∩ Ba(s)}]

}
(E2),

By applying Lemma 16 again, we have

P[Gn, Fn,l−1, {∃s ∈ In,l, a ∈ Sl−1 : B̃ca(s) ∪ Bca(s)}] ≤
6(K − 1)

t3
.

To bound (E2), we introduce a random interval Jk for k ∈ {0, . . . , rn,l − 1} as the time between
k-th and k + 1-th interruption in In,l and set Jk = ∅ for k ≥ rn,l. On (E2), there is a subinterval
where no interruptions occur with length ⌈

√
t−1

C∗K2 log t
⌉. Then, it holds that

(E2) ≤ P

[{
∃k ∈ {0, . . . , rn,l} : |Jk| ≥

√
t− 1

C∗K2 log t

}
,

{∀s ∈ In,l, a ∈ Sl : B̃a(s) ∩ Ba(s)}, Gn, Fn,l−1

]

≤
KC∗ log t∑
k=1

P
[{

|Jk| ≥
√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk, a ∈ Sl : B̃a(s) ∩ Ba(s)}, Gn

]
.

Note that on Gn and ∀s ∈ Jk, only i(s) ∈ Sl happens, i.e., {m(s) ̸= m̃(s),m(s) ̸∈ Sl, m̃(s) ̸∈ Sl}
cannot occur. Therefore, for any s ∈ Jk under {∀a ∈ Sl : B̃a(s) ∩ Ba(s)}, we have

1[m(s) ̸= m̃(s), Gn, B̃m̃(s)(s)] = 1[m(s) ∈ Sl, m̃(s) ∈ Sl \ {m(s)}, Gn, B̃m̃(s)(s)]

+ 1[m(s) = 1, m̃(s) ∈ Sl, Gn, B̃m̃(s)(s), B̃c1(s)]
+ 1[m(s) ∈ Sl, m̃(s) = 1, Gn, B̃1(s),Bc1(s)].

Here, it holds that

{m(s) ∈ Sl, m̃(s) ∈ Sl \ {m(s)}, Gn, B̃m̃(s)(s)} ⊂ {µ̃1(s) ≤ µ2 + ϵ,Gn}.

Similarly to the (D3), i(s) ̸= 1 implies that arm 1 is already played more than the saturated arm.
Let us define an event

E2(s) := {m(s) = m̃(s) ∈ Scl ∪ {1}]} ∩ {µ̃1(s) ≥ µ2 + ϵ}.



SUPPLEMENTARY MATERIAL FOR BC-TE IN BAI

Then, from the above inclusive relationship, we have

P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk, a ∈ Sl : B̃a(s) ∩ Ba(s)}, Gn

]

≤ P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
,

{
∀s ∈ Jk : {∀a ∈ Sl : B̃a(s) ∩ Ba(s)}

∩ {µ̃1(s) ≤ µ2 + ϵ}
}
, Gn

]

+ P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk, a ∈ Sl : B̃a(s) ∩ Ba(s)},

{∃s ∈ Jk : Bc1(s) ∪ B̃c1(s)}, Gn
]

+

P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk, a ∈ Sl : B̃a(s) ∩ Ba(s)}

{∃s ∈ Jk : E2(s)}, Gn
]}(E3).

By applying Lemmas 16 and 17, we have

P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk, a ∈ Sl : B̃a(s) ∩ Ba(s)}, Gn

]

≤ C

√
t−1

C∗K2 log t +
6

t3
+ (E3).

From the definition of Jk and Gn, one can see that

(E3) = P

[{
|Jk| ≥

√
t− 1

C∗K2 log t

}
, {∀s ∈ Jk : a ∈ Sl : B̃a(s) ∩ Ba(s)}

, {∃s ∈ Jk : E2(s) ∩ {j(s) = i(s) ∈ Sl}}, Gn
]

≤ P
[
∃s ∈ Jk : m(s) = m̃(s) ∈ Scl ∪ {1}, j(s) ∈ Sl, i(s) = j(s),Ac

m(s)

,Bj(s), µ̃1(s) ≥ µ2 + ϵ,Gn

]
+ P

[
∃s ∈ Jk : m(s) = m̃(s) ∈ Scl ∪ {1}, j(s) ∈ Sl, i(s) = j(s),Am(s)

,Bj(s), µ̃1(s) ≥ µ2 + ϵ,Gn

]
. (37)

=: (E4) + (E5).
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The first equation holds since only saturated suboptimal arms have to be played on Jk whenm(s) =
m̃(s) is unsaturated or optimal arm, which makes j(s) = i(s) ∈ Sl. Let us denote the event in the
first term and the second term of RHS in (37) by (E4) and (E5), respectively.

