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Abstract
GPS coordinates are a fundamental aspect of location-based applications, yet prior methods for
representing them do not fully capture the intricate relationships between different locations.
In this paper, we propose a novel map-based approach to embedding GPS coordinates using
self-supervised learning. Unlike most prior studies that directly embed GPS coordinates to a
latent space, we leverage a map-based approach, allowing embeddings to capture geographical
and economic features. Namely, we use a student-teacher architecture, where a student network
is trained to mimic the outputs of the teacher, using two different augmented versions of the
same input. To capture the rich underlying semantics of GPS coordinates, we further leverage
auxiliary tasks including geo prediction, high-level reconstruction, and intermediate clustering.
The intermediate clustering loss facilitates learning features at different levels of granularity, while
the high-level reconstruction loss encourages “local-to-global” correspondences. We evaluate
our method on a large-scale dataset of GPS coordinates and demonstrate that it outperforms
several baseline methods in terms of the quality of the learned embeddings. Moreover, we show
the usefulness of our embeddings in various downstream tasks, such as predicting land price,
land cover type, or water quality indice.
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1. Introduction

Location-based applications Li et al. (2019) leverage GPS coordinates as a foundational element,
empowering a plethora of services and functionalities, spanning from navigation Herrera et al.
(2010) and ride-sharing to geotagging and beyond Raper et al. (2007). GPS-based applications also
hold substantial promise in shaping the landscape of smart cities Wov (2023). These applications
cover a wide range of areas in smart cities, including location-based services and understanding
human behavior from GPS traces Wang (2016). However, traditional techniques for representing
GPS coordinates, such as latitude and longitude, provide only a limited representation of location
and fail to capture the complex relationships between different locations Jean et al. (2019). For
instance, two locations with similar latitude and longitude values may have vastly different
geographic or economic features, making it challenging to develop effective applications that
rely on the semantic meaning of locations. To address this limitation, researchers have proposed
various methods for embedding GPS coordinates into a high-dimensional space Yin et al. (2019),
where a GPS coordinate is represented as a vector that captures its semantic meaning.
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While prior work have explored various methods for GPS coordinate embedding, such as
using convolutional neural networks (CNNs) Dabiri et al. (2020) and graph-based models Tian
et al. (2021), these methods have limitations in capturing rich semantic information. For example,
the work by Dabiri et al. uses a CNN to embed GPS coordinates, however, the model is limited
by its inability to capture contextual information from surrounding locations. Similarly, Tian et
al. Tian et al. (2021) proposed a graph-based model for GPS coordinate embedding, but it relies
on a pre-defined graph structure that may not capture the nuances of real-world geographic
relationships. In contrast, the proposed map-based methodology allows for the extraction of
contextual information from surrounding locations, enabling the model to capture more complex
relationships between locations. Namely, our approach differs from prior works that directly
embed GPS coordinates, as it leverages maps to incorporate contextual information from sur-
rounding locations. Additionally, we employ auxiliary tasks to extract rich semantic information
from maps.

This paper presents a novel approach to embedding GPS coordinates into a high-dimensional
space using self-supervised learning, GPS-SELM (GPS-coordinate Self-supervised Embedding
with Location-based Maps). We leverage a map-based approach that allows embeddings to
capture rich features, including geographical and economic information. Specifically, we use
a student-teacher architecture, where a student network is trained to mimic the output of the
teacher network, using two different views of the same input. Namely, this knowledge distillation
loss encourages the student network to match the outputs of the teacher network. To incen-
tivize the network to learn richer embeddings, we further leverage auxiliary tasks including geo
prediction and high-level reconstruction. The high-level reconstruction task seeks to capture
“local-to-global” correspondences. In addition, the model is equipped with an intermediate
clustering module that pulls similar samples close. This brings similar samples close and thus
pulls similar local-groups together, capturing features at a semantic group level. The resulting
embeddings can be used for a variety of downstream tasks, including geographic information
retrieval and clustering.

To evaluate the effectiveness of GPS-SELM, we conduct experiments on large-scale datasets of
GPS coordinates. We compare the performance of our approach against several baseline methods,
including prior work on GPS coordinate embedding. The experimental results demonstrate
that our approach outperforms vanilla DINO Caron et al. (2021) in terms of the quality of the
learned embeddings. In particular, we improve it by ∼7% classification accuracy when testing
the learned representations on an area-type classification task, ∼5% top-1 accuracy on land
cover classification, ∼5% accuracy on area-type prediction, and ∼1% AP on object detection.
Surprisingly, our model can even outperform the remote sensing counterpart on water quality
prediction using remote image sensing images by ∼3% top-1 accuracy.

