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Abstract

Weakly-Supervised Temporal Action Localization (WSTAL) aims to train an action in-
stance localization model from untrimmed videos with only video-level labels, similar to
the Object Detection (OD) task. Existing Top-k MIL-based WSTAL methods cannot flexi-
bly define the learning space, which limits the model’s learning efficiency and performance.
Faster R-CNN is a classic two-stage object detection architecture with an efficient Region
Proposal Network. This paper successfully migrates the Faster R-CNN liked two-stage
architecture to the WSTAL task: first to build a T-RPN and integrate it with the tra-
ditional WSTAL framework; and then to propose a pseudo label generation mechanism
to enable the T-RPN learning without temporal annotations. Our new framework has
achieved breakthrough performances on THUMOS-14 and ActivityNet-v1.2 datasets, and
comprehensive ablation experiments have verified the effectiveness of the innovations. Code
will be available at: https://github.com/ZJUHJ/TRPN.

Keywords: Weakly-Supervised Learning; Action Localization; Temporal Region Proposal.

1. Introduction

Temporal Action Localization (TAL) Karaman et al. (2014); Wang et al. (2014), which
aims to locate the temporal position of the start and end of the action instances from
an untrimmed video and identify the action category effectively, has become one of the
significant branches of computer vision. Considering the tremendous data labeling costs,
Weakly-Supervised Temporal Action Localization (WSTAL) Wang et al. (2017), i.e., to
achieve the action localization model learning with only video-level labels, is considered to
be more in line with actual needs and has become mainstream of TAL research.
Existing WSTAL methods mainly use multi-instance learning (MIL) supervision paradigm

since temporal annotations cannot be accessed. They predict and pool the class distribu-
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Figure 1: Migration of Two-Stage Faster R-CNN-like Framework.

tion of each snippet to obtain the video-level prediction. However, the sparsity of action
instances in videos becomes a challenge, which weakens the loss from action salient parts
and hinders training. To mitigate this, most WSTAL methods use top-k pooling to aggre-
gate the k most confident snippets. But the action occurrence parts vary across videos,
so even the k highest-scoring snippets cannot fully represent the video. This may cause
false negatives when k snippets miss some action instances, or false positives otherwise.
Moreover, this design is hard to transfer across domains.

WSTAL is very similar to OD task, for both tasks are dedicated to accurately locating
the subspace containing target instances from inputs and completing further recognition.
Faster R-CNN Ren et al. (2015) is a classic two-stage object detection framework. As shown
at the left of Figure 1: Stage-1 aims to learn a Region Proposal Network (RPN) for fore-
ground /background classification; Stage-2 aims to learn a classifier for object classification
and boundary optimization with image features and region proposals. Such an architecture
design constrains the learning space of stage-2 within region proposals, which makes the
model very effective.

Correspondingly, we can migrate the two-stage detection framework to the WSTAL
task. As shown in the right of Figure 1. Stage-1 formulates a temporal region proposals
network (T-RPN) to coarsely localize the video foreground parts in a video. Stage-2 further
classifies and refines the action category and boundary of the extracted region proposals.
This design enables the model to focus on the regions relevant for action localization and
ignore the irrelevant background, thus significantly improving the model’s efficiency. Given
the difference between the two tasks, the migration should consider the following aspects:

1) How to generate the temporal region proposals for the WSTAL task: The
main challenge is how to integrate a temporal region proposal network (T-RPN) with the
WSTAL framework, which generates proposals by scoring each snippet, rather than the
proposal coordinates as the OD method does. Moreover, we need to avoid the T-RPN from
over-focusing on the salient parts, which impairs its background recognition.