From Lemma 9, we have

1[(E4)] ≤
∑
s∈Jk

∑
a∈Sl

∑
m∈Sl∪{1}

1[m(s) = m, i(s) = j(s) = a,Ac
m(s),Ba(s)]

≤
∑
s∈Jk

∑
a∈Sl

∑
m∈Sl∪{1}

1[Na(s) ≤ c∗m,aDm,a].

Similarly to the case of (D4), there exists some deterministic constant Nµ,A(ϵ)
′ such that for t ≥

Nµ,A(ϵ)
′, ∀(m, a) ∈ (Scl ∪ {1},Sl)

C∗
a log t ≥ c∗m,aDm,a,

where we replace 1 by m in c∗a and Da to define c∗m,a and Dm,a.
Further, (E5) can be decomposed by

(E5) = (E6) + (E7),

where

(E6) := P
[
∃s ∈ Jk : m(s) = m̃(s) ∈ Scl , j(s) ∈ Sl, i(s) = j(s),Am(s),Bj(s), µ̃1(s) ≥ µ2 + ϵ,Gn

]
(E7) := P

[
∃s ∈ Jk : m(s) = m̃(s) = 1, j(s) ∈ Sl, i(s) = j(s),A1,Bj(s), µ̃1(s) ≥ µ2 + ϵ,Gn

]
.

Note that on (E6), B̃cm(s) always holds since µ̃1 > µ2 + ϵ but m̃(s) ̸= 1 and (E5) is a subset of
the event we consider in Lemma 7, i.e., event (E6) implies the existence of s ∈ Jk such that

Nm(s) ≥ Nj(s)

dj(s)

d(µm + ϵ, µj − ϵ)
≥ C∗

dj(s)

d(µm + ϵ, µj(s) − ϵ)
log t.

From the definition of C∗ and saturation, it holds that for any m ∈ Scl

C∗
dj(s)

d(µm + ϵ, µj(s) − ϵ)
≥ C∗

mina̸=1 da
d(µ2 + ϵ, µK − ϵ)

≥ C ′
m log t.

As a result, we have

P[(E6)] = P[{∃s ∈ Jk,m ∈ Scl : B̃cm(s)} ∩ (E5)] ≤ 4(K − 1)

t3
.

Similarly to the case of (D5), if the event in (E7) occurs some s ∈ Jk for t such that t ≥ N ′,
C∗
a log t ≥ max{M,D1/da} for all a ∈ [K] \ {1}, then only B1(t) holds for s ≥ t holds, which

contradicts to the event Gn.
Therefore, for t ≥ N0 := max(Nµ,b, Nµ,A(ϵ)

′, NK , N
′), where NK in Lemma 16, it holds

(E2) ≤ KC∗ log t

(
C

√
t−1

C∗K2 log t +
10(K − 1)

t3

)
=: k(µ, b, n, t).
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Hence, there exists some constants CE(πj,µ, b, ϵ) <∞ such that

∞∑
T=1

∞∑
t=T+1

⌊
√
t⌋∑

n=1

(E1) ≤ N0 +
∞∑

T=N0+1

∞∑
t=T+1

6(K − 1)2

t2
√
t

+

∞∑
T=N0+1

∞∑
t=T+1

KC∗ log t

(√
tC

√
t−1

C∗K2 log t +
10(K − 1)

t2
√
t

)
≤ N0 + CE(πj,µ, b, ϵ). (38)