2. Related Work

In the quest to encode the underlying semantics of GPS coordinates, researchers have actively
explored the utilization of a wide range of supplementary data sources and techniques, including
self-supervised learning and extracting nuanced semantic contexts.

Self-Supervised Learning One prominent research direction is contrastive learning, which
includes MoCo He et al. (2020) and MoCo-V2 Chen et al. (2020). These methods have consistently
showcased superior performance across downstream tasks. The underlying principle of con-
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trastive learning is to train representations by pulling positive image pairs from the same instance
closer together in latent space while pushing negative pairs from different instances further apart.
Contrary to contrastive approaches, Grill et al. (Grill et al. (2020)) introduce a metric-learning
framework (BYOL) which trains features by matching them to representations obtained from
a momentum encoder. While methods like BYOL can function without a momentum encoder,
they experience a slight performance decline Chen and He (2021). Several other works align with
this approach, demonstrating the ability to match more intricate representations Gidaris et al.
(2020). DINO Caron et al. (2021) simplifies self-supervised training by directly predicting the
output of a teacher network, constructed using a momentum encoder, through the utilization
of a standard cross-entropy loss. MUGS Zhou et al. (2022) proposed to explicitly learn multi-
granular visual features. GPS-SELM employs a similar approach for intermediate clustering while
explicitly capturing “local-to-global” correspondences and map-related features. In addition, we
propose a different way of creating soft cluster and use a different network architecture. Despite
the rapid growth of self-supervised learning, its application on GPS embedding remains largely
unexplored. Prior studies predominantly rely on small-scale datasets that are constrained to
specific geographic regions Jean et al. (2019); Lu et al. (2017) or highly specialized modalities like
hyperspectral images Mou et al. (2017). Although these approaches have demonstrated effective-
ness in addressing challenges specific to remote sensing, their applicability to GPS embeddings is
limited due to the inherent differences between the domains.

GPS Coordinates to Embeddings. Several approaches have been proposed to leverage supple-
mentary data sources for encoding semantics onto GPS coordinates. For instance, Joshi and Luo
Joshi (2008) utilized GeoNames, a publicly available geographical information system database.
That is, they discriminatively model the statistical saliency of geo-tags in describing an activ-
ity or event. In a similar spirit, other researchers Tang et al. (2015) leverage Google Maps to
extract geographic and statistical features for locations within the United States. In GPS2Vec
Yin et al. (2019), a two-level grid-based framework is used to learn semantic embeddings for
geo-coordinates worldwide. On the other hand, it may be possible to exploit the spatio-temporal
structure of remote sensing data Ayush et al. (2021). The authors exploit spatially aligned images
over time to construct temporal positive pairs in contrastive learning and geo-location to design
pretext tasks. Another related paper Samano et al. (2020) proposed an approach to geolocalising
panoramic images on a 2D cartographic map based on learning a low-dimensional embedded
space. To further improve the discriminatory to allow localization, they enhance their model
by concatenating along a route. Nevertheless, the current methods have notable drawbacks:
1) limited applicability at inference due to reliance on specific supplementary data sources; 2)
high computational cost resulting from frequent nearest neighbor search queries; and 3) lack of
economic and rich semantic information, narrowing down potential applications.

3. Method

Our method (GPS-SELM) leverages a map-based approach to embedding GPS coordinates using
self-supervised learning (Figure 1). Unlike traditional methods for GPS coordinate representation,
which can be limited in their ability to capture the variability of location and semantic informa-
tion, our approach uses map images to capture rich geographical and topological features. By
projecting each GPS coordinate onto a map image, GPS-SELM can handle a large number of
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Figure 1: Overall framework of GPS-SELM. The input GPS coordinate is projected onto a map
image. For each map image, GPS-SELM performs random augmentations and feeds two crops
into backbones of student and teacher. Next, we leverage three types of auxiliary tasks: 1) geo-
predictive tasks, 2) a high-level reconstruction task, and 3) an intermediate clustering task. The
final loss is the weighted sum of the self-supervised and auxiliary losses.

entities within a region, without the need for manual feature selection or creation. To do so, we
use a student-teacher with knowledge distillation.