2) How to achieve the weakly-supervised training process: The core difference
between the OD and WSTAL is that the supervision signals of RPN training related to the
OD task come from the ground-truth labeling of the training set, while the videos of the
WSTAL task lack the temporal annotation of the action instance. Hence, a well-designed
pseudo label derived from the coarse classification results of stage 2 is essential for enabling
the learning of T-RPN without relying on temporal annotation.
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In this paper, we present a Dual-Modality Temporal Region Proposal Localization (DTRP-
Loc), a novel two-stage detection framework for WSTAL. We formulate T-RPN by treating
each video snippet as an anchor and sample temporal proposals based on their foreground
probabilities. Then, we achieve the refinement of the proposals by optimizing the scores
assigned to each snippet. To alleviate the imbalance of foreground and background learning
caused by the introduction of the T-RPN, we propose to adopt a co-learning mechanism
during the training phase. Finally, we optimize the T-RPN learning without temporal
annotations by generating high-quality pseudo labels based on the classification results of
stage-2. Our method achieves an average mAP of 47.0% on THUMOS-14 with t-IoU thresh-
olds ranging from [0.1, 0.7], and an average mAP of 27.0% on ActivityNet-v1.2 with t-IoU
thresholds ranging from [0.5, 0.95], both achieve the current state-of-the-art performance.

The core innovations and main contributions of this work are summarized as follows:

e Migrate a Faster R-CNN-like two-stage object detection architecture to the WSTAL
task for the first time by formulating a T-RPN and integrating it with the conventional
MIL-based WSTAL framework;

e Design a robust pipeline for generating pseudo labels that offer high-quality supervi-
sion for enabling T-RPN learning under the weakly-supervised paradigm;

e Promote the SOTA results of WSTAL on two major benchmarks, and sufficient abla-
tion experiments also prove the universality and effectiveness of T-RPN learning for
the WSTAL task.

2. Related Work

Considering the TAL task as a similar classic vision task of Object Detection (OD), and
drawing inspiration from the OD research, there are already a lot of existing works to refer
to. Zheng et al. followed the design of the multi-scale sliding window in the OD task
to locate Temporal Region Proposals in the time dimension Shou et al. (2016). However,
similar to the OD problem, encoding the features of all candidate windows will result in huge
computational overhead. SPPNet He et al. (2015) and Fast R-CNN improve this problem by
using feature pyramid and Rol pooling respectively. By mapping feature maps of different
scales into fixed-dimension vectors, image encoding is required only once. MSCA Liu et al.
(2019) used this idea to improve the feature mapping and aggregation of candidates in the
TAL task, which greatly improves computational efficiency. The RPN learning proposed by
Faster R-CNN realizes a more efficient Region Proposals algorithm, and R-C3D Xu et al.
(2017) drew on similar ideas and can accept video input of any length. In addition, there
was also an anchor-free design Lin et al. (2018, 2019) that can not use a predefined anchor,
which can directly predict the boundary probability and action score of each video clip to
obtain reliable proposals. However, the above techniques all require fine-grained labels for
each action instance that occurs in the video to achieve fully-supervised learning, which
cannot be directly transferred to the WSTAL task.

Weakly-Supervised Temporal Action Localization (WSTAL) does not need to label fine-
grained action instances, only the category labels of the entire video, which makes the
WSTAL task more similar to video multi-label classification problems. It should be pointed
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Figure 2: Our WSTAL Solution via Weakly-Supervised T-RPN Learning.

out that the accurate evaluation of WSTAL needs to predict the start and end times of
actions, so it can still be regarded as a TAL task that lacks supervisory signals in the train-
ing phase. Wang et al. first proposed to divide the video evenly into several snippets, then
classify each snippet, and aggregate to obtain class activation sequence (CAS) via the MIL
architecture, and further proposed to use an attention network to eliminate the interfer-
ence of background snippets Wang et al. (2017). Hong et al. proposed the Cross-Modal
Consensus Module, which enables the two modalities of RGB and optical flow to assist
each other by activating weights to remove their respective redundant information Hong
et al. (2021). Subsequently, Min et al. proposed a two-stream adversarial network Min and
Corso (2020), which is used to locate salient parts and provide supplementary information
respectively, which improves the problem of CAS-based MIL method focusing too much on
high activation fragments Choe and Shim (2019); Feng et al. (2021). Furthermore, some
research works introduce pseudo-labels to guide model training Paul et al. (2018); Min and
Corso (2020); Zeng et al. (2020); Xu et al. (2017). However, because the WSTAL task lacks
fine-grained labels, it cannot use the ground truth to train RPN like Faster R-CNN, making
it difficult to benefit from the progress of Object Detection research.