F.2.3. CONCLUSION

By combining (36) and (38) with (34), we obtain

∞∑
T=1

∞∑
t=T+1

P[N1(t) ≤
√
t, C(t)] ≤

∞∑
T=1

∞∑
t=T+1

⌊
√
t⌋∑

n=N1(T+1)

(D1) + (E1)

≤ N0 + CD(πj,µ, b, ϵ) + CE(πj,µ, b, ϵ)

=: C(πj,µ, b, ϵ) <∞,

which concludes the proof. ■

Appendix G. Proof of Theorem 3: Sample complexity

Here, we derive the upper bound on the sample complexity of BC-TE.
Before beginning the proof, we first provide a technical lemma provided in Garivier and Kauf-

mann (2016).

Lemma 18 (Lemma 18 in Garivier and Kaufmann (2016)) For every α ∈ [1, e2 ], for any two
constants c1, c2 > 0,

x =
α

c1

[
log

(
c2e

cα1

)
+ log log

(
c2
cα1

)]
is such that c1x ≥ log(c2x

α).

Next, we define a set of bandit instances S for any ϵ > 0 as follows:

S = S(ν, ϵ) := {µ′ : |µ′ − µ| ≤ ϵ},
where µ denotes the true mean reward vector. For any i ̸= 1, if µ′ ∈ S , we have the following
inequality:

∀w ∈ ΣK :
1

1 + ϵ
fi(w;µ) ≤ fi(w;µ′) ≤ (1 + ϵ)fi(w;µ). (39)

From the relationship in (21), (39) is equivalent to

∀w ∈ ΣK :
1

1 + ϵ
g(w;µ) ≤ g(w;µ′) ≤ (1 + ϵ)g(w;µ)

∀x ∈ [0, 1] :
1

1 + ϵ
ki(x;µ) ≤ ki(x;µ

′) ≤ (1 + ϵ)ki(x;µ)

∀z ∈ [0, 1] :
1

1 + ϵ
hi(z;µ) ≤ hi(z;µ

′) ≤ (1 + ϵ)hi(z;µ).



LEE HONDA SUGIYAMA LEE HONDA SUGIYAMA

Notice that that for any t ≥ TB , µ̂(t) ∈ S holds from the the definition of TB in (9).
Therefore, we can assume

1

1 + ϵ

z∗i
1− z∗i

≤ z∗i (µ
′)

1− z∗i (µ
′)

≤ (1 + ϵ)
z∗i

1− z∗i
(40)

1

1 + ϵ

zi
1− zi

≤ zi(µ
′)

1− zi(µ
′)

≤ (1 + ϵ)
zi

1− zi
. (41)

and for t ≥ TB and the definition of a challenger at round t, j(t) in (8),
1

1 + ϵ
min
a̸=1

fi(x;µ) ≤ fj(t)(x;µ) ≤ (1 + ϵ)min
a̸=1

fi(x;µ). (42)

Notice that (42) provides
1

1 + ϵ
min
a̸=1

ki(x;µ) ≤ kj(t)(x;µ) ≤ (1 + ϵ)min
i ̸=1

ki(x;µ). (43)

Since tfi(wt;µ) = (N1(t)+Ni(t))hi(z
t
i ;µ) holds from their relationship in (21) and zti =

wt
i

wt
1+w

t
i
,

(42) also implies that
1

1 + ϵ
min
i ̸=1

(N1(t) +Ni(t))hi(z
t
i ;µ) ≤ (N1(t) +Nj(t)(t))hj(t)(z

t
j(t);µ)

≤ (1 + ϵ)min
i ̸=1

(N1(t) +Ni(t))hi(z
t
i ;µ).

From the concavity of the objective function, we have the following result, whose proof is provided
in Section G.3.

Lemma 19 For any i ̸= 1, tfi(wt;µ) is non-decreasing with respect to t ∈ N.

Proof of theorem 3 We first introduce a positive increasing sequence (Gm)m∈N and let ψm be the
first round where tg(wt;µ) > Gm holds, which is defined as

ψm := inf{t ∈ N≥TB : tg(wt;µ) ≥ Gm}.
Notice that Lemma 19 ensures ψm ≤ ψm+1 for any m ∈ N since tg(wt;µ) = tmini ̸=1 fi(w

t;µ)
is non-decreasing.

