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Abstract

Medical visual question answering (Med-VQA) aims to correctly answer the medical ques-
tion based on the given image. One of the major challenges is the scarcity of large pro-
fessional labeled datasets for training, which poses obstacles to feature extraction, espe-
cially for medical images. To overcome it, we propose a method to learn transferable vi-
sual representation based on conditional denoising diffusion probabilistic model(conditional
DDPM).Specifically, we collate a large amount of unlabeled radiological images and train a
conditional DDPM with the paradigm of auto-encoder to obtain a model which can extract
high-level semantic information from medical images.The pre-trained model can be used as
a well initialized visual feature extractor and can be easily adapt to any Med-VQA systems.
We build our Med-VQA system follow the state-of-the-art Med-VQA architecture and re-
place the visual extractor with our pre-trained model.Our proposal method outperforms
the state-of-the-art Med-VQA method on VQA-RAD and achieves comparable result on
SLAKE.

Keywords: Medical Visual Question Answering, Denoising Diffusion Probabilistic Model,
Representation Learning

1. Introduction

1

Med-VQA system takes medical images and clinical questions as input and then give
correct answers to the questions by combining the visual information in the image. Med-
VQA has a broad application prospect in the field of healthcare. It can assist doctors in
diagnosis, help patients learn more health information, assist clinical teaching, and can
also be integrated into the dialogue AI platform to provide intelligent medical consultation
services.

Although breakthroughs in computer vision and natural language processing have laid a
foundation for the research of Med-VQA, the scarcity of professional Med-VQA datasets is
still a huge bottleneck for the development of Med-VQA, especially the amount of medical
image is even more scarce. The existing manually annotated datasets such as VQA-RAD
(Lau et al. (2018)) has 3515 QA pairs but only 315 medical images, while SLAKE (Liu

1. Our code is available at https://github.com/lluviosac/Diffusion-Based-MedVQA.
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Figure 1: An example of Med-VQA, an image may have multiple QA pairs.There are two
types of questions, closed-end questions which the answers are restricted to a few
specific answers, and open-end questions which the answers are free-form.

et al. (2021b)) has 14000 QA pairs but 642 medical images. It is difficult to train an image
encoder which could extract high-quality and high-level semantic visual features solely on
these Med-VQA datasets from scratch. Due to high costs and privacy issues, there is no
large-scale labeled dataset like ImageNet (Russakovsky et al. (2014)) in the medical field,
which makes it impossible to train deep networks from scratch. Some solutions directly
transfered deep neural networks pre-trained on ImageNet(Russakovsky et al. (2014)) but
get poor performance because of the huge differences between medical images and ordinary
images. Nguyen et al. (2019) is the first study to address this issue, proposed to use Model-
Agnostic Meta-Learning (MAML)(Finn et al. (2017)) for weight initialization of image
encoder. However, the task was specifically designed for VQA-RAD (Lau et al. (2018))
dataset which made it cannot be easily applied to other datasets. Khare et al. (2021)
proposed to learn medical image and text semantic representations using Masked Language
Modeling (MLM) with image features as the pretext task on ROCO——a large medical
image caption dataset(Pelka et al. (2018)). Eslami et al. (2021) fine-tuned CLIP(Radford
et al. (2021)) on ROCO(Pelka et al. (2018)). These methods have made great gains in
general vision-language field, however, it has little gain in Med-VQA due to the lack of high-
quality image text data. Liu et al. (2021a) leverage large amounts of unlabeled radiology
images to train three teacher models for the body regions of brain, chest, and abdomen
respectively via contrastive learning and then distill the teacher models to a student model
that can be used as visual feature extractor for Med-VQA system. However, the latent
space of its encoding is still limited to the number of teacher models.

In this paper, we first build a medical image dataset which contains 89946 images by
collecting and preprocessing medical image datasets from different medical relevant tasks
(image segmentation, image reconstruction, etc.). The dataset contains medical images of
multiple modes (CT, MRI, etc.), multiple human parts and organs (brain, chest, abdomen,
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joints, hands and feet, etc.), multiple planes (sagittal plane, coronal plane and cross sec-
tion), normal or pathological changes.The dataset can effectively alleviate the problem of
the scarcity of medical image of Med-VQA datasets, which is conducive to learning a better
representation space, and it can be simply and effectively migrated to the existing or future
Med-VQA datasets due to its diversity. We first train an unconditional diffusion probabilis-
tic model (DPM) on this dataset to learn the hidden variables of the medical image, but
these hidden variables are the result of the noise in the original space, lacking the high-level
semantic information of the data. Therefore, we use an encoder to map the image into a
latent variable, and then the DPM take the latent variable and stochastic noise as input to
reconstruct the image. We use this encoder as a general medical image encoder, which can
be directly fine-tuned on any Med-VQA datasets.

