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Abstract

This study introduces a new approach for open set recognition, wherein we propose a
novel method utilizing uniformly distributed centers on a hypersphere. Each class in the
proposed method is represented by a center, and these centers and features of the deep
learning architecture are jointly learned from the training data in an end-to-end fashion.
We ensure that the centers lie on the boundary of a hypersphere whose center is positioned
at the origin. The class-specific samples are compelled by the proposed loss function to
be closer to their respective centers. In open set recognition scenarios, an additional loss
term is employed to separate the background samples from the known class centers. The
assignment of test samples to classes is based on the Euclidean distances calculated from
the learned class centers. Experimental results show that the proposed method yields the
state-of-the-art accuracies on open set recognition datasets.

Keywords: Open set recognition, classification, deep learning, uniformly distributed cen-
ters.

1. Introduction

Theoretical studies indicate that high-dimensional data samples tend to cluster around the
outer surface of an expanding hypersphere, (Jimenez and Landgrebe, 1998; Hall et al., 2005).
When the number of samples is fixed and the dimension of the feature space is increased, the
radius of the hypersphere increases as well. As a result, the hyperspherical spaces are largely
used in pattern classification problems. Especially, all the recent state-of-the-art deep face
recognition methods such as CosFace (Wang et al., 2018), UniformFace (Duan et al., 2019),
ArcFace (Deng et al., 2019), etc. utilize the hyperspherical spaces. These methods use the
revised softmax losses where the class-specific weights and feature vectors are normalized
so that they all lie on the boundary of a hypersphere with a predefined radius value. Both
additive and angular margins are used for separation among the classes (i.e., inter-class
separation). Cosine distances between the test feature samples and class-specific weights
are used during testing stage to assign the test samples to the known classes. Although
these methods yield the state-of-the-art accuracies on classical face recognition problems,
their performance is unsatisfactory when it comes to open-set recognition problems. In
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open-set recognition, the test samples may originate from unknown classes that were not
encountered during the training phase.

In this study, we propose a novel method called the Deep Uniformly Distributed Centers
on a Hypersphere (DUDC-HS) for both closed and open set recognition problems. In the
proposed method, the classes are represented with the centers that are uniformly distributed
on the boundary of a hypersphere. During the training stage, the samples belonging to the
known classes are forced to lie closer to the centers that represent them. Both the class
centers and features are jointly learned from the data. In contrast to the other methods using
hyperspheres, we do not enforce the class samples to lie on the boundary of the hypersphere
and we utilize Euclidean distances between the samples and their corresponding centers
instead of cosine distances.

1.1. Related Work

We propose a novel method using hyperspherical spaces for open set recognition. Therefore,
we summarize the related works on hyperspheres and open set recognition.

1.1.1. Classifiers Using Hyperspheres

The methods using hyperspherical output spaces can be broadly categorized into two groups
depending on whether they utilize class-specific prototypes or classifier weights. Among the
methods using class-specific prototypes, (Mettes et al., 2019) utilizes class-specific proto-
types chosen from the outer boundary of a unit hypersphere. As opposed to our work,
they do not learn the prototypes from the data samples as we did. Instead, they place the
prototypes, that represent the classes, on the hypersphere based on the semantic relations
obtained from word embeddings of the class names. There are also similar deep neural
network classifiers using class representative prototypes (or centers) that are selected from
the boundary of a hypersphere, (Cevikalp and Saribas, 2023; Bytyqi et al., 2023; Li et al.,
2022; Graf et al., 2021). These methods use the vertices of a regular simplex enclosed within
a hypersphere with the following constraint on the feature dimensionality: the dimension
of the feature space, denoted as d, must be equal to or greater than the total number of
classes minus one, d ≥ C−1, where C represents the number of classes. These methods also
use prefixed vectors representing classes and these vectors are not learned from data as in
our proposed method. During the testing stage, the test samples are assigned to the classes
based on the Cosine or Euclidean distances between the samples and class prototypes.

