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Abstract

Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models
to provide high-quality personalized recommendations. Training data used for modern
recommendation systems commonly includes categorical features taking on tens-of-millions
of possible distinct values. These categorical tokens are typically assigned learned vector
representations, that are stored in large embedding tables, on the order of 100s of GB.
Storing and accessing these tables represent a substantial performance burden.

Our work proposes MEM-REC, a novel alternative representation approach for embed-
ding tables. MEM-REC leverages Bloom filters and hashing methods to encode categorical
features using two cache-friendly embedding tables. The first table contains raw embeddings
(i.e. learned vector representation), and the second table, which is much smaller, contains
weights to scale these raw embeddings to provide better discriminative capability to each
data point. We provide a detailed architecture, design and analysis of MEM-REC addressing
trade-offs in accuracy and computation requirements. In comparison with state-of-the-art
techniques MEM-REC can not only maintain the recommendation quality and significantly
reduce the memory footprint for commercial scale recommendation models but can also
improve the embedding latency. In particular, based on our results, MEM-REC compresses
the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x
faster embeddings while achieving the same AUC as that of the full uncompressed model.

1. Introduction

Personalized recommendation systems are at the heart of a wide range of applications,
including online retail, content streaming, search engines, and social media. The accuracy of
these models has a significant business and monetary impact (Desai et al., 2021), The most
accurate modern systems are typically based on large deep neural networks, which account
for a significant use of computational resources. At Facebook, for example, up to 72% of
data-center Al inference cycles are devoted to recommender systems (Ke et al., 2019).
Deep learning recommendation models such as Facebook’s “DLRM” !, are trained on
a mix of both numeric and categorical features. The categorical features can take on an
extremely large number of possible values (easily in the hundreds of millions), which makes
representing them a burdensome proposition. A typical design assigns each possible feature

1. DLRM: An advanced, open source deep learning recommendation model, URL:
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model
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value one, or more, dense vector representations, called "embedding,” which are stored in a
large table and tuned during the learning process.

When the cardinality of the categorical features is high, embedding tables typically
require substantial amounts of memory. Consequently, embedding table lookup and data
operations are the main bottleneck during training and inference for these models (Ke
et al., 2019; Kalamkar et al., 2020). The sheer size of these tables renders traditional
acceleration techniques like prefetching, dataflow, and caching completely ineffective (Gupta
et al., 2020b). Furthermore, embedding operations have orders of magnitude lower compute
intensity (Flops/Byte) than fully connected layers (Ke et al., 2019).

As a result, there has been a substantial amount of research attention on improving the
efficiency of embedding tables. One line of work has focused on compressing embedding
tables using techniques like matrix factorization and hashing (Shi et al., 2020; Ginart et al.,
2021; Desai et al., 2021; Liu et al., 2021; Beloborodov et al., 2022). An alternative approach
is based on constructing space-efficient representations of the input data itself. The basic
idea is to map a sparse categorical input z € {0,1}™, where m is the size of the categorical
alphabet, to a new representation ¢(x) € {0,1}%, where d is (hopefully) much less than m,
thereby allowing one to reduce the number of embeddings that need to be stored. We here
investigate a simple, yet remarkably powerful, technique for constructing the map ¢ based
on a set of Bloom filters.

While prior work has also considered similar architectures for this purpose (Serra and
Karatzoglou, 2017), these approaches have been unable to maintain an acceptably high level
of predictive accuracy while simultaneously providing low memory use (Kang et al., 2021).
Our work proposes a new technique, called MEM-REC, that uses a dual encoding process
for categorical inputs. The first encoder represents a high-dimensional categorical input as a
low-dimensional binary string using a Bloom filter. To mitigate potential loss in accuracy
from hash-collisions in the Bloom filter, we introduce a second encoder that re-scales the
embeddings in a data-dependent fashion. Our dual encoders can construct embedding
representations efficiently “on-the-fly” using hashing without the need to maintain any
explicit mapping between symbols in the alphabet and offsets in an embedding table.