For notational simplicity, g denotes the value of the objective function g(w;µ) at w = w
defined in (23). Then from (21)

∀i ̸= 1 : g = w1ki(wi/w1;µ) = (w1 + wi)hi(zi;µ). (44)

Here, we set G1 to satisfy
∀i ∈ [K] : Ni(TB) ≤

wi
g
G1. (45)

Then, the stopping time τδ can be written as

τδ = inf{t ∈ N : tg(wt; µ̂(t)) ≥ β(t, δ)}

≤ inf{t ∈ N≥TB :
tg(wt;µ)

1 + ϵ
≥ β(t, δ)}

≤ TB + inf

{
ψm :

1

1 + ϵ
Gm ≥ β(ψm, δ),m ∈ N

}
. (46)

To find the upper bound of the stopping time, we require the relationship between Gm and ψm. To
do this, we first derive the bounds on the number of plays Ni(t).
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G.1. Bounds on the number of plays

Here, we aim to derive the upper bounds on Ni(t) for t ∈ [ψm, ψm+1) and for any i ∈ [K].
For t ≥ TB , only m(t) = 1 occurs. Therefore, an arm i ̸= 1 is played either when TE occurs or

when j(t) = i and d(µ̂i(t), µ̂1,i(t)) ≥ d(µ̂1(t), µ̂1,i(t)) for t ≥ TB . Thus, if j(t) ̸= i holds for all
t ∈ [ψm, ψm+1), then

Ni(ψm+1) = Ni(ψm) +Mi,m,

where Mi,m denote the number of the arm i being played by TE during [ψm, ψm+1), which is

Mi,m =

ψm+1−1∑
t=ψm

1[Mc(t), i(t) = i].

The latter condition can be rewritten as j(t) = i and zti ≤ z∗i (µ̂(t)) from the definition of z∗i in (20).
For notational simplicity, we denote z∗i (µ̂(t)) and zi(µ̂(t)) by z∗i,t and zi,t, respectively.

(1) Upper bound for the second-best arm Firstly, let us consider the second-best arm j∗(ν),
which is assumed to be the arm 2 in this chapter. It should be noted that the second-best arm may
not be unique. Then let us define a partition of Qm := [ψm, ψm+1)

(Q1) :=

{
t ∈ [ψm, ψm+1) : N1(t) ≤

w1

g
Gm+1

}
(Q2) :=

{
t ∈ [ψm, ψm+1) : N1(t) >

w1

g
Gm+1

}
.

Then, we define ϵ1 = ϵ1(ϵ,Gm+1/Gm) > ϵ to be a constant satisfying

k2

(
(1 + ϵ1)

w2

w1

;µ

)
≥ Gm+1

Gm

g

w1

, (47)

Here, one can see that ϵ1 → 0+ as ϵ → 0+ and Gm+1

Gm
→ 1+ from (44). Then we will show that if

N2(t) ≥ N ′ = (1 + ϵ1)
w2
g Gm+1, then i(t) = 2 holds only when TE occurs.

(1-i) When t ∈ (Q1) In this case,

N2(t) ≥ N ′ = (1 + ϵ1)
w2

g
Gm = (1 + ϵ1)

w2

w1

w1

g
Gm

≥ (1 + ϵ1)
w2

w1

N1(t) ∵ t ∈ (Q1)

= (1 + ϵ1)
z2

1− z2
N1(t) by definition of w in (23)

= (1 + ϵ1)
z∗2

1− z∗2
N1(t) by definition of z in (22)

>
z∗2,t

1− z∗2,t
N1(t). by (40) and ϵ1 > ϵ

This implies that for t ∈ (Q1), if N2(t) ≥ N ′, then zt2 > z∗2,t holds. Therefore, only i(t) = 1
happens unless TE occurs.
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(1-ii) When t ∈ (Q2) From the relationship between fi and ki in (21), one can see that tfi(wt;µ) =
N1(t)ki(w

t
i/w

t
1;µ). Therefore, one can extend Lemma 19 to show that yki(c/y;µ) is non-decreasing

with respect to y ≥ 0 for fixed c > 0 and any i ̸= 1. Recall that the ki(x;µ) is a strictly increasing
function with respect to x > 0. Then we can obtain that

