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Abstract

CT scans significantly improve analytical competencies but uses X-Rays which will produce
ionizing radiation that bring higher radiation to the living tissues. Thus, optimization of
CT radiation dose has a significant concern to lower the health risks. Many manufacturers
have done a greater contribution by developing technologies to reduce dosage by maintain-
ing image quality by adding noise reduction filters, automatic exposure control, and using
many iterative reconstruction algorithms. Image reconstruction algorithms play a vital role
in maintaining or improving image quality in reduced-dose CT. The present research work
combines the state-of-the-art reconstruction technique Simultaneous Algebraic Reconstruc-
tion Technique (SART) with a Residual U-Net network to generate images from limited
number of sinograms. The proposed model is trained using sinograms corresponding head
and neck and head CT images of 10 patients. The proposed model predicted superior di-
agnostic quality images with max PSNR of 70.23 and Structural Similarity Index Measure
(SSIM) of 0.99. Thus the proposed model, SART-Res-Unet, ensures a very low radiation
exposure to a patient during the repeated CT imaging sequence, which is an inevitable
part of radiotherapy.
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1. Introduction

Computed tomography is an imaging procedure that uses rotating X-ray machines and
computers to create cross-sectional images of human body. The images produced by this
reconstruction are more comprehensive than X-Ray images Lifeng YuXin Liu and Ramirez-
Giraldo (2017). They give a wide-ranging view of soft tissues, blood vessels, and bones
in various parts of the body. The image slices can also be stacked together to produce a
3D image of any anatomical area of the human body. Medical experts use CT images to
diagnose hemorrhages, joint fractures, tumors, and blood clots. CT scanner has a pivoting
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X-beam source that discharges limited X-ray beams that pass through the patient. The dis-
charging beams are then verified and recorded by identifiers. Finally, image reconstruction
algorithms are employed to generate the CT image Cynthia H. McCollough (2017).

Nowadays there is a significant increase in the use of CT. In any case, it works on a
higher radiation portion than ordinary indicative x-rays. The radio-sensitive tissues are
chiefly situated inside the fringe vision of typical chest, stomach, and pelvic regions. A
typical stomach assessment portion is in the range of 10mSv and 20mSv Lifeng YuXin Liu
and Ramirez-Giraldo (2017) while bosom glandular portion is 20mSv during a pneumonic
course CT angiogram. Most patients are exposed to various assessments over the span
of their treatment which expands the aggregate dose. Exposing to ionizing radiation is
disrupting due to its harmful nature to healthy living tissues. Radiation exposure can be
brought down to greater extent by restricted scanning. Nonetheless, this results in noise
generation and subsequent image distortion.

Filtered Back Projection (FBP) is the traditional methodology used for CT image gener-
ation, but it relies on having the complete projection data. It is highly desirable to generate
admirable quality images with limited projection data available. To achieve this, the Simul-
taneous Algebraic Reconstruction Technique (SART) Shailendra Tiwari (2017) can used.
SART generates images of desired quality and thus can reconstruct images that can further
be enriched by passing to a suitable feature preserving technique such as deep learning.

2. Related Works

Limited angled scanning has been of interest for a long time because it is rapid and safer
compared to the other conventional methods. Sidky et al. Sidky et al. (2009) proposed
iterative methods that curtails the error in the image for under-sampled projection data.
Jianhua et al. Luo et al. (2012) attempts to convert the ill-posed sparse reconstruction
scenario into a well-defined one based on the S-transform. Researchers were also interested
in compressed sensing approaches or other sparsity-inducing penalties under a data fidelity
term. Such regularization methods were, however, computationally expensive.

As deep learning approaches gained popularity, Kang et al. Kan et al. (2016) was a
pioneer in testing deep convolutional neural networks for low dose CTs and to show that
directional wavelets incorporated with deep CNN has potent in suppressing noise. Han
et al. Han et al. (2016) analyzed the advantages of residual learning in sparse CTs and
shows that the multiscale U-net stands out as the most effective. Jin et al. Jin et al. (2016)
proposed FBPConvNet where they demonstrated the performance of a combination of FBP
and CNN in limited-angle reconstruction for parallel beam X-ray Computed Tomography.
Hu Chen et al. Chen et al. (2017) cascaded an autoencoder and deconvolution network
with skip connections into the residual encoder-decoder CNN with impressible results. The
numerous works focusing on U-Net like architectures are backed by the fact that the streak
artifacts are non uniformly distributed. Thus CNN with its wide receptive field are apt in
capturing the essential feature maps.