3. Methods

As shown in Figure 2, our proposed WSTAL solution can be divided into the following main
components:

e Dual-Modality Fusion: To encode, enhance and fuse the RGB and optical flow
information of the input video to realize information interaction and fusion between
different modalities
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e Temporal Region Proposal Localization: Using the Faster R-CNN-like frame-
work, the T-RPN of Stage-1 learns to generate temporal region proposals, then per-
forms action categorization in Stage-2 based on the generated proposals;

e Auxiliary Co-Learning: A standard WSTAL pipeline is introduced as an auxiliary
co-learning branch to improve background recognition during the training phase.

3.1. Dual-Modality Fusion

Since WSTAL is a task that requires the cooperation of optical flow and RGB modalities,
we begin by presenting the Dual-Modality Fusion module adopted by our method. First,
we refer to the work Wang et al. (2017) to uniformly sample the video into 7' snippets
and encode the RGB and optical flow features to obtain the visual and optical flow fea-
tures X, g5, Xfiow € RTXP  where Xrgb, Xfiow represent the appearance feature and the
motion feature of the video, respectively. The salient area of the appearance feature often
represents the foreground part of the static image, while the motion feature represents the
area where actions occur. In the context of Action Recognition, the overlapping part of
the salient area and the motion area is often the focus of the entire TAL network learning.
From the perspective of modal complementary, we can imagine the following two scenarios:
1) A complete action may have a pause moment, at which appearance dominates the ac-
tion recognition; 2) The static image contains multiple foreground objects, which indicates
moving objects are more valuable. At this time, motion dominates action recognition.

Following the above discussion, we propose a simple and effective Dual-Modality Fusion
(DMF) for cross-modality learning. The RGB modality generates channel attention to
make a channel-wise enhancement to the optical flow feature to obtain the enhanced feature
X fiowt- Correspondingly, the optical flow modality generates temporal attention to make
a temporal-wise enhancement to the RGB modality and obtain X,.g+. The DMF module
can be regarded as strengthening the specific dimension of the dominant modality with the
auxiliary modality and enhancing the superposition of the two modalities. For more detail
about DMF, please refer to the supplementary material.

3.2. Temporal Region Proposal Localization

Next, we elaborate on the technical details of each stage of our Temporal Region Proposal
Localization, which reveals how we formulate the T-RPN module and integrate it with
the conventional WSTAL framework. Then, we explain how we design a Pseudo-Label
Generation mechanism to supervise the learning of T-RPN without temporal annotations.

3.2.1. T-RPN LEARNING

Similar to the Region Proposal Network under the OD task, the T-RPN we propose first
generates a Foreground Score Sequence (FSS) through a foreground classifier and then se-
lects temporal feature segments according to the FSS to generate temporal region proposals.

For foreground extraction, unlike previous attention-based methods, we employ a hard-
selection strategy that explicitly separates localization and classification tasks. Specifically,
given video features X € RT*P the foreground classifier gg obtains the foreground score of
the input segment according to the input features, denoted as:
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FSSterpn = 0(g9(X)) (1)

where o is the sigmoid activation function, which is for mapping the output of gy to [0, 1] so
that it corresponds to the probability of action occurrence. In addition, F'SSi,p, € RT*1
which means that each snippet of the input video is assigned a foreground score.