N1(t)k2

(
N2(t)

N1(t)
;µ

)
≥ N1(t)k2

(
N ′

N1(t)
;µ

)
≥ Gm

w1

g
k2

(
N ′ g

Gmw1

;µ

)
∵ t ∈ (Q2)

= Gm
w1

g
k2

(
(1 + ϵ1)

w2

w1

;µ

)
≥ Gm

w1

g

Gm+1

Gm

g

w1

by definition of ϵ1 in (47)

= Gm+1,

which contradicts the assumption t ∈ (Q2).

(1-iii) Conclusion Therefore, for any t ∈ Qm,{
N2(t) ≥ (1 + ϵ1)

w2

g
Gm

}
=⇒ {j(t) ̸= 2},

which directly implies that

N2(t) ≤ max

(
N2(ψm), (1 + ϵ1)

w2

g
Gm

)
+M2,m.

Here, from the definition of G1 in (45), N1(t) ≤ w1
g G1 holds for all t < ψ1, which implies that

N2(ψm) ≤ (1 + ϵ1)
w2
g Gm +M2,0. Therefore, for any t ∈ [ψm, ψm+1),

N2(t) ≤ (1 + ϵ1)
w2

g
Gm +M2(ψm+1)

where Mi(ψm+1) =
∑m

l=0Mi,l for any i ∈ [K].
Here, let use define a random variable MT =

∑T
t=TB

1[Mc(t)] =
∑K

i=1

∑
mMi,m, which

satisfies E[MT ] <∞ by Lemma 11. Then we can set Gm sufficiently large to satisfy

Gm ≥
g

ϵ
MT ,

which directly implies that
N2(t) ≤ (1 + ϵ1)

w2

g
Gm +

ϵ

g
Gm. (48)
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(2) Lower bound for the optimal arm For any t ∈ Qm, it holds that

Gm ≤ N1(t)min
i ̸=1

ki

(
Ni(t)

N1(t)
;µ

)
= min

i ̸=1
(N1(t) +Ni(t))hi(z

t
i ;µ) by (21)

≤ (N1(t) +N2(t))h2(z
t
2;µ)

≤ (N1(t) +N2(t))h2(z2;µ) by z2 = z∗2

=
N1(t) +N2(t)

w1 + w2

g. by (44)

Therefore, for t = ψm, the upper bound of N2(ψm) in (48) provides

N1(ψm) ≥
w1 + w2

g
Gm − (1 + ϵ1)

w2

g
Gm − ϵ

g
Gm.

Since N1(t) is non-decreasing from its definition, for any t ≥ ψm,

N1(t) ≥
w1

g
Gm − ϵ1

w2

g
Gm − ϵ

g
Gm. (49)

(3) Upper bound on the challenger arms Based on the results obtained in (1) and (2), we will
derive the upper bound of Nj(t)(t) for t ≥ TB . For t ∈ Qm, it holds that

Gm ≤ N1(t)min
i ̸=1

ki

(
Ni(t)

N1(t)
;µ

)
< Gm+1.

Since j(t) = argmini=1 fi(w
t; µ̂(t)), by using (43), one can obtain that

1

1 + ϵ
kj(t)

(
Nj(t)(t)

N1(t)
;µ

)
≤ min

i ̸=1
ki

(
Ni(t)

N1(t)
;µ

)
.

Then, by (49)

N1(t)min
i ̸=1

ki

(
Ni(t)

N1(t)
;µ

)
≥ 1

1 + ϵ
N1(t)kj(t)

(
Nj(t)(t)

N1(t)
;µ

)
≥ 1

1 + ϵ

Gm
g

(w1 − ϵ1w2 − ϵ)kj(t)

(
gNj(t)(t)

(w1 − ϵ1w2 − ϵ)Gm
;µ

)
,

which implies

kj(t)

(
gNj(t)(t)

(w1 − ϵ1w2 − ϵ)Gm
;µ

)
< (1 + ϵ)

Gm+1

Gm

g

w1 − ϵ1w2 − ϵ
.