In this work, focusing on the widely-used DLRM model for recommender systems, we
evaluate MEM-REC architecture as an efficient alternative embedding table representation.
Our technical contributions are as follows:

e We present a novel algorithm for encoding large-scale embedding tables using a dual
Bloom encoding approach to generate memory-efficient embeddings.

e We show that even under relatively strict constraints on memory size, MEM-REC can
maintain or improve the recommendation quality of commercial-scale DLRMs.

e Moreover, we show that MEM-REC can achieve better model size reduction than the
state-of-the-art techniques and the compressed embedding tables can fit in the last
level caches (LLC) of modern server class hardware. In particular, MEM-REC reduces
the MLPerf Criteo TeraByte DLRM model size by 2900x with no loss in AUC.

e We provide detailed performance characterization of MEM-REC’s embedding on
a server class CPU system. We show that MEM-REC can alleviate the memory
bandwidth bottleneck of the embedding workload and can perform up to 3.4x faster
embeddings than the DLRM baseline.
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Figure 1: DLRM Recommendation Pipeline. ~ Figure 2: Architecture of the MEM-REC
An overwhelming majority of the trainable — Model. Irrespective of the number of categor-
parameters in DLRM come from embedding  ical features, the MEM-REC model creates
tables. only two embedding tables with size scaling
just logarithmically in the alphabet size.

The rest of this paper is organized as follows; Section 2 covers background on DLRM
and related work. In Section 3.1, we describe our categorical feature encoding approach.
The architecture details of the proposed model are covered in Section 3. In Section 4, we
present an experimental evaluation of our model. We conclude the paper in Section 5 and
highlight possible future work.

2. Background and Related Work
2.1. DLRM

We focus our approach around the DLRM model developed by Facebook (Naumov et al.,
2019), and summarized in Figure 1, which is the de-facto industry standard, and the
reference benchmark for recommendation systems (mlp, 2022; Acun et al., 2021). DLRM is
structurally similar to other state-of-the-art models. As noted above, recommender systems
typically rely on a mix of numeric and categorical features, which must be embedded into a
common vector representation that can be ingested by a deep neural network. Like most
architectures, DLRM maintains two separate encoding pipelines, which are subsequently
merged to generate a composite representation of both feature types.

The entire architecture (including the embedding tables) is trained end-to-end using
back-propagation. The embedding tables contain an overwhelming majority (more than 99%
for the Criteo Kaggle 2, Avazu ? and Criteo Terabyte* datasets) of the trainable parameters
in the model. Thus, reducing the number of trainable parameters in the embedding tables
represents a high-impact area to extract efficiency gains, and is the primary focus of our
architecture.

2. Criteo kaggle dataset, URL: https://www.kaggle.com/c/criteo-display-ad-challenge

3. Avazu mobile advertisement dataset, URL: https://www.kaggle.com/competitions/avazu-ctr-
prediction/data

4. Criteo 1tb click logs dataset, URL: https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
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2.2. Related Work

One way to mitigate the inefficiencies caused by the memory-heavy embedding tables is
to use hardware accelerators. The primary consideration in designing such an accelerator
is to reduce data movement between the memory and the compute units. Works like Ke
et al. (2019) use near-memory-processing to solve the memory bandwidth bottleneck by
bringing compute close to the memory. While these hardware solutions improve efficiency
and alleviate the memory bandwidth to some extent, they still suffer from the high storage
space required for storing these large embedding tables, the cost of specialized hardware,
and less flexibility in comparison to algorithmic solutions.

Algorithmic techniques to reduce the size of embedding tables in DLRM have received
substantial research attention in recent years. Broadly speaking, we can divide these works
into two categories: (1) embedding compression, and (2) representation compression.