Analytical methods have been repeatedly proved to be incapable of sparse reconstruc-
tion. Iterative method such as SART is in frontier in low dose CT as theorized by Wang
et al. Wang et al. (2020). The definitive merging of SART and U-Net that they have
demonstrated are noteworthy. The reconstruction of images from projections has been an
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active area of research owing to its indispensable contribution to accurate medical diagnosis.
However, the radiation exposure that a patient has to go through regularly could lead to
terminal illnesses. The radiation dosage can be kept at a minimum by limiting the number
of projections taken while scanning. In low-dose Computed Tomography, extreme artifacts
usually come about due to photon starvation, beam hardening, etc., which degrade the di-
agnosis’s reliability. As the number of angles considered decreases, the image becomes more
distorted. Therefore, it is of interest to build a sophisticated method that can retain the
image’s quality in low-dose CT. The method we put forward incorporated attention gates
that could urge the network to fixate on relevant features in the image. To the best of our
knowledge this the first of the kind experiments in incorporating attention gates to U-Net
for image reconstruction in low dose CT.

3. Materials and Methods

3.1. Datasets

The dataset has been collected from MVR Cancer Center and Research Institute, Calicut,
Kerala, India. The dataset contains sinograms corresponding to CT scans of different
anatomical areas of 10 patients. The corresponding CT images in DICOM format are
also collected as ground truth to validate the proposed model. These are the de-identified
CT images with no patient specific details. The input to the proposed model is a set of
sinograms from limited-angle projections of the organ under consideration. The CT scans
have resolutions of 512×512 pixels with varying pixel spacing and slice thicknesses between
1.25-5 mm. The model is trained separately for each organ since the number of training,
validation, and testing samples vary depending on the annotations available in the CT scan.
Also, the CT scans with more than 20 slices in the ground truth for the required organ only
are considered in the study. Training, validation, and testing data split is in the ratio of
70:10:20 for all the organs. Sample input sinograms are given in Fig 1 and the output is
the reconstructed image of higher quality.

Figure 1: Input and Output images
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3.2. Background

Image reconstruction in CT can be represented as an ill-posed problem as given in equation
(1).

Ax = b (1)

where A is the CT imaging matrix, which has M ∗N elements.
CT image reconstruction is to acquire the unknown variable x from the known imag-

ing grid A, and the projection information b which is accessible using the equation (1).
Here, x = (x1, x2, ...., xN)

T and b = (b1, b2, ..., bM)T, which address the coefficients of dis-
crete reconstructed image and the projection information gathered by the X-ray detectors.
Fourier slice theorem, the conventional technique for image reconstruction is done using
back-projection. Filtered Back-projection is the most famous algorithm utilizes the Fourier
slice theorem for image reconstruction G. Wang and Fessler (2018). In any case, FBP ac-
cepts that the complete projection information is available in order to perfectly recontsruct
the image.

3.3. Fan beam vs Cone beam CT imaging

Fan-beam CT (FBCT) scanner is a traditional CT that emanates a fan type X-ray beam
and is identified by a linear detector array. Fan-beam scanners utilize a bended locator
surface and turn around the subject’s body on different occasions, obtaining X-ray line
projections in the full 360° range whereas Cone-beam CT (CBCT) scanner emanates a cone
type X-ray beam which is detected by flat plated sensor. Research shows that fan beam
CT produces high resolution images than that of cone beam CT frameworks. A schematic
representation of the image formation in FBCT and CBCT Yavuz et al. (2017) is given in
Figure 2.

Figure 2: Fan beam and Cone beam scanning procedure

In radiotherapy, CBCT is primarily used for accurate patient positioning and FBCT is
employed for treatment planning for real radiation delivery.
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3.4. Simultaneous Algebraic Reconstruction Technique (SART)

Simultaneous Algebraic Reconstruction Technique (SART) Shailendra Tiwari (2017) is an
iterative strategy with a benefit of applying error correction for beams in a projection
simultaneously with the image reconstruction process instead of the conventional sequen-
tial image back-projection pattern. This altogether lessens the noise and thus is a better
approach. Iterative update in the SART technique is represented as given in equation (2).