The methods using classifier weights modify the conventional softmax loss function to
maximize the angular margins within the hyperspherical output spaces. To this end, (Wang
et al., 2018) introduced the CosFace method which imposes an additive angular margin on
the learned deep CNN (Convolutional Neural Network) features. Both the features and the
learned class weights are normalized so that they lie on the surface of a hypersphere with
a radius, s, that is set to larger values. An additive margin is used for separation of the
classes. A similar method called the ArcFace using additive margins is proposed in (Deng
et al., 2019). As opposed to the using additive margins, SphereFace method (Liu et al.,
2017, 2016) used multiplicative margins for inter-class separation. Also, this method did
not normalize the sample feature vectors as in CosFace and ArcFace methods, but a new
variant of the SphereFace method (Liu et al., 2023) normalizes both feature vectors and
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class weights so that they lie on the surface of a hypersphere. A method called UniformFace
which is similar to our proposed one is introduced in (Duan et al., 2019). This method aims
to learn equidistributed representations on hyperspherical spaces. To this end, the authors
adopt the angular softmax used in SphereFace method and they combine it with another
loss term that encourages uniformly distributed CNN features on the hypersphere. All face
recognition methods using classifier weights utilize the angles between test samples and
class weights for class label assignments.

In addition to these methods, there are also methods that introduce loss functions
for learning uniformly distributed representations on the hypersphere manifold through
potential energy minimization, (Liu et al., 2018; Lin et al., 2020; Liu et al., 2021). However,
these studies primarily focus on addressing the issue of layer regularization rather than the
direct classification problem and apply hyperspherical uniformity to the learned weights.
The key concept is to train deep neural network weights that are uniformly distributed on
a hypersphere, with the aim of minimizing redundancy among the learned weights. Some
of these methods (e.g., (Liu et al., 2021)) also require that the weights must be orthogonal
to each other. This yields a constraint that the dimension must exceed the total number
of learned weight vectors, similar to the restriction observed in methods utilizing regular
simplex vertices for approximating the classes.

There are some classifiers that use hyperspheres for approximating classes as in (Cevikalp
et al., 2023; Yang et al., 2020; Uzun et al., 2023; Cho and Choo, 2022). However, these
methods do not use hyperspherical output spaces, therefore they are quite different than our
proposed method here. Instead, each class is represented with a class-specific hypersphere.
The hypersphere centers are learned from data as in (Cevikalp et al., 2023; Yang et al.,
2020; Uzun et al., 2023) or randomly chosen from some distributions and fixed to some
specific vectors, (Cho and Choo, 2022). These hyperspheres can arbitrary lie indifferent
regions of the feature space. Test samples are classified based on the closest distances from
the samples to the hypersphere centers.

1.1.2. Open Set Recognition

In open set recognition problems, there is a possibility of encountering novel classes (that
were not used in the training phase) during the testing phase. The objective is to ac-
curately classify the samples belonging to the known classes while rejecting those from
unknown classes, (Scheirer et al., 2013). Recent approaches aim to address this open set
recognition problem by restricting the acceptance regions of the known classes. In this re-
gard, the Convolutional Prototype Network was proposed (Yang et al., 2020), which learns
multiple prototype vectors to represent each class. It enforces the known class samples to
cluster tightly around these learned prototypes, and novel test samples are rejected based
on their distances to the prototype vectors. In a similar manner, (Cevikalp et al., 2023) uses
hypersphere centers for approximation of known classes in the context of open set recogni-
tion. Both methods jointly learn the class centers (prototypes) and feature representations
from data in an end-to-end manner, but they do not use hyperspherical output spaces since
the hypersphere centers can arbitrary lie indifferent regions of the feature space. The Deep
Polyhedral Conic Classifier method of (Cevikalp et al., 2021) also returns bounded and
compact acceptance regions for the known classes. It achieves this by simultaneously max-
imizing the separation between different classes and minimizing the variations within each
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Figure 1: Comparison of the embedding spaces of the proposed method and other state-of-
the-art face recognition methods maximizing the margin in angular spaces in the
context of open set recognition: The known class centers are shown with differ-
ent colored star symbols, and corresponding class samples are represented with
the circle symbols having the same color. The unknown class samples are repre-
sented with gray colored circles. When both the features and classifier weights
are normalized as in face recognition methods (e.g., CosFace and ArcFace), the
known and unknown class samples overlap with each other and it becomes harder
to identify and reject the unknonw class samples. In contrast, in the proposed
method, we can easily identify and reject the unknown class samples based on
the Euclidean distances to the known class centers as seen on the right since the
features of samples are not normalized.