In detail, first, each GPS coordinate is projected onto a map image centered on the input
coordinate. Then, a student and teacher networks receive two different augmented versions of the
same map image. The augmentations include random rotations, zooming, and crops of the input.
Through knowledge distillation, the student network learns meaningful embeddings that capture
geographical and topological features. We also introduce auxiliary tasks to further improve the
quality of the learned embeddings, including geo-predictive tasks and a high-level reconstruction
task. Auxiliary tasks primarily aim to extract economic and demographic information from map
images. Finally, we equip the model with an intermediate clustering loss to encourage pulling
together similar GPS coordinates at a group level.

3.1. From GPS Coordinates to Maps

As mentioned above, we introduce a map-based approach that converts GPS coordinates into
map images to leverage the rich spatial and contextual information provided by maps. To generate
map images, we retrieved map tiles corresponding to the GPS coordinates from OpenStreetMap
OpenStreetMap contributors (2017) (OSM). We store in a dataset D pairs of GPS coordinates (x, y)
and their associated map m, D = {(x0, y0) → m0, (x1, y1) → m1, · · · }.

Since a large number of maps have a low semantic meaning such as ocean or mountain, we
use an entropy-based cleaning strategy. We filter out maps with low entropy to remove irrelevant
maps and retain only semantically meaningful maps, such as roads or buildings. Namely, we add
a map to D if the image entropy is larger than a threshold tentr opy .

During training, we further employ prioritized sampling, where we assign higher sampling
probabilities to GPS coordinates that are less represented in the dataset, ensuring a more diverse
set of training examples. In particular, we assume that complex maps such as maps representing
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urban environments should be given more weight. Concretely, we define the probability of
sampling a map mi as:

P (mi ) = pα
i∑

k pα
k

, (1)

where pi > 0 is the priority of map mi . The exponent α determines how much prioritization is
used, with α= 0 corresponding to the uniform case. In the current implementation, we consider
an entropy-based prioritized sampling where pi =H (mi )+ϵ, where H is the entropy function
and ϵ is a small positive constant that prevents the edge-case of maps not being used.

3.2. Self-Supervised Learning via Student-Teacher Distillation

We use a self-supervised learning approach with student-teacher distillation, inspired by DINO
Caron et al. (2021), to extract meaningful embeddings from map images. The method shares
similarities with knowledge distillation Hinton et al. (2015) and DINO Caron et al. (2021).

Knowledge distillation is a learning technique in which a student network, denoted by gθs , is
trained to match the output of a teacher network, denoted by gθt . The networks are parameterized
by θs and θt , respectively. Given an input map image m, both networks output probability
distributions over K dimensions represented by Ps and Pt . These probability distribution P is
obtained by normalizing the output of the network g with a softmax function. The process for the
student network gθs is formalized below:

Ps(m)(i ) = exp(gθs (m)(i )/τs)∑K
k=1 exp(gθs (m)(k)/τs)

, (2)

where τs > 0 is a temperature parameter that controls the sharpness of the output distribution.
An analogous formula holds for Pt with temperature τt . Given the fixed teacher network gθt , the
student network seeks to match these distributions by minimizing the cross-entropy loss Lcl w.r.t.
the parameters of the student network θs :

min
θs

H (Pt (m),Ps(m
′
)), (3)

where H (a,b) =−a logb, and, m and m
′

are two different views of the same input map image.
Given that our method utilizes map images that exhibit relatively consistent intensity and quality,
we use augmentations that include random rotations, zooming, and crops of the input. The
overall process can be formulated as follows:

min
θs

∑
m∈{mg

1 ,mg
2 }

∑
m′∈V ∧m′ ̸=m

H (Pt (m),Ps(m
′
)), (4)

where for a given map m, we generate a set V of different views. This set contains two global
views, mg

1 and mg
2 and multiple local views of smaller resolution with random augmentations. All

augmented crops are passed through the student while only the global views are passed through
the teacher.
The teacher network’s weights are updated using an exponential moving average (EMA) on the
student weights, i.e., a momentum encoder He et al. (2020). The update rule is θt ←λθt +(1−λ)θs ,
with λ following a cosine schedule from 0.996 to 1 during training.
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3.3. Auxiliary Tasks

To further improve the quality of the learned embeddings, we introduce three types of auxiliary
tasks. First, we leverage a set of geo-predictive tasks, including land price prediction, population
density estimation, and latitude/longitude prediction. Second, we add a high-level reconstruction
task where the student network is trained to reconstruct a higher-level map of the input map. This
helps the student network to capture “local-to-global” correspondences. Finally, we equip the
model with an intermediate clustering loss that seeks to learn group-level features. The resulting
model can capture the spatial relationships between different locations and generate embeddings
that encapsulate both macro and micro-level features of the map.