After obtaining the foreground probability distribution of the entire video, the intu-
itive idea is to set a hard threshold to filter out temporal region proposals. However, in
the WSTAL task, the model tends to continuously enhance more discriminative segments,
while ignoring the learning of relatively vague action boundaries. This directly causes the
model to generate fragmented temporal region proposals, which cannot completely cover
action instances. Therefore, we propose to use Gumbel-Softmax Jang et al. (2016), which
introduces some randomness while achieving hard sampling, thus allowing the network to
find “overlooked foregrounds”. For sampling, we can model it as a binary classification
problem, using arg max to align the model’s predictions with discrete labels, i.e:

T Prask = one-hot(arg max(log p)) (2)

where p is the probability of the corresponding snippet belonging to the foreground. Con-
sidering arg max is a non-derivable operation, we use Softmax to solve the problem and
obtain the features of the generated temporal region proposals, denoted as:

T Ppask = softmax (log(p—i—M)

T

3

TPrgb = Xrgb ® TPmask ( )
TPflow = Xflow ® T Prask

where 7 is the temperature coefficient, which is used to adjust the smoothness of softmax,
and ® means element-wise multiplication. In this paper, 7 is set to a very small value to
achieve a hard sampling of temporal region proposals. A is a standard normal distribution,
which introduces some randomness into our sampling process.

It should be pointed out that due to the weakly supervised nature of WSTAL (no ac-
tion instance-level labels are provided), T-RPN learning cannot directly obtain supervision
signals from ground-truth labeling, and a self-supervised task must be constructed to form
closed-loop learning. We describe a Pseudo-Label Generation mechanism to alleviate the
missing supervisory signal problem in section 3.2.3.

3.2.2. AcTiION CATEGORIZATION

Given the features sampled according to temporal region proposals, we apply an action
classifier to obtain the snippet-level action classification results. Finally, these classification
results are aggregated into video-level predictions by averaging pooling and calculating
multiple instance learning loss with video labels.

Specifically, we first concatenate the different modality features sampled by the T-RPN
module to achieve the cross-modality feature integration:

X tuse = concat(T Prgp, T Pfiow) (4)
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where Xy, € RT*2D Next, X fuse 1s fed into the action classifier for action classification.
The action classifier used in our method consists of a 3 X 1 convolution fy and a 1 x 1
convolution Hg. The convolution is performed in the temporal dimension of X, using fy
to capture the temporal dependencies between neighboring snippets, while Hy is responsible
for establishing the mapping between intermediate features and action labels.

T-CAS = H (& (fo (X fuse) +1)) (5)

where ¢ represents relu activation function, b is the bias and T-C AS € R°*!. It should be
noticed that we follow the setup of Lee et al. (2020), using {c+ 1}-th class to represent the
background. Since the temporal region proposal filtering is performed in the previous stage,
the label of the background class is set to 0, i.e ¥y = {y1,92,...,Yc,0}. After obtaining the
T-CAS, we use average pooling to aggregate it into video-level prediction:

N
oc % S r-casy) (6)
JjCcT
where p¢¢ denotes the score of i-th action category in the video-level prediction, T° -C’ASJ@
denotes the probability of i-th action category occurring in the j-th snippet, and 7 denotes
the set of snippets covered by temporal region proposals. The loss of multiple-instance
learning can be represented as follows:

mzl1 Z Ui logp Z

where C; and C_ represent positive categories and negative categories, respectively, while
Y, and Y_ represent the sum of positive categories and negative categories correspondingly.
We perform the aforementioned regularization on the labels to balance the contribution of
positive and negative categories to the loss.

 log (1 - p) (7)

3.2.3. PSsEunpO LABEL GENERATION

As shown in the module indicated by the weakly-supervised arrow in Figure 2, the pseudo-
label comes from the snippet-level score sequence T-C AS output in the Action Categoriza-
tion stage. After curve smoothing and confidence-weighted supervision loss, high-quality
fine-grained learning of T-RPN under the weak supervision paradigm is achieved.