class using polyhedral conic functions. Another method described in (Miller et al., 2021)
encourages the known class training data to tightly cluster around class-specific centers in
the logit space. This method operates in the logit space and aims to cluster the classifi-
cation scores around anchored class centers, positioned on the respective class coordinate
axes. Each anchored class center is represented as a scaled one-hot vector. Consequently,
this ensures equal distances between all classes, restricting the learning of semantically
meaningful features, as mentioned by the authors of (Miller et al., 2021). To address open
set recognition, (Dhamija et al., 2018) introduced entropic open set and object-to-sphere
loss functions. These functions yield feature embedding spaces where known class samples
exhibit a large feature magnitude and low entropy, while unknown samples have a smaller
magnitude.
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1.2. Motivation and Contributions

State-of-the-art face recognition methods maximizing the margin in angular spaces yield
excellent accuracies for closed set recognition problems, yet their accuracies are not satis-
factory in open set recognition settings. The reason behind this is demonstrated in Fig.
1, where the known class centers are denoted by star symbols and the corresponding class
samples are represented by circle symbols of the same color. In open set recognition settings,
samples coming from the unknown classes are used, and these samples are represented with
the gray circles in the figure. Popular face recognition methods such as CosFace, ArcFace
etc. normalize both the features and classifier weights so that they all lie on the boundary
of a hypersphere as seen left part of the figure. Because of this, known and unknown class
samples greatly overlap as seen in the figure despite the known class samples are easily sep-
arated from each other with a large angular margin. In this case, it is impossible to identify
and reject many unknown class samples, therefore the accuracy drops significantly in open
set recognition settings. In contrast, when the all features space is used as seen on the right
part of the figure, we can still successfully identify and reject the unknown class samples
based on the Euclidean distances to the known class centers. Therefore, we propose a novel
method that uses uniformly distributed centers lying on the boundary of a hypersphere
for approximation of the classes. In contrast to the face recognition methods maximizing
the margin in angular spaces, we do not normalize the features of samples to lie on the
boundary of the hypersphere in order to prevent overlap with the unknown class sample
features during the testing stage. We also utilize the Euclidean distances rather than cosine
distances for assigning labels to the test samples. The class centers are completely learned
from the training data in end-to-end manner, therefore our proposed method differs from
other methods using predetermined centers chosen from the vertices of a regular simplex
inscribed in a hypersphere or determined based on semantic word embeddings.

Our contributions can be summarized as follows:

� The proposed method learns uniformly distributed centers that approximate the
known classes based on the training data in end-to-end manner. Therefore, there
is no need to set the centers in advance, which is a tedious task. The proposed
method also learns semantically related features as shown in the experiments.

� As opposed to the class centers, the learned CNN features are not inherently normal-
ized to reside on the boundary of the hypersphere. As a result, it becomes relatively
simpler to identify and reject the unknown samples by evaluating the Euclidean dis-
tances to the known class centers.

� The proposed method effectively handles imbalanced datasets since it independently
minimizes the distances between the samples and their respective centers, without
being influenced by class imbalances.