To summarize, our contributions are: (1) We collate a large medical image dataset which
contains image of multimodality, multiple parts and organs, and multiple planes. (2) We
propose a method to pretrain a general medical visual feature extractor for Med-VQA which
is based on conditional DPM and combined with auto encoder paradigm. (3) We conduct
extensive experiments with the state-of-the-art Med-VQA methods on VQA-RAD(Lau et al.
(2018))and SLAKE(Liu et al. (2021b)) to demonstrate the effectiveness of the model.

2. Related Work

In this section, we briefly review the research progress of Med-VQA and introduce the
denoising diffusion probabilistic model(DDPM).

2.1. Medical Visual Question Answering

Med-VQA task was first proposed in the ImageCLEF 2018 challenge(Abacha et al. (2018)).
The common framework of Med-VQA follows the framework of general VQA, which is
divided into three steps: extracting visual features from images, extracting text feature
from questions, and combining visual and text feature to predict answers.

A few works directly applied state-of-the-art VQA model to the medical field, which
usually using a pre-trained deep neural network such as ResNet or VGGNet to extract
visual feature, and a RNN-based neural networks to extract question feature.For feature
fusion, Abacha et al. (2018); Nguyen et al. (2019); Zhan et al. (2020) used concatenation,
stacked attention network(Yang et al. (2015)), compact bilinear pooling(Fukui et al. (2016)),
and bilinear attention network(Kim et al. (2018)) to fuse the two modal features. However,
the direct application was not effective due to the huge data difference between the medical
domain and the general domain.

One branch of works focuses on improving the extraction of medical image features.
Nguyen et al. (2019) proposed the mixture of enhanced visual features(MEVF), which
consists of an unsupervised auto-encoder and an image encoder trained by Model-Agnostic
Meta-Learning(Finn et al. (2017)) as a visual feature extraction module. Nguyen et al.
(2019) extracted new labels and designed the meta-learning task for VQA-RAD to learn the
initialization of the image encoder. This method outperforms direct transfer and reduces
the parameter scale, but requires additional data labeling for the training dataset. Ren
and Zhou (2020); Khare et al. (2021) used transformer(Vaswani et al. (2017)) to do self-
supervised pre-training on the medical image-caption dataset ROCO(Pelka et al. (2018)).
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The image feature which encoded by different layers of CNN are fed into a transformer as
visual tokens with text tokens. They leveraged the self-attention to align image regions and
text tokens. Eslami et al. (2021) fine-tuned the CLIP(Radford et al. (2021)) model as an
image encoder on the ROCO (Pelka et al. (2018)) with little improvement as well. The
approach which has achieved great success in the general vision-language domain with rich
unlabeled image-text pairs got little gain in Med-VQA because of the lack of high-quality
image-text data and negative false pairs in the medical domain. Liu et al. (2021a) proposed
to learn a general medical image encoder by contrastive learning and distillation. They used
momentum contrast to train three teacher models which represent brain, chest, abdomen
respectively and then distilled three teacher models into a lightweight student model.

Another branch of works focuses on high-level reasoning capability, such as Shi et al.
(2019) extracted topic representations by using embedding-based topic model and SVM,
Zhan et al. (2020) proposed a question-conditional reasoning module to guide the impor-
tance selection of multi-modal fusion features, and learning different reasoning skills for
different types of questions.

In this work, we focus on improving the image feature extraction while follow the rea-
soning module of Zhan et al. (2020).

2.2. Denoising Diffusion Probabilistic Models

The main idea of the denoising diffusion Probabilistic model (DDPM, Ho et al. (2020)) is
to add gaussian noise to corrupts the data distribution during the forward process, and
then learn to recover the data distribution during the reverse process. Ho et al. (2020)
proposed to apply UNet(Ronneberger et al. (2015)) to learn a function ϵθ(xt, t) which takes
noisy image xt and time t to predict the noise and trained it through ||ϵ − ϵθ||.Song et al.
(2020a) proposed Denoising Diffusion Implicit Model (DDIM). DDIM can reverse on the
subsequence of the complete timestep sequence to reconstruct x0 from xT which accelerates
the sampling while DDPM needs to reverse on the complete sequence of T ∼ 0.