3.3.1. GEO-PREDICTIVE TASKS

First, we employ a land price prediction task, where the land price head fp being attached to the
student network is trained to predict the land price of the input map image. This task is based on
a mean squared error (MSE) loss and is computed as follows:

Ll p = 1

N

N∑
j=1

(y j − ŷ j )2 = 1

N

N∑
j=1

(y j − fp (z j ))2, (5)

where z j is the feature vector produced by the student encoder, N is the number of training
examples, yi is the true land price of the location corresponding to the j -th example, and ŷi is the
predicted land price.

Second, we add a population density clustering task, where a density clustering head fc is
trained to predict the population density of the input map image. Ground-truth K clusters were
given by a clustering method (i.e., k-means), which assigned an area with coordinates (xi , yi )
a categorical density label ci ∈ C = {1, · · · ,K }. Using the cross entropy loss function, we then
optimize a density clustering head fc to recover the ground-truth density clusters as:

Lc = 1

N

N∑
j=1

K∑
i=1

−p(ci = k) log(p̂(ci = k| fc (z j ))), (6)

where z j is the feature vector produced by the student encoder, N is the number of training
examples, K is the number of classes for the population density, and ci is the true population
density class for the i -th example.

Finally, we leverage a latitude/longitude prediction task, where a latlong prediction head fl

is trained to predict the latitude and longitude coordinates of the input map image. This task is
based on an MSE loss and is computed as follows:

Ll =
1

N

N∑
i=1

[
(l ati − ˆl at i )2 + (loni − ˆloni )2] , (7)

where N is the number of training examples, l ati and l oni are the true latitude and longitude
coordinates of the location corresponding to the i -th example, and ˆl at i and ˆl oni are the predicted
latitude and longitude coordinates generated by the latlong prediction head fl given the feature
vector produced by the student encoder z j .
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We propose the objective for joint learning as the linear combination of geo-predictive losses
with uniform coefficients as:

argmin
θs

Lg eo = 1

3
Ll p + 1

3
Lc + 1

3
Ll . (8)

3.3.2. HIGH-LEVEL RECONSTRUCTION TASK

To encourage the student network to learn “local-to-global” correspondences, we introduce
a high-level reconstruction task. A high-level reconstruction head fr is trained to reconstruct
higher-level features of the input, enabling the student network to capture global information
about the map such as road shape, land use, and terrain. High-level map images can be retrieved
from OpenStreetMap by collecting map images at a smaller zoom level. To aid the student network
in the reconstruction task, we provide the context of the high-level image — the border pixels (see
Figure 1). These border pixels are added to the input of fr , providing context of the image to fr .
We use a mean squared error (MSE) loss to measure the difference between the reconstructed
image and the original high-level image. Let M̂ be a binary mask corresponding to the border
region, with a value of 0 for context pixels and 1 for other pixels. The loss is computed as follows:

Lr ec = 1

N

N∑
j=1

||(m∗
j − fr (z j ,m∗∗

j ))⊙ M̂ ||22, (9)

where m∗
j is a higher version of the original input image m j , z j is the feature produced by the

student encoder, m∗∗
j is the context of m∗

j , and ⊙ is the element-wise product operation.

3.3.3. INTERMEDIATE CLUSTERING TASK

In order to capture features at a different level of granularity — group level, we introduce an
intermediate clustering matching task, which learns a clustering matching between the student
and teacher networks. This involves clustering the intermediate embeddings generated by the
student and teacher networks and matching the resulting clusters to ensure that they are similar.
Clustering is performed on soft labels generated by the student and teacher networks, which are
probability distributions over the clusters. By using soft labels, we can capture the uncertainty of
the student network’s predictions and enable the matching to be performed at a group level.

Namely, we feed the cluster token y t
c in the feature zt from backbone teacher and the cluster

token y s
c in zs from student backbone into two heads f t

c and f s
c , where f t

c and f s
c are attached

to the student and teacher respectively. We then construct a set of learnable cluster prototypes
{ci }m

i=1 and compute soft pseudo clustering labels for the student as:

p s
i =

exp(( f s
c (y s

c )−pdi v ) · ci /τ
′
c )∑m

i=1 exp(( f s
c (y s

c )−pdi v ) · ci /τ
′
c )

, (10)

and for teacher as:

p t
i =

exp(( f t
c (y t

c )−pdi v ) · ci /τc )∑m
i=1 exp(( f t

c (y t
c )−pdi v ) · ci /τc )

