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Abstract

Most existing federated learning methods are unable to estimate model/predictive uncer-
tainty since the client models are trained using the standard loss function minimization
approach which ignores such uncertainties. In many situations, however, especially in
limited data settings, it is beneficial to take into account the uncertainty in the model
parameters at each client as it leads to more accurate predictions and also because reliable
estimates of uncertainty can be used for tasks, such as out-of-distribution (OOD) detection,
and sequential decision-making tasks, such as active learning. We present a framework for
federated learning with uncertainty where, in each round, each client infers the posterior
distribution over its parameters as well as the posterior predictive distribution (PPD),
distills the PPD into a single deep neural network, and sends this network to the server.
Unlike some of the recent Bayesian approaches to federated learning, our approach does not
require sending the whole posterior distribution of the parameters from each client to the
server but only the PPD in the distilled form as a deep neural network. In addition, when
making predictions at test time, it does not require computationally expensive Monte-Carlo
averaging over the posterior distribution because our approach always maintains the PPD
in form a single deep neural network. Moreover, our approach does not make any restrictive
assumptions, such as the form of the clients’ posterior distributions, or of their PPDs. We
evaluate our approach on classification in federated setting, as well as active learning and
OOD detection in federated settings, on which our approach outperforms various existing
federated learning baselines.

Keywords: Federated learning, Bayesian learning, uncertainty, knowledge distillation

1. Introduction

Federated learning (Kairouz et al., 2021) enables collaborative learning from distributed
data located at multiple clients without the need to share the data among the different
clients or with a central server. Much progress has been made in recent work on various
aspects of this problem setting, such as improved optimization at each client (Li et al.,
2020b), improved aggregation of client models at the server (Chen and Chao, 2020), handling
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the heterogeneity in clients’ data distributions (Zhu et al., 2021), and also efforts towards
personalization of the client models (Mansour et al., 2020).

Most existing formulations of federated learning view it as an optimization problem
where the global loss function is optimized over multiple rounds, with each round consisting
of point estimation of a loss function defined over the client’s local data, followed by an
aggregation of client models on a central server. Point estimation, however, is prone to
overfitting especially if the amount of training data on clients is very small. Moreover,
crucially, such an approach ignores the uncertainty in the client models. Indeed, taking
into account the model uncertainty has been shown to be useful not just for improved
accuracy and robustness of predictions when the amount of training data is limited, as
well as in other tasks, such as out-of-distribution (OOD) detection (Salehi et al., 2021)
and active learning (Ahn et al., 2022). In this work, we present a probabilistic approach
to federated learning which takes into account the model uncertainty at each client (by
learning a posterior distribution, i.e., the conditional distribution of the model parameters
given the training data), and also demonstrate its effectiveness for other tasks in federated
settings where accurate estimates of model uncertainty are crucial, such as OOD detection
and active learning in federated setting.

Despite its importance, federated learning in the setting where each client learns a pos-
terior distribution is inherently a challenging problem. Unlike standard federated learning,
in this setting, each client needs to estimate the posterior distribution over its weights using
Bayesian inference, and also the posterior predictive distribution (PPD) which needed at the
prediction stage, which is an intractable problem. Typical ways to address this intractability
of Bayesian inference for deep learning models include (1) Approximate Bayesian inference
where the posterior distribution of model parameters is usually estimated via approximate
inference methods, such as MCMC (Zhang et al., 2019; Izmailov et al., 2021), variational
inference (Zhang et al., 2018), or other faster approximations such as modeling the posterior
via a Gaussian distribution constructed using the SGD iterates (Maddox et al., 2019), or
(2) ensemble methods, such as deep ensembles (Lakshminarayanan et al., 2017) where the
model is trained using different initialization to yield an ensemble whose diversity represents
the model uncertainty.