f
(n+1)
j = f

(n)
j + β

1

a+j

M∑
i=1

aij

ai+
(bi −Aif

(n)) (2)

where n is the number of iterations, β is the relaxing factor. At this point, bi − Aif
(n)

is the difference between the actual projection data and the simulated projection data. As
the iterations increase, (bi −Aif

(n)) → 0 and f (n) → f∗, where f∗ is the label image.
Down-factor states the number of divisions to be made from 0 to 360 degrees before

generating the sinograms (line projections). If down-factor is 3, then angle of projections
will be divided into 3 parts which is [0, 180, 360]. Similarly for down-factor 5, the angle of
projections will be [0, 90, 180, 270, 360]. As down-factor increases, the number of projections
will be increased. So, for limited angled tomography, the number of projections should be
reduced which in turn says that down-factor should be reduced.

3.5. U-Net

U-Net Ronneberger et al. (2015) is the state of art architecture that was initially used for
image segmentation. It predicts a class for each pixel. Recent works have expanded the
application of U-Net in several fields. It has a wide field of view which aids it in capturing
local and global features in an image. Attention gates consolidated into U-Net can highlight
reactions in irrelevant image backgrounds while zeroing in on the salient components of the
image. The scaling of the input image with the attention units gives prominence to the
required region of interest (ROI) of the image.

U-Net has a symmetric design, comprising of two significant parts – the contracting path
and the expansive path. The contracting path puts together broad convolutional process
i.e., notices the standard design of convolutional network. The broad way is comprises of
modified 2D Convolutional layers. U-Net utilizes numerous featured maps at each layer
which expands the expressive power of network. The contracting way sticks to the ordinary
plan of a convolutional network. It incorporates the consecutive usage of two 3x3 convolu-
tions without padding, extremely one of which followed by a Rectified Linear unit(ReLU)
Olaf Ronneberger (2015) activation and a 2x2 max pooling layer for down-sampling. A
skip association is added between the levels which reduces the information loss due to
downsampling and thus speeds up the feature learning process.

3.6. Residual U-Net

ResU-Net coordinates residual modules and attention gates with a primitive U-Net design,
where a stream of gate units are added into the skip connection for featuring notable ele-
ments while disambiguating non-relative and noisy features. ResU-Net not just concentrates
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plentiful semantic data to enhance the capacity of component learning, yet additionally fo-
cuses on the extensive details in the scanned images. The hierarchical network consists of
three cascaded convolution layer at each level followed by non-linear activation. Batch nor-
malization and Parametric ReLU as activation function are applied after every convolution
to relieve the inward covariate shift as depicted in Fig 3. The resultant image is down-
sampled by max-pooling channels of dimension 2x2 with padding. The number of filters
is multiplied at each level beginning from 32 to 1024. The model will be tested with the
regularization method as L1 standardization, L2 standardization, and Dropout. Adding a
dropout of 0.5 at each level helps avoiding overfitting.

Figure 3: Residual U-Net architecture

The residual block in the architecture helps to learn deeper learning networks whereas
the attention gates are consolidated during skip connections to highlight salient features that
are gone through the skip connections But the time taken for training the ResU-Net is more
because of multiple parameters are considered to train and segment the sparse reconstructed
image prominently. The attention gate goes before the concatenation operation to guarantee
that appropriate activations are merged.

The attention gate works as follows: Convolutions are applied to the image after of
upsampling and the corresponding output from the contracting layer. Later, these convo-
lution results are then added together and a non-linear activation applied. This is trailed
by another convolution layer and sigmoid activation. The initial layer which is obtained
from the below layer is then multiplied with the resultant filter. The gradients originated
from the background are down-weighted during the backpropagation. This makes the model
parameters in shallower layers to be updated primarily based on spatial regions that are
critical to a given task.

Radiation dosage of CT scan can be lowered by limited scanning. However, this results
in image distortion and noise. To reconstruct the high-quality image, we need to develop
image reconstruction algorithms combining highly efficient feature extraction techniques
with limited angle projection data. Image reconstruction generally affects the quality of
images and thus on radiation portion. For a given radiation dosage, it is desirable to
reproduce images with the most minimal conceivable commotion without sacrificing image
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precision and spatial resolution. Reconstructions that further develop image quality can
be converted into a decrease of radiation portion since images of a similar quality can be
reconstructed at a lower dosage.