First, we obtain the foreground score curve from T-C' AS as follows:

FSSus =1— split(T-CAS) (8)

where split(-) represents the separation of the score sequences of the background class of
T-C'AS, from which we can obtain a foreground score sequence F'SSy, € RT at the snippet-
level. since the video has coherence in the time dimension, there should be similar score
distributions between neighboring snippets, and we achieve this constraint using Gaussian
filtering G:

FSSsmooth = Softmaz(G(FSSgs)) (9)

Here, F'SSsmnooth is a rough pseudo-label that can be used to supervise T-RPN. However,
the pseudo-labels face the problem of lower quality in the early stage of training. Supervising
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T-RPN with low-quality pseudo-labels can easily cause instability in the model training
process, thus affecting the model performance. Inspired by Lee et al. (2021), we propose a
dynamic adjustment strategy for loss weights based on the uncertainty of the model, making
Kullback-Leibler Divergence the loss of supervised T-RPN learning:

C+1

e = 3" log T-CASY
’ o (10)
FSSs:rwo h
Ly =—— Z )FSSt pnl0g Tz)t
t-rpn

Through fine pseudo-label, we can improve the T-RPN learning and output high-quality
temporal region proposals, so as to achieve the performance improvement of WSTAL.

3.3. Auxiliary Co-Learning

The Action Categorization module in Section 3.2.2 performs action classification on the
foreground segment selected by T-RPN. However, since this process excludes background
segments without action occurring, the learning of background segment recognition ability
is neglected. To alleviate this problem, we introduce an Auxiliary Co-Learning (ACoL)
branch to construct a collaborative learning mechanism with the above-mentioned Two-
Stage Localization framework. We aggregate the losses of both by:

Ejoint = £mill + Emilg (11)

where L£,,;;, represents the learning loss of Stage-2, and L,,;, represents the multiple in-
stance learning loss of the ACoL branch. By co-optimizing the two losses of L,,;;, and Ly,1,,
we can better guide the main task learning to improve the Action Category Classifier in
Stage-2. Next, we describe the ACoLL branch in detail.

Specifically, the ACoL supplements the consideration of the background to enhance the
background recognition ability. The input of the ACoL is the complete temporal feature
sequence X without being selected by T-RPN, and the snippet-level score sequence of
T-CASyyuy is obtained by the same processing steps as Action Categorization in Section
3.2.2. In addition, the video label corresponding to the ACoL is y = {y1,¥2,.--,¥Yc, 1}, i.€.,
it always contains background snippets. This branch shares the parameters of the action
classifier with the Action Categorization of Stage-2 and thus can obtain improvement for
background recognition during the co-training process.

Following the setting of the standard WSTAL framework, we hereby apply topk-pooling
to aggregate T-C ASy,y into a video-level prediction:

K
1 i
P=e 2 T-CASpul’ (12)
JjCtop(k)

where p] denotes the predicted score of the i-th class of actions after aggregation of the
standard WSTAL branch, and top(K) denotes the K highest scoring snippets. Similar
to Section 3.2.2, the multiple instance learning loss for the ACoL branch is calculated as
follows:
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i s 1 —yi s
Loty =— }%logpi +) Y_y log (1 —p;) (13)

3.4. Learning and Inference

To sum up, in the training phase, we will jointly optimize all the above training objectives,
that is, the final loss function can be defined as:

Liotal = Ejoint + ML + ALy (14)

where A1 and Ay are hyper-parameters that adjust the importance of £,,; and Ly;.

The inference of our method follows the two-stage process. We first use the action
classifier in Stage-2 to generate the T-C AS of the test video and follow the standard post-
processing process Hong et al. (2021) to obtain temporal region proposals, then group
the continuous classification scores of snippets to produce action proposals, and finally to
remove redundant outputs with non-maximum suppression (NMS).