2.2.1. EMBEDDING COMPRESSION

Embedding compression techniques approach the problem by reducing the storage require-
ments of the embedding tables. The simplest such approach in this category is to use
the standard “hashing trick,” which maps embeddings from the full embedding table into
a smaller “compressed” embedding table (Chen et al., 2015). The disadvantage of this
approach is that multiple “full” embeddings, because of hash collisions, are mapped to the
same compressed embedding, and hence, some tokens are indistinguishable which degrades
the model accuracy. To address this limitation, Shi et al. (2020) proposed to partition the
embedding table using complementary partitions, and then apply compositional operators
on vectors read from each partitioned table to produce the final embeddings. Work in Yin
et al. extends this idea and used tensorization techniques to decompose large embedding
tables lookups into a sequence of matrix products of reduced dimensions, thus trading off
memory capacity and bandwidth with computation. Another work, Ginart et al. (2021)
exploits the observation that frequencies of categorical values are often skewed, and therefore,
adapt the embedding dimensions according to the frequency of categorical values. Desai
et al. (2021) uses a locality sensitive hashing (LSH) function instead of random hashing so
semantically-related embeddings (commonly appearing together in the data) are more likely
to share a particular dense representation, and hence improve on the accuracy degradation
due to hash collisions.

In this category, one of the recent works ROBE (Desai et al., 2022) extended the basic
idea of Chen et al. (2015) by hashing chunks/blocks of the embeddings (instead of individual
tokens), this leads to an improved overhead and better accuracy which allowed for large
compression ratio when compared to Chen et al. (2015). However, ROBE suffers from the
drawback that once a block size is defined then ROBE’s embedding table grows linearly with
the number of blocks (i.e. proportional linearly with the dataset size); hence, a block size
dictates a fixed compression ratio irrespective of the data. As a result, this makes fitting a
commercial-scale embedding table in a server class hardware last level caches (LLC) difficult.
MEM-REC, differs by using a two-stage architecture, the first stage, similarly uses hashing,
but instead uses multiple hash functions to define the mapping between categorical tokens
and a set of indices in a small Bloom filter data structure (i.e. a token signature). While
the second stage (weight encoder) is a much smaller data structure that allows the model
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to distinguish between tokens that share the embedding in the first table (i.e. tokens with
partial overlap in their corresponding signatures), and hence improves the model accuracy
while achieving a larger compression ratio as we discuss in details in Section 4. The advantage
of MEM-REC' is that model size grows only logarithmically with the data-set alphabet size,
and hence, provides much better scalability for commercial-scale recommendation embedding
tables. Furthermore, MEM-RFEC’s dual encoder architecture allows the system designer to
exploit the advantage of fitting each encoder at different levels of cache hierarchy in a server
platform (e.g. fit token encoder in LLC and fit weight encoder in L2 cache; as we discuss
later).

2.2.2. REPRESENTATION COMPRESSION

Representation compression techniques reduce the number of embeddings to store by lever-
aging more parsimonious representations for categorical data.

Recent work in Kang et al. (2021) use a hashing based scheme to map categorical
data onto a dense vector in R? for d < m. These dense representations can then be
consumed by an MLP-style neural network which produces the final embedding. This work
differs significantly from ours in that the categorical representations are dense (e.g. most
components are non-zero) and real-valued. The advantage of real-valued representations
is that they do not suffer from errors related to collisions. However, these embeddings are
fairly large in practice - d = 1024 in the context of Kang et al. (2021) — and the MLP used to
process them must be implemented using a dense matrix-vector multiplication. By contrast,
in our approach based on Bloom filters, the MLP used to construct the final embedding can
be implemented by computing an element-wise sum of ~ 10 vectors.

Earlier work in Serra and Karatzoglou (2017) considered using Bloom filters to encode
high-dimensional categorical data. However, authors of Kang et al. (2021) have shown that at
small memory footprints such technique is unable to maintain the required recommendation
quality, and hence, is only limited to simple Al architectures and does not scale for commercial
scale DLRM model. MEmCom technique presented in Pansare et al. (2022) has also explored
two-stage architecture, however, the design of the two stages differs significantly from MEM-
REC. MEmCom uses hashing trick (Chen et al., 2015) in the first stage followed by a
one-to-one token-to-weight mapper in the second stage. The second stage contains one
trainable weight per token, hence suffers with table size explosion, which leads to a very
small compression (up to 40x). Furthermore, it suffers from a relatively severe degradation
in accuracy (> 1%) and hence is not applicable to commercial scale recommendation models
as they are highly sensitive to even small losses in accuracy (Desai et al., 2021).

