
TEMPORAL EVENT SET MODELING

Deep Representation Learning for Prediction of Temporal Event Sets
in the Continuous Time Domain – Appendix

Appendix A. Dataset statistics

We provide the dataset statistics in Table 6 corresponding to the datasets mentioned in Section 4.1,
which were used in our experiments.

Synthea Instacart MIMIC-III

Total # data-points 55299 110035 1865
Average seq length 7.25 15.65 4.06
Average set length 1.19 7.23 2.79
# i/p event types 211 135 211
# target event types 124 135 124
Dataset type Synthetic Real Real

Table 6: Dataset statistics.

Appendix B. Hyperparameters

We fix the embedding dimensions, demb = 100 throughout all our experiments, i.e., the item
embedding dimension, the output dimension of the item-set embedding generator model, and the
hidden dimensions of the transformers are all fixed to be 100. We additionally fix the number of
transformer encoder layers to 2 and the number of attention-heads to 4.

Contextual Embedding Encoder

Hidden dimension 100
Learning Rate 0.0005
Dropout 0.1
Num Layers 1
Batch Size 128

Single-step Model

Hidden dimension 100
Dense Layer dimension 256
Learning Rate 0.003
Dropout 0.1
Num Encoder Layers 2
Batch Size 512
Max Seq Length 500
Dice ϵ 0.1
Loss λ1, λ2, λ3 0.85, 1, 0.2

Table 7: Hyper-parameter table
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Appendix C. Training Details

For the item embedding generator that we used in Section 3.2, we use s single layer of densely
connected (feed-forward) neural network as our auxiliary encoder AE without any activation at the
output (embedding) layer. We use transformers as sequence encoders in the Single-step training
approach (Section 3). We use transformers with 2 encoder layers as our sequential encoder while
reporting the results. These are not the best possible results, rather, we tried to keep the model’s
capacity/expressive-power/architecture similar to baselines for a fair comparison.

However, we have experimented with LSTMs as well. It should be noted that due to the bi-
directional embeddings in both the Bi-LSTMs and Transformers, a specialized dataset preprocessing
is required, which can be skipped if using simple LSTMs. This reduces the training time in LSTMs.
However, the inference time remains asymptotically the same.

We use an 80 − 20 train-test split in our datasets, and within the training split, we further use
10% of the data for validation. We use Nvidia A100 GPUs to run our experiments.

Appendix D. Notations

Table 8: Description of the notations used in the main paper
Notation Description

S It defines the input sequence of event sets in continuous time domain
sk It denotes the event set in the input sequence S
I It defines the set of all possible events
fk It denotes the set of features associated with sk in the input sequence S
tk It denotes the timestamp associated with sk in the input sequence S
T It defines the set of target events T ⊂ I
M It denotes the model being trained for a given task
AE It denotes the auxiliary encoder model
vemb It denotes the embedding for an event i from the auxiliary encoder model AE

demb It denotes the dimension of the event embedding from the auxiliary encoder model AE

Laux It defines the auxiliary contextual loss objective
Hk It denotes all the previous set of events along with their corresponding timestamps

and features until sk
[̂·] A hat over any symbol indicates that it is the model’s prediction

ek+1 It denotes the target event set corresponding to the input history Hk

µj
êk+1

It defines the Gaussian distributional parameter - mean of jth mixture for the target
event set ek+1

σj
êk+1

It defines the Gaussian distributional parameter - standard deviation of
jth mixture for the target event set ek+1

αj
êk+1

It defines the mixture coefficient of jth mixture for the target event set ek+1

µj

t̂k+1
It defines the Gaussian distributional parameter - mean of jth mixture for the target
time tk+1

σj

t̂k+1
It defines the Gaussian distributional parameter - standard deviation of
jth mixture for the target time tk+1

αj

t̂k+1
It defines the mixture coefficient of jth mixture for the target time tk+1
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Appendix E. Additional Tables

Table 9: Additional metrics for Temporal Event-set Modeling Results. We compare our approaches to
baselines, and in addition to Table 1 in the main paper, report the F-scores and RMSEs.

Training method
Synthea Instacart

Event-set
pred (F-score)

Time pred
(RMSE)

Event-set
pred (F-score)

Time pred
(RMSE)

Baselines:
Neural Hawkes Process 0.02 6.68 0.27 0.18
Transformer Hawkes Process 0.08 5.85 0.34 0.17
Hierarchical Model 0.10 6.10 0.35 0.12

Ours:
TESET 0.32 4.73 0.45 0.06
TESET + Contextual Embeddings 0.47 4.28 0.64 0.04

Table 10: Additional Fine-tuning results. In addition to Table 2 in the manuscript, we report additional
metrics: F-score and RMSE, and compare fine-tuning vs training from scratch results for our
method vs the baselines.

FT? Training method
Synthea Instacart

Event-set
given time
(F-score)

Time
given event

(RMSE)

Event-set
given time
(F-score)

Time
given event

(RMSE)

Trained
from

scratch

Neural Hawkes Process 0.25 8.66 0.48 4.39
Transformer Hawkes Process 0.27 7.08 0.45 3.88
Hierarchical Model 0.24 7.81 0.44 4.50
TESET (Ours) 0.32 6.97 0.52 3.12

Fine-
tuned

Neural Hawkes Process 0.09 9.40 0.41 5.03
Transformer Hawkes Process 0.18 7.55 0.45 4.75
Hierarchical Model 0.16 8.13 0.48 4.99
TESET (Ours) 0.44 6.27 0.60 2.25
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Appendix F. Additional Figures

Figure 7: 2D t-SNE of the embedding space after the first step of training (learning the contextual representa-
tions) for the Instacart Dataset. It can be observed that the clusters formed in the embedding space
are valid. For instance, frozen meals and instant noodles form a cluster, soy, and vegan items are in
the same cluster, and bakery and dough are also in close proximity to each other.
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Figure 8: 2D t-SNE (full) of the embedding space after the first step of training (learning the contextual
representations) for the Synthea Dataset.
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