2. Deep Uniformly Distributed Centers on a Hypersphere Method

In this paper, we propose a novel method that uses uniformly distributed centers on a
hypersphere for classification. In the proposed method, each class is approximated with a
center lying on the boundary of a hypersphere, and the test samples are classified based
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on the smallest Euclidean distances between the test samples and the class-specific centers.
The problem of uniformly distributing points on a hypersphere is largely studied in the
literature in different contexts, e.g., for finding an equilibrium state with the minimum
potential energy that distributes C electrons on a unit hypersphere as evenly as possible
known as Thomson problem, (Thomson, 1904), or best-packing problem on hypersphere
known as Tammes problem, (Tammes, 1930). As theoretically proved in (Liu et al., 2021),
when the dimension of the feature space is larger than the number of centers, vertices
of a regular simplex inscribed in the hypersphere offer the optimal solution in terms of
margin maximization. However, placing the centers uniformly on the hypersphere is an
open mathematical problem when this criterion is not satisfied. Instead of solving this
tedious problem and placing the centers to fixed positions, we learn the centers’ positions
from the training data and learn both the features and centers jointly in an end-to-end
manner in the proposed methodology.

Let us assume that the deep neural network features of training samples are given in
the form (fi, yi), i = 1, . . . , n, fi ∈ IRd, yi ∈ {j} where j = 1, ..., C. Here, C is the total
number of known classes. Let sj denote the center of the j−th class which will be used for
approximation of that class. The class centers must lie on the boundary of a hypersphere
whose center is the origin with a radius u, thus the lengths of the center vectors must satisfy
the restriction, ∥sj∥ = u for j = 1, ..., C. In this case, the loss function of the proposed deep
neural network classifier can be written as,

L =
1

n

n∑
i=1

∥fi − syi∥
2 + λ

n∑
i=1

C∑
j=1,j ̸=yi

max
(
0,m+ ∥fi − syi∥

2 − ∥fi − sj∥2
)

+ κ

C∑
j=1

C∑
j̃=1,̃j ̸=j

1∥∥∥sj − sj̃

∥∥∥
2
+ 1

, (1)

under the constraint, ∥sj∥ = u for j = 1, ..., C.
The first term in the loss function minimizes the Euclidean distances between the class

samples and their corresponding centers. The second term is used for the inter-class separa-
tion, and it ensures that the distances between the training samples and their corresponding
class centers must be smaller than the distances between these samples and rival class cen-
ters by at least a selected margin, m. The last term targets to place the centers uniformly
on the hypersphere. To this end, we adopt the same loss term used in the UniformFace
method (Duan et al., 2019) for this purpose. In this loss term, uniformity is defined as the
potential energy of all the centers, and the repulsion between two class centers is repre-
sented by the inverse of the distance between the centers. In order to learn equidistributed
representations, the potential energy of all class centers is minimized via so-called uniform
loss function which is set to the average of all pairwise repulsions. It should be noted that
our proposed method is quite different than the UniformFace method despite we utilize a
common loss term since we use the Euclidean distances for decision making and employ
a completely different loss term than the Angular Softmax (A-Softmax) used in the Uni-
formFace. The margin term m, and the weight parameters λ and κ must be set by the
user.
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2.1. Including Background Samples for Open Set Recognition

In open set recognition scenarios, the training of classifiers commences by exclusively uti-
lizing samples of known classes. Subsequently, both known and unknown class samples are
employed in testing the resulting classifiers. The primary objective in this task is to ensure
accurate classification of known class samples, while also detecting and rejecting samples
from unknown classes, (Scheirer et al., 2013). Prior methods for open set recognition relied
solely on the use of the known class samples during training. However, recent investigations
(Dhamija et al., 2018; Miller et al., 2021; Cevikalp et al., 2023; Geng et al., 2021) have
shown that augmenting the training dataset with the background dataset with samples
coming from the classes that differ from the known classes can greatly enhances accuracy.
The background samples can come various classes, thus they do not form a compact and
coherent class group. Instead, they are scattered over all feature space similar to the un-
known class samples depicted in Fig. 1. Let us represent the deep neural network features
of the background samples by fk ∈ IRd, k = 1, ...,K. In order to incorporate the background
samples, we add an additional loss term that pushes the background samples away from
the known class centers as follows:

L =
1

n

n∑
i=1

∥fi − syi∥
2 + λ

n∑
i=1

C∑
j=1,j ̸=yi

max
(
0,m+ ∥fi − syi∥

2 − ∥fi − sj∥2
)

+ κ

C∑
j=1

C∑
j̃=1,̃j ̸=j

1∥∥∥sj − sj̃

∥∥∥
2
+ 1

+ η

n∑
i=1

K∑
k=1

max
(
0,m+ ∥fi − syi∥

2 − ∥fk − syi∥
2
)
, (2)

under the constraint, ∥sj∥ = u for j = 1, ..., C.
The first three terms of this new loss function are same as before. But, we add an-

other loss term to ensure that the distances between the known class samples and their
corresponding centers must be smaller than the distances between the background samples
and known class centers by at least a selected margin, m. As a result, the background
class samples are pushed away from the known class centers so that the trained model will
form compact acceptance regions for the known classes. This way, the trained deep neural
network classifier model will reject the unknown class samples more correctly.

3. Experiments

We tested the proposed method on both closed and open set recognition problems. We also
conducted experiments to visualize the learned CNN features.

3.0.1. Illustrations

We first conducted some experiments to visualize the learned CNN features to verify that the
class samples cluster in the vicinity of the learned centers that are uniformly distributed on
a hypersphere. To this end, we used a small deep neural network that yields 2-dimensional
CNN features. We trained the network by using 5 and 10 classes chosen from the Cifar10
dataset by using the proposed loss function given in (1). The hypersphere radius is set to
5 for 5 classes, and it is set to 12 for 10 classes. The CNN features of test samples returned
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Figure 2: The outputs of the deep neural network classifiers trained by using the proposed
loss function for 5 and 10 classes. For both cases, the class centers are uniformly
distributed on the boundary of the hypersphere, and the class-specific samples
compactly cluster in the vicinity of their class centers.

by the trained networks are illustrated in Fig. 2. As seen in the figure, the class centers are
uniformly distributed on the hypersphere. In addition, the class specific samples lie near
their corresponding centers as expected.

We also conducted experiments to verify that the proposed method returns semantically
related embeddings. To verify this, we utilized a ResNet-18 architecture returning 512-
dimensional CNN features. We trained the network by using Cifar10 classes and computed
the learned centers for each class. Then, we computed the pair-wise distances between the
class centers. Fig. 3 shows the distance matrix. As seen in the figure, the automobile class
is closest to its semantically related truck class, the cat class is closest to the dog class, and
horse class is closest to deer class. The distances also reflect appearance information as
well. For example, airplane class is visually similar to ship class since the backgrounds are
similar. As a result, the distance between these two class centers is the minimum among
other pair-wise distances. In a similar manner, horse class center is also closer to dog class
since the appearances of some samples of these classes are quite similar. Overall, these
computed distances verify that the proposed methodology yields semantically related CNN
features.

3.1. Closed Set Recognition Experiments

We conducted experiments to assess the closed set recognition accuracy of the proposed
method. To this end, we tested the proposed method on three datasets: Mnist, Cifar10,
and Cifar100 datasets. We compared our results to the methods that maximize the margin
in Euclidean or angular spaces. For all methods we used the same ResNet-18 architecture
as backbone. Therefore, all results are directly comparable. The hypersphere radius is set
to 64. The accuracies are given in Table 1. As seen in the results, our proposed method
achieves the best accuracies in all cases, but the performance improvement is significant
only for the Cifar100 dataset.
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Figure 3: The distance matrix computed by using the centers of the training classes. The
hypersphere centers are placed on the hypersphere based on appearances. Most
of the time, semantically related classes lie close to each other, e.g., semantically
related cat-dog classes or automobile-truck classes. In some cases, visually similar
classes such as airplane-ship and horse-dog class centers are close to each other.