3. The MEM-REC Model

In the following section, we describe our model architecture. Like DLRM, MEM-REC follows
a three-stage (feature encoding, feature aggregation and prediction) process. To encode
numeric data, we use DLRM’s default MLP style dense network (Figure 2: item A). Our
main innovation, which we now describe, is in the design of the categorical encoding.
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Figure 3: Sparse Feature Encoding Flow in MEM-REC. The token encoder generates raw
embeddings and the weight encoder changes the scale of the token encoding to mitigate the
effect of hash-collisions

3.1. Categorical Features

Let A ={ay,...,am} denote the alphabet from which categorical data is drawn, x be a vector
of s categorical features to be encoded, and observe that we may think of x as a set drawn
from A. In DLRM, z is represented as a “multi-hot” encoding (), that contains exactly s
ones, whose locations encode the symbols in z (e.g. d(x) is the characteristic vector of the
set ). The embedding operation can then be written as z(z) = M§(x), where M € RX™
is the embedding table, and [ is the embedding dimension. Our approach is to compress
d(z) to a d < m dimensional bitvector using dual encoders, which allows us to reduce the
number of columns in M to d.

3.2. Categorical Feature Encoder

Let hq,..., hi be a set of k£ independent hash functions that take a symbol a € A as input
and return an index between 0, ...,d — 1 as output. To embed a symbol a € A, we initialize
¥(a) = 04 to the zeros vector. Then, as shown in Figure 3, the token encoder computes
hi(a), ..., hi(a) and sets the resulting indices to one. That is:

Pla)P) = 1 if hi(a) = j for any i € [k]
0 otherwise

The encodings of tokens in a feature vector x C A, are then pooled using the rule:

¢(z) = maxy(a)

acx

where the maximum is applied element-wise. This is exactly the encoding rule of the Bloom
filter, a canonical approximate data structure used to represent sets (Bloom, 1970). As before,
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we construct the representation of x by pooling together the columns in M corresponding to
“active” elements in ¢(x). That is, via z(x) = M¢(x).

In the ideal case that there are no hash-collisions, then ¢(z) is again simply a unique
representation of the input a and can be interpreted in the same manner as the “multi-hot”
encodings used in DLRM. However, when d < m, which is necessary to achieve memory
savings, collisions are unavoidable, which means that different symbols will sometimes be
forced to share embeddings (e.g. columns in M). This may be undesirable because it can
induce correlation between the representations of completely unrelated inputs. While the
probability of collision can be made small by choosing d to be large relative to k, this detracts
from the original goal of making M (i.e. memory footprint) as small as possible.

To keep M small, while mitigating the effect of hash-collisions, we introduce a second
stage of encoding, that we term “weight-encoding,” which multiplies ¢(x) by a weight a(x),
that depends on the input feature vector. This means that, even if two embeddings point in
nearly the same direction, their magnitudes are scaled by different factors, making them
easier to differentiate.

3.3. Weight Encoder

As shown in Figure 3, the weight encoder is similar in structure to the token encoder
and is also implemented using a Bloom filter, which is instantiated using a fresh set of &’
hash-functions. The output of the weight-Bloom-filter is another bit-vector ¢/(z) € {0,1}%,
which is used to compute the weight a(x) = ¢/ (2)"w, where w € R? is a vector of trainable
weights. The final embedding of an input z is then given by z(z) = a(x) M ¢(z), where a(x)
is a scalar, M € R4 and ¢(x) € {0,1}?. To reiterate: the “weight-encoding” allows us to
change the scale of the token encoding, thereby mitigating the effect of hash-collisions in the
token encoder. From a practical standpoint, this allows us to hash onto a smaller range in
the token encoder (e.g. use a smaller d), which means we need to store fewer embeddings (a
smaller number of columns in M), which translates into increased memory savings. It also
allows us to reduce k (the number of hash-functions in the token encoder), thereby reducing
the number of memory accesses to the token embedding table, at the cost of more frequent
accesses to the weight embedding table, which is much smaller and can fit in lower levels
of cache. As shown in Figure 4, using the weight encoder not only reduces the number of
unresolved collisions but also achieves faster overall embedding latency than the one-stage
token-encoder-only model.