In the present work, we propose a hybrid architecture, for CBCT image reconstruction
from limited number of X-ray projections. The first module is based on SART, which
generates an image from limited angle projections. The second module is a U-net with
residual units, which produces a superior quality CBCT image from the output of the
first module. Hence, the low quality CBCT image is enhanced so that it can achieve a
comparable diagnostic quality with the corresponding FBCT image.

3.7. Proposed SARTU-net model

The primary aim of the current research work is to develop a deep learning model which can
reconstruct FBCT images of diagnostic quality from limited angle projections (sinograms).
Workflow diagram of the propsoed model is given in Fig 4.

Figure 4: Workflow diagram of the proposed model

Initially, line projections (sinograms) from FBCT images are taken with a down-factor
80. This limited angled sinusoidal projection data is given as input to SART method to
generate sparse reconstructed images. Now, these reconstructed images are used to train the
ResU-Net architecture for generating superior quality images. The attention gate in ResU-
Net highlights the salient features and reduces the irrelevant and noisy feature responses of
FBCT images for better image reconstruction.

3.8. Evaluation Metrics

Root Mean Square Error (RMSE)

RMSE measures the average squared difference between the input and ground truth images.
Ideally, the error should be minimum. The MSE between two images X and Y is given by
equation (3).
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MSE(X,Y ) =

∑D
i=1(Xi − Yi)

2

N
(3)

where Xi and Yi are the pixel intensities and N is the total number number of pixels.

Peak Signal Noise Ratio (PSNR)

PSNR estimates the quality of the images as given in equation (4).

PSNR(X,Y ) =
10 log10(max(max(X),max(Y )))2

X − Y 2 (4)

where X is the reconstructed image, Y is the ground truth image.

Structural Similarity Index (SSIM)

SSIM is used to measure the structural similarity between the reconstructed image and the
label image, is defined as in equation (5).

SSIM(X,Y ) =
(2µY µY + C1) + (2σXY + C2)

(µ2
X + µ2

Y + C1)(σ2
X + σ2

Y + C2)
(5)

whereX and Y are the mean intensity values and σX , σY denote the standard deviations,
and σXY is the covariance. As the training proceeds, the images tend to become similar
and thus the SSIM value tends to become 1.

4. Results and Discussion

The experiment was conducted on Google Colab which provides a single-core hyperthreaded
Xeon Processor at 2.2Ghz. It provides a RAM of 12GB and Disk space of 64GB. The
training was done with the help of a GPU which comes with Colab and GPU resource
provided. The GPU of Colab has a Tesla K80 graphics card consisting of 2496 CUDA cores
and a 12GB GDDR5 VRAM. The GPU from resource provided has 64GB GDDR5 VRAM.
The proposed network was built on Tensorflow v2.

The proposed technique has precisely two phases:

• Phase 1, to generate the sparse reconstructed images from sinogram using limited
angle projection data, employing SART.

• Phase 2, to increase image resolution of these generated low quality sparse images, a
Res-Unet model is built and trained.

Increase in downfactor can generate good quality images from sinograms which means
large amount of radiation exposure. But the main purpose of the proposed methodology
is to reduce the exposure to radiation. Figure 5 shows the results CT images of different
downfactors. The figure 5 represents sparse reconstructed images from sinograms with
downfactor 40, 80, 150 using SART algorithm. The images with downfactor 40 will have
lower quality images when compared to that of images with downfactor 150. Downfactor
represents the angle at which sinograms are created and in turn sparse reconstructed images.
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Figure 5: The reconstructed results of head and chest images comparing with original CT
images at downfactor of 40, 80, 150 respectively

Patient ID MSE PSNR SSIM

Patient 1 0.000796 37.01 0.688
Patient 2 0.000797 37.02 0.656
Patient 3 0.000842 36.79 0.637
Patient 4 0.000811 36.95 0.700
Patient 5 0.000795 37.02 0.714
Patient 6 0.000795 37.02 0.733
Patient 7 0.000803 37.00 0.694
Patient 8 0.000798 37.01 0.689
Patient 9 0.000797 37.02 0.676
Patient 10 0.000797 37.01 0.648

Table 1: Evaluation metric results after the SART algorithm

Time taken to sparsely reconstruct 1 patient datset is around 1 hour for a downfactor of
80. If the downfactor is increased, time taken to generate results will be increased as well
but in turn increase the quality of images.

Evaluation metrics MSE, PSNR and SSIM are calculated for these images after SART
algorithm is computed as reported in Table. 4. Higher the SSIM and PSNR values, greater
the image resolution matches with original images.