Diffusion Probabilistic Models(DPMs) are unconditional generative model, which can
only sample randomly and cannot control the output of the model. Recently the condi-
tional DPMs(Rombach et al. (2021); Dhariwal and Nichol (2021); Song et al. (2020b)) have
achieved great success in the field of image generation and high resolution. There are two
ways to insert “condition” into the DPM, one is called “Classifier-Guidance” and the other
is “Classifier-Free”. Classifier-Guidance introduces an additional classifier to an uncondi-
tional pre-trained DPM to guide the generation. For example, Dhariwal and Nichol (2021);
Song et al. (2020b) introduced a classifier pθ,ϕ(y|xt) which predict the class label y to guide
the generation through its gradient. Classifier-Free(Rombach et al. (2021)) is to directly
add condition embedding to the training phase of DPM, the model ϵθ naturally contains
the conditional information when sampling.

3. Method

In this paper, we focus on enhancing the visual feature extraction from medical image.
Firstly, as the existing Med-VQA(Lau et al. (2018); Liu et al. (2021b)) benchmarks contain
normal/abnormal radiological image with different modalities, different planes, multiple
body parts and organs. Therefore, we collect and preprocess medical image datasets from
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many medical relevant task which will be used for image encoder’s pretraining. Secondly,
we train an unconditional DPM on our dataset from scratch. Then, as the Fig. 2 shows, we
train a semantic encoder which maps the image to a semantic vector z as conditional variable
and a gradient estimator attached to the pre-trained DPM which makes it a conditional
DPM. Finally, we apply the semantic encoder to the Med-VQA system.

3.1. Diffusion-based Visual Representation Learning

We adopt the ”Classifier-Guidance” way to train conditional DPM, which usually attach an
additional classifier pθ,ϕ(y|xt) to the unconditional DPM. The classifier predicts the noised
xt’s original label y and the gradient ∇xtpθ,ϕ(y|xt) will guide the DPM to sample towards
specific class y.

pθ,ϕ(xt−1|xt, y) = N (µθ(xt) +
∑
θ

∇xt logpϕ(y|xt),
∑
θ

) (1)

As the Eq. 1, compare to the unconditional DPM, the classifier-guidance way just shifts the
mean with

∑
θ∇xtpθ,ϕ(y|xt) while sampling. Song et al. (2020b) used stochastic differential

equations and score matching tricks to obtain:

ϵ̂θ,ϕ(xt, t) = ϵθ(xt, t)−
√
1− αt∇xt log pϕ(y|xt) (2)

which replace ϵθ(xt, t) in unconditional sampling, we can get a more general sampling pro-
cess:

p(xt−1|xt, y) = N (

√
αt−1

αt
xt + (

√
1− αt−1 − σ2t −

√
αt−1(1− αt)

αt
)ϵ̂θ,ϕ(xt, t), σ

2
t ) (3)

when σt=0, it is the sampling process of DDIM(Song et al. (2020a)).
According to Eq. 1, the conditional reverse process guided by the gradient of the clas-

sifier has an additional shift term at the mean compared to the unconditional one, which
can help the reverse process to reconstruct the lost class information in the samples. The
unconditional DPM receives a noise xT and the data generated by gradual denoising is not
deterministic. It can ensure that the generated data is consistent with the data distribution
of the training dataset, but the specific content of the generation is not controllable. How-
ever, conditional DPM can control the result of generation through conditional embedding,
that is, in the reverse process, introducing a prior condition y about x0 can make up for
the information gap lost in the forward process, and the more information y contains about
x0, the more gap can be made up. From this aspect, we adopt a model to encode the
original image x0 as z = Encψ(x0). The DPM will take z as the conditional embedding and
the random noise xT together in reverse process to reconstruct the original image. There-
fore, our goal is to let Encψ learn a semantically rich latent space, so that the encoded z
contains richer and more discriminative semantic information of medical images which can
apply to the Med-VQA system. In our experiment, Encψ only consists of several stacked
convolutional layers and a linear layer.
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3.2. Gradient Estimator for Unsupervised Representation Learning

Figure 2: The framework of conditional DPM, contains a semantic encoder ϕ(orange) which
map the origin image x into semantic encoding zsem, a gradient estimator ψ(green)
and a pre-trained unconditional DPM θ(gray).During the phase of training en-
coder, DPM model will be frozen, zsem will capture the high-leve semantic infor-
mation of x0, the gradient estimator will receive conditional encoding zsem, time
embedding and noise to approximate gradient and then guide DPM to reconstruct
x0.