, (11)

where the term pdi v is used to avoid discovering the trivial solution of mapping most data
points to the same cluster. pdi v is defined as the exponential moving average of all past f t

c (yc
t ),
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pdi v ← η·pdi v+(1−η)· 1
|B|

∑
p t∈B p t , where B is a mini-batch of size 256 and η is a hyperparameter

of our method. The model is trained to minimize a cross-entropy of soft cluster assignment
probabilities defined below:

Lclust (m,m
′
) =−

m∑
i=1

p t
i log(p s

i ). (12)

3.4. Overall Training

The final loss of GPS-SELM is defined as:

Ltot al = Lcl +αLg eo +βLr ec +γLclust , (13)

where Lcl is the cross-entropy loss, Lg eo is the sum of the three geo-predictive losses, Lr ec is the
high-level reconstruction loss, and Lclust is the intermediate clustering matching loss. α, β, and γ

are coefficients to trade-off the three losses, allowing us to control the relative importance of each
loss during training.

4. Results

Implementation Details. For self-supervised learning, we use ResNet-50 to parameterize the stu-
dent and teacher encoders, in all experiments. We pretrain the models on map images (128×128)
collected from OpenStreetMap for all Japan at zoom level 17, and high-level images for the re-
construction task at zoom level 16. We train with the AdamW optimizer Loshchilov and Hutter
(2017) and a batch size of 256. Similarly to DINO Caron et al. (2021), the learning rate is linearly
ramped up during the first 10 epochs and was set to lr = 0.0005. After this warmup, we decay
the learning rate with a cosine schedule. The weight decay also follows a cosine schedule from
0.04 to 0.4. The temperature τs is set to 0.1 in Eq. 2, while we use a linear warm-up for τt from
0.04 to 0.07 during the first 30 epochs. We set tentr opy to 0.40, and the projection dimension K
of student/teacher networks to 256. For geo-predictive tasks, the three heads (i.e., fp , fc , and fl )
are all 2-layered MLPs with hidden dimension 256 and rectified linear unit (ReLU) activations.
The high-level reconstruction head fr consists of a series of 3 transposed convolutional layers
with Gaussian Error Linear Unit (GELU) activation. We define the context of the input as the
area within a 3-pixel border around the map image. For the intermediate clustering matching
task, we set τ

′
c = 0.1 (Eq. 10) and linearly warm up τc from 0.04 to 0.07. We selected the neighbor

number k = 10, and η = 0.9 in the intermediate clustering module. The two projection heads
are 3-layered MLP with hidden/output dimension of 512/256. We set loss coefficients as α= 0.3,
β = 0.3, and γ = 0.4. Area information employed in geo-predictive tasks are publicly available
on the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) website MLIT (2023).
As described in section 3.3.1, we reduce the complexity of the population density classification
problem by applying a k-mean model on population density values, reducing the number of
unique classes from 588 to 30. We pretrained the model for 100 epochs on the OpenStreetMap
dataset, and 50 epochs on the downstream tasks.
Baselines. We compare the proposed method with several baselines, including MoCo-V2 Chen
et al. (2020), DINO Caron et al. (2021), MoCo-V2+Geo+TP Ayush et al. (2021), and Tile2Vec
Jean et al. (2019). In addition, for downstream experiments we report results with 1) random
initialization while fine-tuning on the target task (Random Init), and 2) a simple NN consisting



GPS-SELM

Figure 2: t-SNE visualization of feature embeddings on the OpenStreetMap dataset. Each square
represents a map feature, and the dotted circles indicate the cluster "name".

of 3-layered MLP with a hidden dimension of 128 that was trained on raw GPS coordinates (raw
GPS). We compare those baselines with three variations of GPS-SELM: 1) GPS-SELM solely trained
with geo-predictive tasks GPS-SELM (geo), 2) GPS-SELM (geo) augmented with the high-level
reconstruction task GPS-SELM (geo+rec), and 3) the full model GPS-SELM (geo+rec+int).
Datasets. We conducted several of the experiments to evaluate the performance of GPS-SELM
on the OpenStreetMap dataset, which consists of 8,924,351 map tiles before filtering. We used
map images of size 128×128 pixels. We randomly split the dataset into training, validation,
and testing sets with a ratio of 70:10:20, respectively. We also employed data from the National
Agricultural Imagery Program (NAIP) DOI/USGS/EROS (2021), xView dataset Lam et al. (2018),
and SustainBench dataset Yeh et al. (2021) for further analysis.