Table 1: Classification accuracies (%) on closed set recognition datasets.
Methods Mnist Cifar10 Cifar100

DUDC-HS (Ours) 99.7 95.1 77.4

Softmax 99.4 94.4 75.3

Center Loss 99.7 94.2 76.1

ArcFace 99.7 94.8 75.7

CosFace 99.7 95.0 75.8

SphereFace 99.7 94.7 75.1

3.2. Open Set Recognition Experiments

The datasets are split into known and unknown classes in open set recognition settings. By
following the standard settings, we split the the datasets into known and unknown classes
five times, trained our classifiers and computed the accuracies. The final accuracies are
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Table 2: AUC Scores (%) of open set recognition methods on tested datasets (n.r. stands
for not reported).

Methods Mnist Cifar10 SVHN Cifar+10 Cifar+50 TinyImageNet

DUDC-HS (Ours) 99.6± 0.1 90.6± 0.5 95.2± 0.3 97.5± 0.3 96.2± 0.4 81.4± 0.7

Softmax 97.8± 0.2 67.7± 3.2 88.6± 0.6 81.6± n.r. 80.5±±n.r. 57.7± n.r.

OpenMax 98.1± 0.2 69.5± 3.2 89.4± 0.8 81.7± n.r. 79.6± n.r. 57.6± n.r.

G-OpenMax 98.4± 0.1 67.5± 3.5 89.6± 0.6 82.7± n.r. 81.9± n.r. 58.0± n.r.

C2AE 98.9± 0.2 89.5± 0.9 92.2± 0.9 95.5± 0.6 93.7± 0.4 74.8± 0.5

CAC 99.1± 0.5 80.1± 3.0 94.1± 0.7 87.7± 1.2 87.0± 0.0 76.0± 1.5

CPN 99.0± 0.2 82.8± 2.1 92.6± 0.6 88.1± n.r. 87.9± n.r. 63.9± n.r.

OSRCI 98.8± 0.1 69.9± 2.9 91.0± 0.6 83.8± n.r. 82.7±− 58.6± n.r.

CROSR 99.1± n.r. 88.3± n.r. 89.9± n.r. 91.2± n.r. 90.5± n.r. 58.9± n.r.

RPL 98.9± 0.1 82.7± 1.4 93.4± 0.5 84.2± 1.0 83.2± 0.7 68.8± 1.4

GDFRs n.r. 83.1± 3.9 95.5± 1.8 92.8± 0.2 92.6± 0.0 64.7± 1.2

Objecttosphere n.r. 94.2± n.r. 91.4± n.r. 94.5± n.r. 94.4± n.r. 75.5± n.r.

obtained by averaging the accuracies obtained in each trial. The details of the each dataset
are given below:

3.2.1. Datasets

Mnist, Cifar10, SVHN: These datasets are split randomly into six known and four un-
known classes by using the common testing setting. The 80 Million Tiny Images dataset
(Torralba et al., 2008) is used as the background class.
Cifar+10, Cifar+50: For Cifar+N experiments, four randomly chosen classes from the
Cifar10 dataset are used for training, and N non-overlapping classes chosen from the Ci-
far100 dataset are used as unknown classes as in (Yang et al., 2020; Miller et al., 2021;
Yoshihashi et al., 2019; Chen et al., 2020). The 80 Million Tiny Images dataset (Torralba
et al., 2008) is used as the background class.
TinyImageNet: For TinyImageNet (Russakovsky et al., 2015) experiments, twenty classes
are randomly chosen as known classes and one hundred eighty classes as unknown classes
by following the standard setting. The 80 Million Tiny Images dataset (Torralba et al.,
2008) is used as the background class.