3.4. Architecture Summary

To summarize the discussion above: to encode the categorical data, MEM-REC simultane-
ously passes inputs to the token encoder and the weight encoder as explained above. For
each data point, the token encoder (Figure 2: item B2) and the weight encoder (Figure 2:
item B1) generate one sparse binary vector each of size d and d respectively.

The output of the token encoder is passed to an embedding table (Figure 2: item C2) of
size | x d, where [ represents the dimension of each embedding vector. MEM-REC selects
columns from this embedding table whose corresponding bits are set in the binary Bloom
vector and pools them together to get the raw embedding for the data point. The output
of the weight encoder is passed to a much smaller embedding table (Figure 2: item C1) of
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Figure 4: Effect of weight encoder on collisions, and embedding latency of a 50000 x 128 size
Criteo-TB MEMREC Model. Weight encoder reduces the number of unresolved collisions and
helps reduce the memory access latency by prioritizing frequent accesses to the feather-light
weight embedding table which fits in the L2 cache.

size d x 1. MEM-REC generates a weight for each data point by pooling the indices of this
embedding table as indicated by 1s in the corresponding Bloom vector. The final embedding
is computed by multiplying the raw embedding vector with the generated weight. This
process is explained in Figure 3. The key distinction from the standard DLRM architecture
is that our approach only requires storing d embeddings, as opposed to m, where d < m
by several orders of magnitude. The output of the embedding tables used for encoding
categorical features is then merged with the output of the dense MLP (Figure 2: (D)) and
the result is passed to a predictor MLP which outputs the prediction (Figure 2: item E).

4. Experiments

We organize our experiments to answer the following questions:

e RQ1: How do the settings of key MEM-REC parameters like the number of hash-
functions (k), and the hash-alphabet size (d), affect memory use and recommendation
quality?

e RQ2: For a given memory budget, how does MEM-REC’s recommendation quality
compare against the traditional and recent embedding compression approaches?

¢ RQ3: To what extent can MEM-REC compress a model without compromising
recommendation quality? Can these compressed models fit in the last level caches of
modern server CPUs?

e RQ4: What are the performance implications of MEM-REC on modern server-class
CPUs?
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4.1. Experimental Setup
4.1.1. DATASETS

We use Avazu, Criteo-Kaggle and Criteo-Terabyte, three large popular open source bench-
mark CTR datasets to evaluate MEM-REC. Due to space limitations, we provide dataset
details and partitioning methodology in the appendices.

To keep runtimes tractable when comparing a large number of hyper-parameters, for RQ1
(Section 4.2) and RQ2 (Section 4.3), we focus on the Criteo-Kaggle and Avazu datasets.
We compare our architecture against DLRM and other state-of-the-art techniques on the
full Criteo-TB dataset in Section 4.4.”

4.1.2. BASIC SETUP

We used the DLRM PyTorch implementation as publicly provided on GitHub.?

DLRM: We follow the basic setup like optimizer, sparse feature size, MLP architecture
as suggested by the DLRM paper (Naumov et al., 2019) and their GitHub implementation.
These parameters are summarized in the appendices.

MEM-REC Model: We follow the same setup as DLRM for the common parts (items
(A), (D) and (E) in Figures 1 and 2) of the recommendation pipeline. For the new stages
(items (B) and (C) in Figure 2) however, we perform additional tuning to select parameters
like the number of hash functions (k and k), the number of bits in the two Bloom filters (d
and d') and the size of raw embedding vector (1) in order to find different configurations of
MEM-REC to suit different AUC and efficiency requirements.