4.1. t-SNE Visualization

We applied t-SNE to visualize the embeddings produced by our method on the OpenStreetMap
dataset. We randomly selected 2,048 maps from the evaluation set and extracted their correspond-
ing feature embeddings using the trained student network. We then reduced the dimensionality
of the embeddings to three dimensions using t-SNE. Figure 2 shows the t-SNE visualization of the
feature embeddings. We observe that the embeddings form distinct clusters that correspond to
different map features, such as buildings, roads, and vegetation. Within each cluster, we carried
out additional analysis by leveraging ground-truth labels (i.e., land price, land cover, area type),
and observe sub-clusters that correspond to specific subclasses of features, such as residential
buildings, commercial buildings, and industrial buildings. Furthermore, we could notice that the
embeddings capture the spatial relationships between map features. For example, the building
clusters are located in the center of the visualization, surrounded by the road and vegetation
clusters. Besides, we discovered sub-clusters of points within the urban area clusters that focused
on specific features such as land price and population density of the area.

4.2. Land Price Prediction

Next, we evaluate GPS-SELM on a downstream task, land price prediction. The goal was to predict
land price around the given GPS coordinate. We randomly selected 50,000 GPS coordinates and
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Pretrain 1 epoch 25 epochs 50 epochs

Random Init -/0.93 -/0.45 -/0.28
raw GPS -/1.92 -/1.70 -/1.67

MUGS Zhou et al. (2022) 0.68/0.66 0.47/0.42 0.31/0.27
MoCo-V2 Chen et al. (2020) 0.67/0.64 0.39/0.36 0.30/0.25

DINO Caron et al. (2021) 0.65/0.61 0.41/0.36 0.29/0.26
MoCo-V2+Geo+TP Ayush et al. (2021) 0.58/0.53 0.45/0.40 0.28/0.24

Tile2Vec Jean et al. (2019) 0.60/0.57 0.41/0.36 0.26/0.22
GPS-SELM (geo) 0.29/0.25 0.22/0.17 0.16/0.14

GPS-SELM (geo+rec) 0.27/0.23 0.19/0.16 0.15/0.12
GPS-SELM (geo+rec+int) 0.26/0.22 0.17/0.14 0.13/0.10

Table 1: Experiments on GPS-SELM on predicting land price. We report (frozen/finetune) mean
squared errors (MSE), averaged over ten evaluation trials. Frozen corresponds to linear classifica-
tion on frozen features. Finetune corresponds to end-to-end fine-tuning results.

their maps from the OpenStreetMap dataset, and, extracted the corresponding feature embed-
dings using the trained student network. For a fair comparison, the map images used for the land
price prediction task in the downstream task were not used for pretraining our method. Namely,
we evaluated GPS-SELM on GPS coordinates from the Hokkaido area (i.e., north of Japan), while
pretraining samples contain GPS coordinates for other parts of Japan. Table 1 presents the results
of our experiments, including frozen and finetune MSE of each method. Vanilla Moco-V2 and
DINO were outperformed by MoCo-V2+Geo+TP and Tile2Vec baselines. Moreover, the proposed
method achieved the lowest errors of 0.22 and 0.10 after 1 epoch and after 50 epochs of training,
respectively. One compelling reason for the effectiveness of GPS-SELM is its ability to transfer
external knowledge such as land price seen during the pretraining, which other baselines lack.
Besides, one can observe that raw GPS is outperformed by map-based approaches including
GPS-SELM, highlighting the importance maps rather than raw GPS coordinates.

4.3. Area Type

We report the results in Table 2 on an area type classification task. Given a GPS coordinate as input,
the goal is to classify the land into one of 70 predefined types, such as industrial land, agricultural
land, etc. The evaluation is conducted using top-1 and top-5 accuracy metrics, averaged over ten
evaluation trials. True classes were obtained via the Ministry of Land, Infrastructure, Transport
and Tourism (MLIT) MLIT (2023). The experiment compares the proposed GPS-SELM method
against four baseline approaches: MoCo-V2, DINO, MoCo-V2+Geo+TP, and Tile2Vec. Additionally,
three variations of GPS-SELM are evaluated: GPS-SELM (geo), GPS-SELM (geo+rec), and GPS-
SELM (geo+rec+int). Among the baseline methods, MoCo-V2, DINO, MoCo-V2+Geo+TP, and
Tile2Vec, GPS-SELM consistently outperforms them in terms of accuracy. The results show that
incorporating geographical information, reconstruction, and intermediate clustering tasks in
GPS-SELM (geo+rec+int) leads to the highest accuracy values at each evaluation stage. This
indicates the effectiveness of leveraging multiple components for improved area type prediction.
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Pretrain 1 epoch 25 epochs 50 epochs