As our dataset is collated from different medical image tasks without consistent and strict
annotation. Instead of explicitly introduce a classifier, we add a module to the DPM network
as a gradient estimator Gϕ to approximate the gradient. As Fig. 2 shows, Gϕ takes
noised image xt, conditional embedding z and time embedding t as input and approximate
∇xtpθ,ϕ(y|xt). The reverse process of the conditional DPM can be expressed as:

pθ,ϕ(xt−1|xt, z) = N (xt−1;µθ(xt, t) +
∑
θ

(xt, t) ·Gϕ(xt, z, t),
∑
θ

(xt, t)) (4)

We train an unconditional DPM θ from scratch on the radiology image dataset intro-
duced previous section, and then freeze θ, optimize the encoder and conditional control
module where the training objective is

L(ψ, ϕ) = Ex0,t,ϵ[λt||ϵ− ϵθ(xt, t) +

√
αt(1− αt)

βt
·
∑
θ

(xt, t) ·Gϕ(x)t, Eψ(x0), t)||2] (5)

where xt =
√
αtx0 +

√
1− αtϵ,

∑
θ =

1−αt−1

1−αt
βtI
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Song and Ermon (2019) pointed that different stages in the process should not be equally
important. For example, with the generation of images, the same images will become more
and more similar while two different images will gradually become different. Therefore, we
follow the weighting scheme proposed in Zhang et al. (2023), define λt = ( 1

1+SNR(t)

1−γ
) ·

( SNR(t)
SNR(t)+1)

γ to educe the weight of early and late stages, where SNR(t) = αt
1−αt

.

In our experiment, we choose a network similar to Unet(Ronneberger et al. (2015)) as
the gradient estimator. In order to make full use of the knowledge learned by the pre-trained
DPM, we reuse the encoder part of the pre-trained DPM and directly use it to encode xt.
Only the middle blocks and output blocks of Unet are added. Skip connections is still used
between the new decoder and the reused encoder.

3.3. Apply Diffusion Encoder for Med-VQA

Figure 3: The framework of the Med-VQA system. We follow the architecture of Zhan et al.
(2020), and replace the orange block (visual extraction block) with the model we
pretrain based on conditional DDPM. Visual feature and question features are
extracted separately. The fusion model which fuses visual feature and question
feature has two independent attention blocks, one for open-end question, the
other for close-end question. The question feature extraction block will classify
the type of question, and feed the question embedding and visual embedding into
corresponding attention block. The final classifier will receive the fusion feature
fm and give the final answer.
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As Fig. 3 shows, we directly adopt the Encψ we trained before to the Med-VQA system
as a general visual feature extractor. Given a radiological image and a medical question
pair (vi, qi). The image vi will be fed into Encψ to obtain image feature fv = Encψ(vi).
The question qi will be encoded by an encoder such as LSTM, GRU to obtain text feature
fq = Qψ(vi). Then fv and fq will be fused by an attention-based fusion module such as
BAN(Kim et al. (2018)), SAN(Yang et al. (2015))to get multimodal feature fm. Med-VQA
is defined as a classification task to predict the correct answer from the candidate answer set
C, so fm will be fed into a classifier to get the correct answer. We compute the cross-entropy
loss to optimize the model end-to-end.

4. Experiment

In this section, we conduct experiments to evaluate the effectiveness of our pre-trained
encoder on three Med-VQA benchmarks. We follow the reasoning module of QCR(Zhan
et al. (2020)) and the experiment results show that our visual encoder can not only extract
high-level semantics features and thus improve the performance, but also can be directly
applied to different Med-VQA systems.

4.1. Dataset for Pretraining

For training a more general and professional medical image encoder, we collect radiology
images from multiple datasets of different medical-related tasks, preprocess them using
python tool libraries. In the end, we obtain a large 2D radiology image dataset (89946
images) which contains different imaging modalities (MRI, CT, etc.), different planes (coro-
nal, sagittal plane, horizontal, etc.), multiple body parts and organs (brain, chest, abdomen,
bones, joints, etc.), normal or diseased examples. Table 1 shows the composition of the pre-
training dataset.