4. Experiments
4.1. Datasets

To evaluate the effectiveness of our model, we validate our method on two well-known
WSTAL benchmarks:

THUMOS-14 Idrees et al. (2017) is a well-known temporal action localization dataset
with 101 action categories from daily scenes and sports scenes. The dataset contains 1,010
untrimmed videos as the validation set and 1,547 as the testing set. For a fair comparison,
we follow the setting of previous work Zhang et al. (2021) and use 200 validation videos
with temporal labeling for model training and 213 test videos for evaluation.

ActivityNet-v1.2 Heilbron et al. (2015) is a larger TAL dataset with 100 complex
daily action categories, which contains 4,819 videos for the training set, 2,383 videos for the
validation set, and 2,480 videos for the testing set, with an average of 1.5 actions per video.
Since the annotations for the testing are not provided, we evaluate the model performance
on the validation set, as in previous work Islam et al. (2021).

4.2. Implementation Details and Metrics

Implementation Details: For a fair comparison, we follow the previous work Chen et al.
(2022) to calculate optical flow from RGB video frames based on the TVL1 Pérez et al.
(2013) algorithm and use the kinetics-400 dataset pre-trained I3D Carreira and Zisser-
man (2017) model to extract snippet-level features. We sample 16 consecutive and non-
overlapping frames from the video as a snippet, and the number of snippet sampling is set
to 320 and 60 for THUMOS-14 and ActivityNet-v1.2 datasets, respectively. We use Adam
as the optimizer, and for both datasets, the initialized learning rate and weight decay are
set to le-4 and 1le-3, respectively. The size of the mini-batch is set to 16. For the hyperpa-
rameter a, we set it to 0.9 and 0.1 in Stage-1 and Stage-2, respectively. And A; and Ao are



Huanc Kong CHEN Lianc Zuu®)

set to 1 and 0.8 respectively. All the experiments are implemented on PyTorch 1.8.1, and
the training and testing processes are operated on 1x Nvidia Tesla A100 GPU.

Evaluation Metrics: Like the previous work Chen et al. (2022), we use the mAPs
under different intersection-over-union (IoU) thresholds as the metric to evaluate the per-
formance of the model, where the threshold is set to [0.1:0.1:0.7] on THUMOS-14, and
[0.50:0.05:0.95] on ActivityNet-v1.2. We adopted the ActivityNet-v1.2 provided evaluation
toolkit for the evaluation calculation.

. mAP@t-TIoU(%)

Supervision Method 01 | 02 | 03 ] 04 | 05 | 06 | 0.7 |[0.1:0.5] | [0.3:0.7] | AVG
SSN 60.3 | 56.2 | 50.6 | 40.8 | 29.1 | - - 474 - _

TAL-Net 50.8 | 57.1 | 53.2 | 485 | 42.8 | 33.8 | 20.8 | 52.3 45.1
Fully P-GCN 69.5 | 67.5 | 63.6 | 57.8 | 49.1 | - - 61.5 - -
BU-TAL - - | 539 | 50.7 | 45.4 | 38.0 | 28.5 - 43.3 -
VSGN - - 1 66.7 | 60.4 | 52.4 | 41.0 | 30.4 _ 50.2 -
TSCN 634 | 57.6 | 478 | 37.7 | 28.7 | 194 | 102 | 47.0 288 | 378
CoLA 66.2 | 59.2 | 51.5 | 41.9 | 32.2 | 22.0 | 13.1 | 50.3 321 | 40.9
AUMN 66.2 | 61.9 | 54.9 | 444 | 333 | 205 | 9.0 | 521 324 | 415
FAC-Net 67.6 | 62.1 | 52.6 | 44.3 | 334 | 225 | 127 | 520 33.0 | 42.2
CO2Netv 70.1 | 63.6 | 54.5 | 45.7 | 38.3 | 26.4 | 134 | 544 35.7 | 44.6
Weakly ASM-Loc 712 | 655 | 57.1 | 46.8 | 36.6 | 25.2 | 134 | 554 358 | 45.1
FTCL 69.6 | 63.4 | 552 | 45.2 | 35.6 | 23.7 | 122 | 53.8 344 | 436
RSKP 71.3 | 65.3 | 55.8 | 47.5 | 38.2 | 254 | 125 | 55.6 359 | 45.1
DCC 69.0 | 63.8 | 55.9 | 45.9 | 35.7 | 24.3 | 13.7 | 54.1 35.1 | 44.0
DELU 71.5 | 66.2 | 56.5 | 47.7 | 40.5 | 27.2 | 15.3 | 56.5 374 | 464
DTRP-Loc (Ours) | 71.4 | 66.0 | 58.0 | 49.3 | 41.4 | 28.0 | 150 | 57.2 | 38.3 | 47.0