Random Init 19.23/23.20 24.69/35.98 31.51/44.31
raw GPS 2.45/3.98 4.16/6.12 4.09/6.10

MUGS Zhou et al. (2022) 27.42/41.47 29.51/45.18 33.75/46.90
MoCo-V2 Chen et al. (2020) 27.37/44.12 30.06/47.80 35.61/49.17

DINO Caron et al. (2021) 29.56/44.63 32.15/48.69 36.79/50.91
MoCo-V2+Geo+TP Ayush et al. (2021) 29.49/46.30 33.09/49.87 35.28/52.33

Tile2Vec Jean et al. (2019) 23.02/39.20 27.90/44.04 32.01/47.20
GPS-SELM (geo) 33.25/50.90 34.37/53.66 39.21/56.64

GPS-SELM (geo+rec) 35.10/51.68 38.03/54.05 39.40/55.01
GPS-SELM (geo+rec+int) 37.09/54.52 39.96/56.14 41.35/58.10

Table 2: Experiments on GPS-SELM on the area type. We report (top-1 accuracy/top-5 accuracy),
averaged over ten evaluation trials.

Figure 3: Linear interpolation in the latent space at equal intervals between representations of left
and right images. We show 3 nearest neighbors in the latent space to each interpolated vector.

One possible reason is that area types exhibit strong correlations with their surrounding areas,
which are captured through the reconstruction task.

4.4. Latent Space Interpolation

We present an in-depth analysis of the learned representations through a latent space interpola-
tion experiment, illustrated in Figure 3. We utilize the GPS-SELM embeddings of a field tile and
an urban maps, and perform a linear interpolation between the left and right maps. At each point
along the interpolation, we search for the three nearest neighbors in the latent space and display
the corresponding maps. This exploration of the semantically meaningful latent space reveals a
gradual progression towards areas with shared features, particularly urban areas. Interestingly, it
appears that some of the images exhibit a sense of continuity, resembling contiguous locations
within the latent space.

4.5. Water Quality Prediction

Next, we apply GPS-SELM to predict water quality indice from the SustainBench dataset Yeh
et al. (2021). Given a satellite image, the extracted features from the student backbone were
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Figure 4: Experiments on GPS-SELF on estimating water quality indice from remote sensing
images. We report results for different training set sizes, averaged over ten evaluation trials.

Pretrain NAIP (top-1 accuracy) OSM (top-1 accuracy)

Random Init 46.78 59.44
raw GPS - 5.12

MUGS Zhou et al. (2022) 49.66(+4.72) 64.83(+7.70)
MoCo-V2 Chen et al. (2020) 51.65(+4.87) 66.87(+7.43)

DINO Caron et al. (2021) 51.30(+4.52) 65.99(+6.55)
MoCo-V2+Geo+TP Ayush et al. (2021) 53.70(+6.92) 66.10(+6.66)

Tile2Vec Jean et al. (2019) 51.89(+5.11) 68.34(+8.9)
GPS-SELM (geo) 54.33 (+7.55) 70.12(+10.68)

GPS-SELM (geo+rec) 53.99.(+7.21) 71.44(+12.0)
GPS-SELM (geo+rec+int) 54.67 (+7.89) 71.71(+12.27)

Table 3: Land Cover Classification on NAIP dataset and OpenSreettMap (OSM) dataset. Results
are averaged over 10 trials.

subsequently utilized for predicting water quality level Jean et al. (2016). In Figure 4, we present a
comprehensive comparison of our method against the baseline models, including the method
utilizing Tile2Vec embeddings Jean et al. (2019). The results clearly demonstrate the superior
performance of GPS-SELM, showcasing its effectiveness in leveraging spatial representations and
surpassing the existing state-of-the-art approaches. Notably, GPS-SELM demonstrates the ability
to transfer knowledge from map images to remote sensing images. This is because map images
and remote sensing images share common features such as vegetation and building structures.
Furthermore, the utilization of maps can enhance generalization across tasks and regions, as
maps tend to exhibit fewer noise and small fluctuations compared to remote sensing images.