This directly implies that

gNj(t)(t)

(w1 − ϵ1w2 − ϵ)Gm
< lj(t)

(
(1 + ϵ)

Gm+1

Gm

g

w1 − ϵ1w2 − ϵ
;µ

)
≤ (1 + ϵ2)

wj(t)

w1

,



LEE HONDA SUGIYAMA LEE HONDA SUGIYAMA

where li is the inverse function of ki defined in (19) and ϵ2 > ϵ1 is a constant such that ϵ2 → 0+ as
ϵ→ 0+ and Gm+1

Gm
→ 1+. Then, we have for any t ∈ Qm that

Nj(t)(t) < (1 + ϵ2)
wj(t)

g
Gm.

In other words, if there exist s ∈ Qm such that

Ni(t) ≥ (1 + ϵ2)
wi
g
Gm,

then only j(s) ̸= 1 occurs for t ∈ [s, ψm+1), which implies that such arm i will be played only
when TE occurs until ψm+1. Therefore, for t ∈ Qm

Ni(t) ≤ max

(
Ni(ψm, (1 + ϵ2)

wi
g
Gm

)
+Mi,m

≤ (1 + ϵ2)
wi
g
Gm +Mi(ψm+1)

≤ (1 + ϵ2)
wi
g
Gm +

ϵ

g
Gm.

(4) Upper bound on the optimal arm Here, let us assume that there exists t′ ∈ Qm such that
N1(t

′) ≥ (1 + ϵ)(1 + ϵ2)
w1
g Gm. If there exists no such t′, then one can directly obtain that

N1(t) ≤ (1 + ϵ)(1 + ϵ2)
w1
g Gm for all t ∈ Qm.

Since Nj(t)(t) < (1 + ϵ2)
wj(t)

g Gm holds from (G.1), then for any t ∈ [t′, ψm+1)

Nj(t)(t)

N1(t)
<

1

1 + ϵ

wj(t)

w1

=
1

1 + ϵ

zj(t)

1− zj(t)

≤
zj(t),t

1− zj(t),t
, by (41)

which implies that ztj(t) < zj(t),t ≤ z∗j(t),t. Since BC-TE plays the optimal arm 1 if zj(t),t ≥ z∗j(t),t,
only i(t) = j(t) is possible unless TE occurs until ψm+1. Therefore, for t ∈ Qm, it holds that

N1(t) ≤ max

(
N1(ψm), (1 + ϵ)(1 + ϵ2)

w1

g
Gm

)
+M1,m

≤ (1 + ϵ)(1 + ϵ2)
w1

g
Gm +M1(ψm+1)

≤ (1 + ϵ3)
w1

g
Gm +

ϵ

g
Gm,

where ϵ3 is a constant such that (1+ ϵ)(1+ ϵ2) = 1+ ϵ3. One can see that ϵ3 → 0+ as ϵ→ 0+ and
Gm+1

Gm
→ 1+.

(5) Conclusion In summary, for any t ∈ [ψm, ψm+1), the results in (1)–(4) imply that for any
i ∈ [K]:

Ni(t) ≤ (1 + ϵ3)
wi
g
Gm +

ϵ

g
Gm. (50)
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G.2. Sample complexity

From the upper bound on the number of plays for each arm in (50), for any m ∈ N,

ψm =
K∑
i=1

Ni(ψm) ≤
K∑
i=1

(1 + ϵ3)
wi
g
Gm +

ϵ

g
Gm

= (1 + ϵ3)
1

g
Gm +

Kϵ

g
Gm,

which implies that
gψm

(1 + ϵ3 +Kϵ)
≤ Gm.