4.1.3. BATCH S1ZE AND NUMBER OF EPOCHS

Criteo-Kaggle and Avazu: The original DLRM paper (Naumov et al., 2019) uses a batch
size of 128 and runs the model just for 1 epoch. However, subsequent work (Zhu et al., 2020;
Desai et al., 2021) recommends using larger batch sizes for click-through-rate prediction
(CTR) tasks. For both DLRM and MEM-REC models, we use the batch size of 1024 and we
run the training for 4 epochs. We observe that increasing batch size and epoch from 128 to
1024 and 1 to 4 respectively leads to slightly better AUC for both DLRM and MEM-REC
models.

Criteo-Terabyte: We use the batch size of 2048 as used by mlperf DLRM implementa-
tion.® However, the caveat while using MEM-REC on Criteo-Terabyte is that the model
requires 6 epochs to converge as against 1 epoch used by the baseline DLRM implementation.
We have achieved this without extensive hyper-parameter tuning and leave this optimization
for future work.

4.2. Accuracy and Efficiency implications of MEM-REC parameters (RQ1)

In DLRM, embedding tables contribute the majority of the model parameters. For instance,
for all three datasets considered here, over 99% of the parameters in DLRM are in the
embedding tables. MEM-REC uses two Bloom filters to efficiently represent categorical data

5. DLRM Github, URL: https://github.com/facebookresearch/dlrm
6. MLPerf Inference, URL: https://mlcommons.org/en/inference-datacenter-11
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which dramatically reduces the number of parameters to store. In this section, we summarize
the new parameters and discuss their impact on accuracy, model size and efficiency.
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Figure 5: AUC for different values of k at k' = 2
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Figure 6: AUC for different values of k" at k = 1. To produce optimal recommendation
quality, the weight encoder typically uses about 2 — 8 hash functions for the small models

and 2 — 4 hash functions for the larger models.

4.2.1. NUMBER OF HASH FUNCTIONS (k AND k:')

The token encoder and the weight encoder use k£ and K independent hash functions respec-
tively to encode the categorical data. These values determine how many vectors the model
has to access and pool in the corresponding compressed embedding table for every data
point and hence they determine the quality of binary encoding and impact the accuracy.
The values of k and k" have no impact on the model size. Figures 5 and 6 show the AUC
of the model for different values of k and & respectively. For the token encoder, we find that
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d and [ improve AUC up to a point beyond which the models start overfitting.

while using about 2 — 4 hash functions yields the best results for small models, large models
can manage to reach optimal AUC with as low as 1 — 2 hash functions. The weight encoder
typically uses about 2 — 8 hash functions for the small models and 2 — 4 hash functions for
the larger models to produce optimal recommendation quality.

Takeaway 1: As the weight embedding table can comfortably fit within the L2 cache
of modern server CPUs even for very large datasets like the Criteo TB, MEM-REC can
accommodate moderately high k' without significantly impacting the embedding latency.

Takeaway 2: As the token embedding table can often fully fit in last-level caches (LLCs)
of modern server systems (Section 4.4), using small £ allows enough room for MEM-REC
to take advantage of the latency delta between DRAM and LLC.

4.2.2. EMBEDDING TABLE DIMENSION

e Length of the binary Bloom vectors (d and d/): The token encoder and the
weight encoder use the Bloom vectors of size d and d respectively. These values
represent the number of columns in the corresponding compressed embedding table
and they impact both accuracy and model-size directly. To keep our design space
simple, we use d = d. Model size scales linearly with d. As shown in the Figure
7(a)subfigure, AUC is increasing up to around d = 175,000 at which point performance
starts to saturate - possibly due to overfitting. This is unsurprising since, for a fixed k,
taking d to be very large is effectively like assigning each symbol a unique embedding,
as in the standard implementation of DLRM.

e Length of embedding vector (/): This parameter represents the length of the final
embedding vector obtained and therefore has a direct impact on the AUC of the model.
Figure 7(b)subfigure shows the AUC gained by the models against the DLRM baseline
for different embedding vector lengths. For both cases, where the models use large
or small Bloom vectors, increasing [ helps achieve better AUC up to a point beyond
which the model starts to over-fit.
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The resulting compressed embedding table is of size (I x d) and for every categorical
token, the model selects k vectors from this table and pools them to get the raw embedding
representation.