Table 1: Performance comparison on THUMOS-14 dataset

4.3. Comparison with SOTAs

As shown in Table 1, we compare our proposed method with SOTA results on the THUMOS-
14 dataset. In addition to the recent WSTAL work, we also list some fully supervised TAL
methods for reference. The SOTA methods we compare are list as follows: SSN Zhao
et al. (2017), TAL-Net Chao et al. (2018), P-GCN Zeng et al. (2019), BU-TAL Zhao et al.
(2020), VSGN Zhao et al. (2021), TSCN Zhai et al. (2020), CoLA Zhang et al. (2021),
AUMN Luo et al. (2021), FAC-Net Huang et al. (2021), CO2Net Hong et al. (2021), ASM-
Loc He et al. (2022), FTCL Gao et al. (2022), RSKP Huang et al. (2022), DCC Li et al.
(2022), DELU Chen et al. (2022). The results illustrate that on the three most significant
indicators of mAP@[0.1:0.5], mAP@[0.3:0.7], and mAP@AVG, our method surpasses the
most advanced DELU by 0.7%, 0.9%and 0.6%. Table 2 shows the performance comparison
on the ActivityNet-v1.2 dataset. The results illustrated that our proposed method still
obtains SOTA results on most indicators.

The experimental results on both datasets reveal an interesting “coincidence” that our
methods perform especially outstanding in the case of high t-IoU for both datasets. We
infer that the T-RPN learning outputs tend to generate high-quality temporal region pro-
posals that highly overlap with the ground-truth action fragments. Of course, this may
decrease accuracy on low t-IoU ranges because T-RPN may tend to discard incomplete
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mAPQt-IoU(%

Method 0.5 [ 0.75 | 0.9é \)AVG
UGCT 418 | 253 | 5.9 | 2538
CoLA 427 | 257 | 5.8 | 26.1
D2-Net 423 | 255 | 58 | 26.0
CO2-Net 433 | 263 | 52 | 264
ACGNet 418 | 260 | 59 | 26.1
DELU 44.2 | 26.7 | 54 | 26.9
DTRP-Loc (Ours) | 43.7 | 26.9 | 6.1 | 27.0

Table 2: Performance comparison on ActivityNet-v1.2 dataset

| DMF | T-RPN | ACoL | PLG | mAPQAVG |

42.6

v 43.5
v 44.0

v v 44.8
v v 45.6

v v v 46.5
v v 44.7

v v v 45.3
v v v 46.0

v v v v 47.0

Table 3: Validation of proposed components, where DMF, ACoL and PLG represent Dual-
Modality Fusion, Auxiliary Co-Learning branch and Pseudo-Label Generation,
respectively.

temporal region proposals. We also find that the fully-supervised TAL methods are with
a similar trend (perform better on high t-IoU threshold ranges than low ranges), proving
that our method provides high-quality supervision (pseudo-labels) that improves the weakly
supervised learning.