Therefore, the stopping time τδ in (46) can be written as

τδ ≤ TB + inf

{
ψm :

1

1 + ϵ
Gm ≥ β(ψm, δ)

}
≤ TB + inf

{
ψm :

1

1 + ϵ

gψm

(1 + ϵ3 +Kϵ)
≥ β(ψm, δ)

}
≤ TB + inf

{
ψm :

gψm

(1 + ϵ4)
≥ log

(
Ctα

δ

)}
,

for some ϵ4 > ϵ3 satisfying ϵ4 → 0+ as ϵ→ 0+ and Gm+1

Gm
→ 1+ and constants C and α ∈ [1, e/2]

considered in Section 2.3. Then, by Lemma 18

τδ ≤ TB +
α

g
(1 + ϵ4)

[
log

(
(1 + ϵ4)

α Ce

δgα

)
+ log log

(
(1 + ϵ4)

α C

δgα

)]
.

Therefore, by taking expectations, we can obtain that

lim sup
δ→0

E[τδ]
log(1/δ)

≤ α(1 + ϵ4)

g

since E[TB] is finite from Theorem 2. Letting ϵ→ 0 and setting Gm+1

Gm
→ 1 conclude the proof. ■

G.3. Proof of Lemma 19: Non-decreasing objective function

Proof of Lemma 19 From the relation with fi and hi in (21), we can rewrite the function tfi(wt;µ)
as

tfi(w
t;µ) = (N1(t) +Ni(t))hi

(
Ni(t)

N1(t) +Ni(t)
;µ

)
.

Recall that hi(z;µ) is a concave function with respect to z ∈ [0, 1] and hi(0;µ) = hi(1;µ) = 0
for any i ̸= 1. For any i ̸= 1, let us consider three possible cases (1) i(t) = 1, (2) i(t) = i, and (3)
i(t) /∈ {1, i}.
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(1) When the optimal arm is played When i(t) = 1 holds, for any i ̸= 1

(t+ 1)fi(w
t+1;µ) = (N1(t) +Ni(t) + 1)hi

(
Ni(t)

N1(t) +Ni(t) + 1
;µ

)
.

From the concavity of hi, we obtain that

hi

(
Ni(t)

N1(t) +Ni(t) + 1
;µ

)
= hi

(
Ni(t)

N1(t) +Ni(t)

N1(t) +Ni(t)

N1(t) +Ni(t) + 1
;µ

)
≥ N1(t) +Ni(t)

N1(t) +Ni(t) + 1
hi

(
Ni(t)

N1(t) +Ni(t)
;µ

)
+

1

N1(t) +Ni(t) + 1
hi(0;µ),

which implies

(N1(t) +Ni(t) + 1)hi

(
Ni(t)

N1(t) +Ni(t) + 1
;µ

)
≥ (N1(t) +Ni(t))hi

(
Ni(t)

N1(t) +Ni(t)
;µ

)
= tfi(w

t;µ).

This concludes the case when i(t) = 1.

(2) When the suboptimal arm is played When i(t) = i holds,

(t+ 1)fi(w
t+1;µ) = (N1(t) +Ni(t) + 1)hi

(
Ni(t) + 1

N1(t) +Ni(t) + 1
;µ

)
.

By the concavity, again, we obtain that

hi

(
Ni(t) + 1

N1(t) +Ni(t) + 1
;µ

)
= hi

(
Ni(t)

N1(t) +Ni(t)

N1(t) +Ni(t)

N1(t) +Ni(t) + 1
+

1

N1(t) +Ni(t) + 1
;µ

)
≥ N1(t) +Ni(t)

N1(t) +Ni(t) + 1
hi

(
Ni(t)

N1(t) +Ni(t)
;µ

)
+

1

N1(t) +Ni(t) + 1
hi(1;µ)

=
N1(t) +Ni(t)

N1(t) +Ni(t) + 1
hi

(
Ni(t)

N1(t) +Ni(t)
;µ

)
,

which concludes the case when i(t) = i.

(3) When the other suboptimal arms are played When i(t) /∈ {1, i}, N1(t + 1) = N1(t) and
Ni(t+ 1) = Ni(t+ 1) holds. Therefore, (t+ 1)fi(w

t+1;µ) = tfi(w
t;µ) holds, which concludes

the case when i(t) ̸= 1, i. ■
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