4.3. Recommendation Quality (RQ2)

Metrics: Consistent with prior work, we use ROC-AUC (Receiver Operating Characteristics-
Area Under The Curve) to determine the quality of recommendation generated by our model
(Desai et al., 2022). One important point to note here is that in the case of commercial-scale
recommender systems, even a 0.001 change in AUC has a significant business impact (Desai
et al., 2021).

Baselines: Apart from vanilla uncompressed DLRM, we compare MEM-REC with the
following baseline models at different memory budgets.

e Hashing Trick (Chen et al., 2015) maps embeddings from the full embedding
table onto a smaller “compressed” embedding table and is often less effective as it
suffers from collision problems.

e Compositional Embedding (QR Trick) (Shi et al., 2020) partitions the em-
bedding table using two complementary partitions for avoiding hashing collision. It
applies compositional operators on vectors from each partition to produce the final
embedding.

¢ Random Offset Block Embedding Array (ROBE) (Desai et al., 2022) proposes
a memory sharing technique which uses universal hash functions on the embedding
table chunks to map them in a small circular array of memory.

e TT-Rec (Yin et al.) employs a matrix decomposition approach by decomposing
tensor representation of multidimensional data into the product of smaller tensors.

Comparison: In Figure 8, We plot the AUC with different memory budgets (1/16, 1/8,
1/4, 1/2 and 1/1 of the full model size) for Criteo-Kaggle and Avazu datasets. MEM-REC
provides comparable or better AUC to ROBE and TT-REC across memory regimes (number
of parameters). We discuss the model-size accuracy trade-off in detail in Section 4.4.

4.4. Model Compression (RQ3)

We try to answer the question - how far can MEM-REC compress a model without sacrificing
the accuracy of the recommendations? Table 1 summarizes the AUC difference and model
size reduction factor against baseline DLRM for different model sizes of our approach. We
re-emphasize that even a 0.001 loss in AUC is problematic for commercial-scale recommender
systems (Desai et al., 2021). MEM-REC achieves iso-quality (zero loss in AUC) models
with a reduction of 188x, 144x and 2904x in model size for Avazu, Criteo-Kaggle and
Criteo-Terabyte datasets respectively. As explained in section 3.1, the MEM-REC approach
constructs an approximate representation of a token using a number of bits that scales just
logarithmically in the alphabet size. This property allows MEM-REC to gain much higher
compression as the size of the dataset grows.

Table 2 summarizes the maximum compression achieved by MEM-REC, ROBE and
TT-REC. While ROBE achieves the best compression for the Avazu and Criteo-Kaggle
datasets, MEM-REC outperforms the other methods on the much bigger Criteo-TB dataset.
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Figure 8: AUC for different available memory budget. MEM-REC provides comparable or
better AUC than SOTA compression techniques across memory regimes.

Can
. Compression fit in a
Technique . . 48MB
(iso-quality)
L3
cache
Criteo-TB
ROBE 1000x X
TT-REC 112x X
MEM-REC 2904x v
Criteo-Kaggle
ROBE 1000x v
TT-REC 117x v
MEM-REC 144x v
Avazu
ROBE 1000x v
TT-REC 143x v
MEM-REC 188x v

Parameters AAUC Compression
(Millions) | vs DLRM P
Criteo-TB
5 -0.005 4734x
8 -0.002 3412x
11 0.000 2904x
15 0.001 1638x
21 0.000 1140x
Criteo-Kaggle
2 -0.002 251x
4 0.000 144x
5 0.001 101x
7 0.001 78x
10 0.001 53x
Avazu
0.8 0.000 188x
1.2 0.001 126x
1.6 0.002 95x
2.0 0.002 76x
2.4 0.002 63x
Table 1: Recommendation quality vs

model size

Table 2: Maximum model compression
achieved to produce iso-quality models.
For all datasets, MEM-REC embedding
tables comfortably fit in the L3 cache.