Sparse images generated from the datasets of 10 patients with downfactor 80 are taken
as feasible images for the 2nd phase. To increase this image resolution, we train a ResNet
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model by dividing the given dataset as training, validation and testing. The proposed
SART-Res-Unet is trained for 40 epochs. Figure 6 represents the graph of PSNR and SSIM
values of training data.

Figure 6: a) PSNR b) SSIM

MSE and PSNR values during the training and validation phases are shown in Fig. 7.
The predicted DICOM images are giving the psnr accuracy till 69.5 for downfactor 80

which is almost double the psnr value of the low quality sparse images that are reconstructed
using SART algorithm. Figure 8 shows the difference of predicted CT scan image from
original image and the sparse image.

Figure 9 is the predicted results for downfactor 40 which gives the psnr value till 44. As
the number of projections are reduced to 40, resultant predicted image may not have the
quality as good as that of Figure 8.

The random sparse reconstructed images are taken and tested to generate the resultant
DICOM images to increase the quality of the image. PSNR value is calculated for the test
data and plotted the graph. Increase in quality of image will increase the PSNR value. Table
4 and Table 4 shows the evalution metrics PSNR and SSIM. These tables are estimated
from random prediction results for number of projections of 80 and 40. In Table 4, the
maximum PSNR value is 70.2302 and the maximum SSIM is 0.9991 which is almost double
the PSNR value estimated before CNN model. Similarly, the Table 4 has the PSNR value
of 44.5063 and SSIM value of 0.7876.

Figure 10, is showing the quality of image before training the Residual U-Net Model
which ranges from 26 to 27 for downfactor 40. After training the CNN model, the PSNR of
the image has been increased to 44 as described in Table 4 which is almost double of sparse
reconstructed image.
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Figure 7: a)MSE b) SSIM of training and validation data

Figure 8: a)Ground Truth b) Input c) Predicted images of head and chest CT scans for
downfactor 80

Figure 11 represents the graph of difference between final predicted values and the low
quality DICOM image values for a downfactor of 80. Green line says the predicted data
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Figure 9: a)Ground Truth b) Input c) Predicted images of chest CT scans for downfactor
40

PSNR SSIM

67.0134 0.9954
70.2302 0.9923
69.2678 0.9912
61.1295 0.9945
62.1233 0.9987
65.9876 0.9965
61.8912 0.9912
62.3535 0.9899
67.7324 0.9991
64.9873 0.9901

Table 2: Downfactor of 80

PSNR SSIM

40.7989 0.7098
40.1362 0.7123
44.5063 0.7234
42.1568 0.7398
42.6461 0.703
41.7341 0.7304
41.6973 0.7656
42.0681 0.7876
43.8478 0.7273
40.4101 0.7176

Table 3: Downfactor of 40

PSNR values are ranging from 60 to 69.5 for the tested images and blue line are the values
before training and testing the data with Residual U-Net Architecture.

When the angle of projections are reduced to 40, the psnr value will be reduced because
of image quality. As the Figure 12 shows the difference in accuracy for the images before
and after the CNN model for projection angles as 40.

Fig. 13 and Fig. 14 are about the zoomed CT image which shows the quality of image
after training the ResU-net model for downfactor 80 and downfactor 40 respectively. The
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Figure 10: PSNR of Predicted and Sparse Reconstructed images for downfactor 80

Figure 11: PSNR Graph of Predicted and Sparse Reconstructed images for downfactor 80

comparison of input image and predicted image is depicted based on ground truth. The
quality of the predicted image is highly increased which is almost near to the ground truth.
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Figure 12: PSNR Graph of Predicted and Sparse Reconstructed images for downfactor 40

Figure 13: Zoom-In CT image of head section for downfactor 80

Figure 14: Zoom-In CT image of chest section for downfactor 40

5. Conclusion and Future Work

The impending risk of radiation exposure has driven the research to develop proficient
methods of image reconstruction from sparse view CT using regularization methods to
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intellectual networks. The procedure put forward in this paper would show that the incor-
poration of attention gates in the U-Net has positive pay off in CT image reconstruction.
With more adaptable projection data and admittance to high processors, the exploration
can be taken forward to dig further into the potential outcomes of tuning the profound
learning procedures to perfect reconstruction. The time taken by the model can be taken
as a boundary for assessment. The venture is expected to be saved open source for future
examination.
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