4.6. Land Cover Classification

In addition, we perform experiments on two land cover classification tasks using 1) remote sensing
images obtained by the USDA’s National Agricultural Imagery Program (NAIP) DOI/USGS/EROS
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Pretrain AP50

Randon Init 10.73
MoCo-V2 Chen et al. (2020) 15.42 (+4.69)

DINO Caron et al. (2021) 17.50 (+6.77)
MoCo-V2+Geo+TP Ayush et al. (2021) 17.72 (+6.99)

Tile2Vec Jean et al. (2019) 15.67 (+4.94)
GPS-SELM (geo) 18.04 (+7.31)

GPS-SELM (geo+rec) 17.99 (+7.26)
GPS-SELM (geo+rec+int) 18.79 (+8.06)

Table 4: Object detection results on the xView dataset.

(2021), and 2) map images from OpenStreetMap (OSM). As done in Ayush et al. (2021), we use the
images from the California’s Central Valley for the year of 2016. The dataset consists of 100,000
training and 50,000 test images. In detail, we perform transfer learning experiments on land cover
classification across 66 land cover classes. For the OpenStreetMap dataset, we randomly selected
100,000 training and 50,000 test images, and used 13 land type classes. Table 3 depicts the results
for both remote sensing and OSM datasets. On the NAIP dataset, our method outperforms the
randomly initialized weights by 8.89% and MoCo-V2+Geo+TP by 0.97%. On the OSM dataset, our
method outperforms the randomly initialized weights by 12.27% and MoCo-V2+Geo+TP by 5.34%.
The results can be explained by several factors. 1) Our approach incorporates prior knowledge
about the spatial relationships between different land cover types, which is not explicitly captured
by randomly initialized weights or standard self-supervised approaches. 2) GPS-SELM uses
a multi-task learning framework that jointly optimizes geo-predictive classification tasks and
intermediate clustering, improving generalization to new datasets.

4.7. Object Detection

We now report results for an object detection task. For object detection, we use the xView dataset
Lam et al. (2018) consisting of high-resolution satellite images. The xView dataset contains 846
images of size 2000×2000 pixels. They are satellite images with bounding box annotations for 60
different class categories including passenger, airplane vehicle, etc. The dataset was divided into
a training set of 700 images and a test set of 146 images. As done in Ayush et al. (2021), we process
the images to create 416×416 pixels images by randomly sampling the bounding box coordinates
of the small image and we repeat this process 100 times for each large image. Table 4 shows the
object detection performance on the xView test set. Interestingly, the proposed method achieved
the best results. Even though GPS-SELM was pretrained on map images, our approach achieves
strong performance, highlighting the value of leveraging map-based architectures including on
remote sensing downstream tasks. A potential factor contributing to this achievement is the
model’s capacity to discern objects through the incorporation of auxiliary tasks during pretraining,
enabling a more comprehensive understanding of objects (e.g., POIs) and spatial relationships.
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Figure 5: Top k% recall results obtained by utilizing the learned embedded space to retrieve map
tiles based on given location images, where k% is the fraction of the dataset size. Results for three
subsets: Tokyo, Union Square, and Wall Street. Top 1% recall values are shown in brackets.

4.8. From Embeddings to GPS Coordinates

We now assess the ability of GPS-SELM to link learned embeddings with appropriate GPS coor-
dinates. We generated testing subsets from areas in Tokyo, Union Square, and Wall Street, each
containing 5,000 locations. We investigate the recall performance when using the embedded
space to retrieve corresponding map tiles given location images — how likely is the corresponding
map image to be the closest within the space. Top-k% recall plots are shown in Figure 5, where
top-k% recall is the fraction of cases in which the ground truth tile is within the top k% of best
estimates. Remarkably, GPS-SELM exhibits strong performance, achieving a top-1% recall of over
72%. One can observe that Wall Street presents a more challenging scenario due to its distinct
characteristics, including motorways and tunnels, which differ from the training set. Nevertheless,
even under these conditions, our model is able to assign a high rank to corresponding map tiles.

5. Conclusion

We proposed a novel map-based approach to GPS coordinate embedding using self-supervised
learning. The method leverages a student-teacher architecture to encourage the student network
to learn meaningful embeddings that capture geographical and topographical features. We
further introduced auxiliary tasks, including geo-predictive tasks, a high-level reconstruction
task and an intermediate clustering task. The present algorithm outperformed several baseline
methods in terms of the quality of the learned embeddings and demonstrated the usefulness of
our embeddings on downstream tasks, such as predicting land price or land cover. Experimental
results demonstrate that this map-based approach enables the model to capture more complex
relationships between locations than previous baselines, by incorporating contextual information
from surrounding locations. Hence, the proposed method has the potential to improve the
performance of various location-based applications, such as clustering, and prediction.
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