It is important to note that, while smaller models fit into the LLCs with smaller to moderate
compression, larger models need more aggressive compression for this to happen. For
instance, MEM-REC’s iso-quality terabyte model can fully fit into the last level cache (48
MB) of the Intel (Xeon Gold 6338) Icelake family server processor.

Takeaway 3: As MEM-REC constructs embedding tables with size scaling just log-
arithmically in the alphabet size, the compression factor grows as we move from smaller
datasets to larger datasets. This property allows MEM-REC models to fit in LLC even if

we are working with a terabyte-scale dataset.
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4.5. Efficiency (RQ4)

LLC Size (MB) 14 | 28 | 56

Reduction in num cycles (latency improvement) 2.6x | 3.2x | 3.4x
Reduction in number of cache (LLC) misses (i.e. more embeddings served from caches) | 2.3x | 6.3x | 341x
Reduction in avg. memory BW utilization (reduce data movement b/w LLC & DRAM) | 1.1x | 2.2x | 98x

Table 3: Hardware bottleneck analysis: DLRM vs MEM-REC. MEM-REC parameters used
are d = 75000,d = 75000,k = 1,k = 4,1 = 128. MEMREC can perform up to 3.4x faster
embeddings than the DLRM baseline by reducing the LLC misses and improving bandwidth.

As previously discussed, state-of-the-art recommendation systems have large embedding
tables typically of the order of 100s of GBs (Desai et al., 2022). Random sparse accesses to
these embedding table entries dominate the DLRM inference latency (Ke et al., 2019). As
explained in Gupta et al. (2020a) commercial scale DLRM models have 10s of embedding
tables each having millions of entries. In a typical commercial deployment, an inference
request performs pooling over 10s to 100s of the embedding entries (Gupta et al., 2020a).

To evaluate the performance of MEM-REC on a server class CPU, we configured a
micro-benchmark that represents the RM2 configuration of DLRM model (Gupta et al.,
2020a) and has a pooling factor of 120 (average pooling factor reported in Gupta et al.
(2020a)). We use the embedding tables which are of the same size (96GB) as that used by
the Mlperf DLRM Criteo TB benchmark. Similarly, for MEM-REC, we use the embedding
table of size 46 MB that can generate an iso-quality model as discussed in Section 4.4 and
with the same access profile. We ran our benchmark on a 40-Core IceLake server  running at
2.7GHz with 204 GB/s memory bandwidth available and our results show that MEM-REC
performs 3.3x faster embedding on average than the DLRM baseline.

To better understand the performance implications of using different cache sizes, we also
analyze MEM-REC’s sensitivity to cache size by using Sniper multi-core simulator (Carlson
et al., 2011). We compare DLRM baseline and MEM-REC for different cache sizes using
the total number of cycles taken, LLC miss rate and DDR bandwidth. Table 3 shows that
as the size of last-level caches grows, MEM-REC’s cache misses and memory bandwidth
requirement shrink leading to up to 3.4x better embedding time.

Takeaway 4: MEM-REC exploits the memory access latency difference between the
LLC and DRAM to improve the embedding throughput up to 3.4x. Furthermore, given the
typical large cache sizes in modern server-class CPUs, MEM-REC can be used to reduce
the data movement between LLC and DRAM by up to 98x resulting in not only better
throughput but also improved energy efficiency of recommendation systems.

5. Conclusion and Future Work

We presented an alternative approach to represent categorical data. We showed that
a compact embedding representation obtained using MEM-REC leads to a substantial
reduction in model size. Using Facebook’s DLRM framework, we demonstrated how MEM-
REC can be used to achieve a memory-efficient fast recommendation pipeline without

7. Intel IceLake Specs, https://www.intel.in/content/www/in/en/products/platforms/details/ice-lake-
sp.html
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compromising the quality of the generated recommendations. In the future, we plan to study
the architectural implications of the MEM-REC model on different hardware platforms.
Apart from optimizing training and inference pipelines, we plan to explore how we can
leverage the cache-friendliness of the MEM-REC approach to design more efficient pipelines.
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