Fig. 4 shows the t-SNE visualization of representation of images from the test set of
VQA-RAD and SLAKE.We divide these examples into different classes through organs.(a)
shows the representation obtained by auto-encoder trained on the MedVQA dataset (VQA-
RAD or SLAKE), (b) shows the representation obtained by auto-encoder trained on the
pre-training dataset we collated. By comparing (a) and (b), the model trained on our pre-
training dataset makes the representation of different class more dispersed, while the same
class more clustered, which indicates that the rich and diverse medical image has brought
significant gains to medical image feature extraction.

4.2. Med-VQA Dataset

• RAD-VQA(Lau et al. (2018)) is a professional Med-VQA dataset proposed in 2018.
It contains 315 medical images of head, chest, and abdomen in different modalities
and 3515 corresponding QA pairs.

• SLAKE(Liu et al. (2021b)) is a bilingual Med-VQA dataset proposed in 2021. We
selected the English version of the data, which contains 642 medical images and 7033
QA pairs. The questions were asked by radiologists and the answers were marked
using a pre-designed template.
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dataset organ modality size original task

OASIS(Marcus et al. (2007, 2010)) brain MRI T1 7281 classification

MSD Brain Tumour(Antonelli et al. (2022)) brain MRI 12105 segmentation

MSD Lung Tumour(Antonelli et al. (2022)) lung CT 1890 segmentation

MSD Heart(Antonelli et al. (2022)) left atrium MRI 200 segmentation

CheXpert(Irvin et al. (2019)) chest CT 24820 classification

ChestX-ray8(Wang et al. (2017)) Chest CT 16868 classification

CHAOS(Kavur et al. (2021)) live CT,MRI 400 segmentation

Sliver07(van Ginneken (2019)) liver CT 400 segmentation

kits19(Heller et al. (2020)) kidney CT 584 segmentation

MSD Pancreas(Antonelli et al. (2022)) pancreas CT 602 segmentation

MSD Spleen(Antonelli et al. (2022)) spleen CT 409 segmentation

MSD HepaticVessel(Antonelli et al. (2022)) hepatic vessel CT 556 segmentation

MURA(Rajpurkar et al. (2017)) bone X-ray 18736 classification

MRNet(Bien et al. (2018)) knee MRI 5982 classification

LERA(LER) bone X-ray 1203 classification

total - - 89946 -

Table 1: Overview of our pretraining dataset

Figure 4: t-SNE visualization of representation of images from the test set.(a)the auto-
encoder trained on MedVQA dataset (b)the auto-encoder trained on our dataset
(c) condtional DPM trained on our dataset
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Figure 5: The left of each pair is the original image, and the right is the result of conditional
DPM sampling.

4.3. Training Setup

Firstly, we train an unconditional DPM on the pre-training dataset to follow Ho et al.
(2020),so that the DPM has the ability to generate medical images. Then we freeze the
pre-trained DPM, add the semantic encoder and the gradient estimator to train conditional
DPM. We train all models on 1 RTX3090 GPU. We resize all images to 128 × 128 and
apply random horizontal flips. We use Unet(Ronneberger et al. (2015)) as the backbone of
the DPM and set T to 1000. We set batch size 32, learning rate 0.0001, and the variance
of the process to increase linearly from β1 = 10−4 to βT = 0.02.

As Fig. 5 shows, we use conditional DPM to sample in the DDIM(Song et al. (2020a))
way. We can see that the conditional embedding encoded by semantic encoder can effectively
guide the DPM to reconstruct the original image when reverse sampling which indicates that
the semantic encoder has indeed learned high-level image semantic information.Compare
with (b) and (c) in Fig. 4, the representation generated by conditional DDPM shows more
distinct boundary between different classes (especially on SLAKE), which indicates that
the model is more capable of distinguishing similar medical images.
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VQA-RAD(Lau et al. (2018)) Closed-end Open-end Overall

Our 81.2% 63.3% 74.1%

CPCR(Liu et al. (2023)) 80.4% 60.5% 72.5%

QCR(Zhan et al. (2020)) 60.0% 79.3% 71.6%

MMBERT(Khare et al. (2021)) 63.1% 77.9% 72.0%

CPRD(Liu et al. (2021a)) 61.1% 80.4% 72.7%

PubMedCLIP(Eslami et al. (2021)) 60.1% 80% 72%

MEVF(Nguyen et al. (2019)) 49.2% 77.2% 66.1%

SLAKE(Liu et al. (2021b)) Closed-end Open-end Overall

Our 84.6% 77.5% 80.3%

CPCR(Liu et al. (2023)) 84.1% 80.5% 81.9%

QCR(Zhan et al. (2020)) 83.2% 75.8% 78.7%

CPRD(Liu et al. (2021a)) 83.4% 81.2% 82.1%

PubMedCLIP(Eslami et al. (2021)) 82.5% 78.4% 80.1%

MEVF(Nguyen et al. (2019)) 77.5% 74.1% 75.5%

Table 2: Results of our method and others on VQA-RAD and SLAKE.We report the accu-
racy of closed-end,open-end and overall on VQA-RAD and SLAKE