4.4. Ablation Study

Effectiveness of Proposed Component: Table 3 presents the ablation experiments
on the significant parts of the proposed model to explore their contribution. The results
observed that each proposed module achieves a gain in model performance. Firstly, Dual-
Modality Fusion (DMF) can significantly enhance the base model, which shows that our
proposed cross-modal interaction can make the semantic information of the input features
more explicit. The introduction of T-RPN further improves the model performance (41.4
and +1.3 w/wo DMF), which can provide a better learning space for the action classifier and
effectively alleviate the semantic ambiguity problem of the Topk-MIL learning paradigm,
thereby improving the learning quality. Introducing the Auxiliary Co-Learning Branch
(ACoL) alleviates the balance of foreground and foreground learning problems, resulting
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Figure 3: Visualization of the comparison between model with and without T-RPN. Gray
regions and blue regions represent proposals generated by models w/wo T-RPN
respectively, blue dashed regions are temporal region proposals generated by T-
RPN, and green regions are ground truth.

| Methods | w/o Proposal | T-RPN | T-RPN* | GT Label

CO2Net 44.4 45.2 45.5 46.0
ASM-Loc 45.1 45.8 46.0 46.8
DTRP-Loc 45.0 46.5 47.0 47.7

Table 4: Performance Comparison on different temporal region proposal generation strate-
gies. T-RPN* represents the T-RPN trained with the pseudo labels.

in a considerable gain in the model performance. Finally, although T-RPN can be learned
end-to-end, our Pseudo-Label Generation (PLG) strategy supervises the learning process
of T-RPN, which can further improve the model performance by 0.5 to 47.0, which shows
that the refined pseudo-label can realize the high-quality supervision of T-RPN process.
Impact of Temporal Region Proposals: Figure 3 shows the visualization of the
comparison between model with and without T-RPN. First, we show the proposals gener-
ated by the model wo/ T-RPN (i.e., the gray regions). Then, we show the proposals and
temporal region proposals generated by the model w/ T-RPN (the blue regions and the
dashed regions). By comparing them with the ground truth (the green regions), we have
the following observations: 1) the model can suppress the false positive predictions after
integrating T-RPN. This benefits from the fact that T-RPN confines the learning space of
stage-2 to the temporal region proposals, thus filtering out the background; 2) the temporal
region proposals generated by T-RPN can effectively cover the regions where the action in-
stances occur, and this region range is much smaller than the whole video, so the proposed
method can reduce the task learning difficulty compared with traditional methods.
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The above ablation experiment has proved the effectiveness of T-RPN learning. We
can further verify the universality and effectiveness of temporal region proposals for all
existing WSTAL solutions in this experiment. As shown in Table 4, we demonstrate the
model performance on CO2Net Hong et al. (2021), ASM-Loc He et al. (2022), and our
method under different strategies of TP generation: without TP, TP generated using T-
RPN, TP generated using pseudo-label optimization (i.e., T-RPN*) and with ground-truth
labeling. It can be seen that temporal region proposals and their qualities (T-RPN <T-
RPN* <Ground Truth) have a significant impact on model performance, which fully proves
the importance and effectiveness of the T-RPN learning strategy proposed in this paper.

5. Conclusion

Aiming at the similarities and subtle differences between OD and WSTAL tasks, we focus
on several technical challenges in migrating the two-stage OD framework to WSTAL: firstly,
we formulate a T-RPN and integrate it with the conventional WSTAL framework; secondly,
we construct Pseudo-Labels to complete the self-supervised learning closed-loop of T-RPN;
finally, we design a co-learning mechanism to prevent the T-RPN from collapsing under
weakly-supervised paradigm.

The core logic of object detection is to first look for “locations where objects may exist
(Proposals)” in the source, and then judge “what is the object in this location (Classifica-
tion)”. Therefore, due to its advantages in learning efficiency and computational resource
consumption, we believe that building a WSTAL model resembling the OD framework
could potentially emerge as a pivotal research direction for addressing long video action
localization tasks in the future, warranting continued exploration
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