3.2.2. Results

The main goal of open set recognition is to detect and reject the samples that come from
the novel classes. The performance of open set recognition is often measured using the Area
Under the ROC curve (AUC) scores. Additionally, the closed set accuracy is also reported
to evaluate classification performance on known data by disregarding unknown samples, as
demonstrated in previous works such as (Yang et al., 2020) and (Neal et al., 2018). Our
proposed method, Deep Uniformly Distributed Centers (DUDC-HS), is compared against to
other state-of-the-art open set recognition methods including C2AE (Oza and Patel, 2019),
Softmax, OpenMax (Scheirer et al., 2013), OSRCI (Neal et al., 2018), CAC (Miller et al.,
2021), RPL (Chen et al., 2020), CROSR (Yoshihashi et al., 2019), ROSR (Yoshihashi et al.,
2019), Generative-Discriminative Feature Representations (GDFRs) (Perera et al., 2020),
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and Objecttosphere (Dhamija et al., 2018) methods. Except for the TinyImageNet dataset,
we employed the identical network backbone as in (Neal et al., 2018) for all datasets. To
achieve higher accuracies for the TinyImageNet dataset, we utilized a deeper Resnet-50
architecture. The hypersphere radius is set to u = 64 as in the ArcFace method. The
proposed method returned accuracies that are directly comparable to those reported in
(Neal et al., 2018) for most of the tested datasets, as the network weights were randomly
initialized during the training stage. AUC scores were summarized in Table 2, which showed
that the proposed method achieved the best accuracies across all datasets except for the
Cifar10 and SVHN. Notably, there were significant performance differences observed for
the Cifar+10, Cifar+50, and TinyImageNet datasets. Closed set accuracies for open set
recognition methods were reported in Table 3, where the proposed method achieved the
best accuracies among the tested methods, with the exception of the Mnist and SVHN
datasets. Obtaining typically the best accuracies in terms of AUC scores and closed set
accuracies indicates that our proposed method can easily identify and reject the novel class
samples and correctly classify the known class samples as expected.

Table 3: Closed Set accuracies (%) of open set recognition methods on tested datasets.
Methods Mnist Cifar10 SVHN Cifar+10 Cifar+50 TinyImageNet

DUDC-HS (Ours) 99.6± 0.1 94.3± 1.4 96.1± 0.6 94.6± 0.8 95.0± 0.3 83.3± 1.3

Softmax 99.5± 0.2 80.1± 3.2 94.7± 0.6 n.r. n.r. n.r.

OpenMax 99.5± 0.2 80.1± 3.2 94.7± 0.6 n.r. n.r. n.r.

G-OpenMax 99.6± 0.1 81.6± 3.5 94.8± 0.8 n.r. n.r. n.r.

CPN 99.7± 0.1 92.9± 1.2 96.7± 0.4 n.r. n.r. n.r.

OSRCI 99.6± 0.1 82.1± 2.9 95.1± 0.6 n.r. n.r. n.r.

CROSR 99.2± 0.1 93.0± 2.5 94.5± 0.5 n.r. n.r. n.r.

4. Conclusion

In this study, we proposed a novel method that uses uniformly distributed centers on a
hypersphere for open set recognition. In the proposed method, each class is represented
by a center, and the centers are learned from training data in an end-to-end manner. The
centers are enforced to lie on the boundary of a hypersphere with radius u, and the center
of the hypersphere is located at the origin. The proposed loss function enforces the class
specific samples to lie closer their corresponding centers. For open set recognition settings,
there is an additional loss term that pushes the background samples away from the known
class centers. The test samples are assigned to classes based on the Euclidean distances
from the learned class centers. Experimental results verify that the proposed method gen-
erally achieves the best accuracies for both open and closed set recognition settings. The
performance difference is significant especially on open set recognition datasets.
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