As our Med-VQA framework shown in Fig. 3, for medical visual feature, we adopt the
pre-trained diffusion encoder, for question feature, we follow QCR(Zhan et al. (2020)) to
use Glove(Pennington et al. (2014)) to initialize word embedding and use GRU with 1024
hidden dim to extract the semantic information in the question. For feature fusion, we use
BAN(Kim et al. (2018)). The classifier will receive the fused feature and predict the answer
among the candidates.We use Adam(Kingma and Ba (2014)) optimizer and set the learning
rate to 0.0005, except for the visual encoder, which is set to 0.0002.

4.4. Compare with the SOTA

We use accuracy to evaluate the performance of Med-VQA system. In the following, we
briefly introduce the baselines. MEVF(Nguyen et al. (2019)) used Modal- Model-Agnostic
Meta-Learning(Finn et al. (2017)) to initialize the visual encoder and combines with the
output of DAE to enhance the visual feature. QCR(Zhan et al. (2020)), proposed base on
MEVF, enhanced the attention to the question feature and reselected the importance of fea-
ture after feature fusion. CPRD(Liu et al. (2021a)) used contrastive learning and distillation
method to pre-train the image encoder. PubMedCLIP(Eslami et al. (2021)) used medical
image-caption pairs to fine-tune CLIP to obtain the visual encoder. MMBERT(Khare et al.
(2021)) used a transformer to receive the image token and the question token, and uses the
transformer’s self-attention to align the text and the image.

Table. 2 shows the results on our method and other SOTA method on the VQA-
RAD(Lau et al. (2018)) and SLAKE(Liu et al. (2021b)). On VQA-RAD, our solution out-
performs all the existing solution on both open-end and closed-end questions, and improves
by 1.4% accuracy compared to the SOTA method overall.On SLAKE dataset, our solution
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diffusion-based encoder auto-encoder

Closed-end Open-end Overall Closed-end Open-end Overall

VQA-RAD 81.2% 63.3% 74.1% 79.8% 53.9% 69.4%

SLAKE 84.6% 77.5% 80.4% 82.9% 76.9% 79.3%

Table 3: Ablation study on the diffusion-based encoder.We report the accuracy of closed-
end, open-end and overall on VQA-RAD and SLAKE.

also outperforms other methods on closed-end question and outperforms MEVF(Nguyen
et al. (2019)) and QCR(Zhan et al. (2020)) on open-end question.

4.5. Ablation Analysis

We conduct an ablation experiment to demonstrate the effectiveness of the diffusion-based
encoder. We use the same settings in our method and train an auto-encoder on the pre-
training dataset with the goal of data reconstruction. Then We adopt it to the Med-VQA
system to compare with the diffusion-based encoder.

As shown in Table. 3 we observe that the diffusion-based visual encoder is highly
effective. Compared to the auto-encoder, the diffusion-based visual encoder brings 9.4%,
1.4%, and 4.7% gains for open-end, closed-end and overall on VQA-RAD and brings 0.6%,
1.7%, and 0.9% gains respectively on SLAKE. In particular, we notice that the gains on
the open-end of RAD dataset is remarkable, which indicates that the diffusion-based visual
encoder can learn rich, effective, high-level medical visual feature. The superior performance
verifies that the diffusion-based visual encoder benefits the Med-VQA system to achieve
higher accuracy.

5. Conclusion

In this paper, we propose a method to pretrain a general medical image encoder for Med-
VQA system, which could extract high-level semantic information in medical image via
adding conditional embedding to the DPM. At the same time, we collate a large medical
image dataset for pre-training. We follow the framework of QCR but replace the visual
encoder with our diffusion-based encoder. Our Med-VQA system achieve the SOTA perfor-
mance on VQA-RAD and comparable performance on SLAKE.The experiment results show
that our visual encoder can be directly and easily applied to existing and future Med-VQA
datasets.
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