The other key challenge for federated learning in this setting is efficiently communicating
the client model parameters, which are represented by a probability distribution, to the
server, and their aggregation at the server. Note that, unlike standard federated learning,
in our setting, to capture client model’s uncertainty, each client needs to maintain either
a probability distribution over its model weights or an ensemble over the model weights.
Both of these approaches make it difficult to efficiently communicate the client models and
aggregate them at the server. Some recent attempts towards such settings of federated
learning have relied on simplifications such as assuming that the posterior distribution of
each client’s weights is a Gaussian (Al-Shedivat et al., 2020; Linsner et al., 2021), which
makes model communication and aggregation at the server somewhat easier. However, this
severely restricts the expressiveness of the client models. In our work, we do not make any
assumption on the form of the posterior distribution of the client weights. Another appealing
aspects of our federated learning approach is that, at test time, it does not require Monte-
Carlo averaging (Bishop, 2006; Korattikara Balan et al., 2015) which is usually required by
Bayesian methods (especially for non-conjugate models, such as deep learning models) at
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test time, making them slow (essentially, using m Monte-Carlo samples from the posterior
makes prediction m times slower). In contrast, our approach leverages ideas from the
distillation of posterior predictive distribution (PPD) (Korattikara Balan et al., 2015), using
which we are able to represent the entire posterior predictive distribution using a single deep
neural network, resulting in fast predictions at test time.

Our contributions are summarized below

e We present a novel and efficient probabilistic framework to federated learning in which
each client performs a distillation of its posterior predictive distribution into a single
deep neural network. This allows solving the problem of federated learning with client
model uncertainty using ideas developed for standard federated learning methods,
while still capturing and leveraging model uncertainty.

e Our approach does not make any strict assumptions on the form of the clients’ poste-
rior distributions (e.g., Gaussian (Al-Shedivat et al., 2020)) or predictive distributions.
Moreover, despite each client learning a posterior distribution, our approach is still
fast at test time since it does not require Monte-Carlo averaging (which is akin to
averaging over an ensemble) but uses the idea of distribution distillation to represent
the posterior predictive distribution (PPD) via a single deep neural network.

e We present various ways to aggregate the clients’ predictive distributions at the server,
both with as well as without requiring publicly available (unlabeled) data at the server.

e In addition to tasks such as classification and out-of-distribution (OOD) detection, we
also show a use case of our approach for the problem of active learning in federated
setting (Ahn et al., 2022) where our approach outperforms existing methods.

2. Bayesian Federated Learning via Predictive Distribution Distillation

Unlike standard federated learning where the client model is represented by a single neural
network whose weights are estimated by minimizing a loss function using client’s data, we
consider the setting of federated learning where each client learns a posterior distribution
over its weights. The posterior distribution p(6|D) is a probability distribution of network
weights representing how likely a sample 6 explains the training data D. The goal is to
efficiently communicate the clients’ local posteriors to the server and aggregate these local
posteriors to learn a global model that can serve all the clients.

However, since we usually care about predictive tasks, the actual quantity of interest in
our probabilistic setting is not the posterior distribution per se, but the posterior predictive
distribution (PPD). Given a set of m samples M ...,00 from the posterior, estimated
using some training data D, the Monte Carlo approximation of the PPD of of a test input
z is defined as p(y|z,D) = L 3" p(y|z, 6()). Note that the PPD can be thought of as an
ensemble of m models drawn i.i.d. from the posterior.

Since the PPD is the actual quantity of interest, in our probabilistic federated learning
setting, we aim to directly estimate the PPD at each client. However, even estimating and
representing the PPD has challenges. In particular, since the PPD is essentially an ensemble
of models, storing and communicating such an ensemble from each client to the server
can be challenging. To address this issue, we leverage the idea of distribution/ensemble



BHATT* GUPTA* RAI

Server

Server I’eacfler :nd
student model
[

\ Client Teacher Models

I

\ Client Student Models
N

FEE J o B m B\ @E
4 e ‘
]

[n| | .
v (R
6aia.ae/t‘ Client 1 [Datasal] Client 2 Datasel ".-"'1 Client K
p(61|D1) u Disthiation. D, | &% ’ﬁ DI( ﬁ Distillation
) pepy) Distillation ||=i vee - 0;‘ ID:() ri
=1 Student ~f - Student, ~ol, Student
Model Model -l { | Model
(PPD} (PFD) {PPD)
Teacher Models Teacher Models Teacher Models

Figure 1: The above figure summarizes our framework. Each client infers the (approximate) poste-
rior distribution by generating the posterior samples (teacher models) which are distilled
to give the PPD (student model parameterized by a deep neural network). Each client
communicates its MAP teacher sample and the PPD to the server which aggregates them
to yield a global teacher sample and the global PPD, both of which are sent back to the
clients, which use these quantities for the next round of learning.

distillation (Korattikara Balan et al., 2015), where the PPD of a deep learning model can be
efficiently distilled and stored as a single deep neural network. We leverage this distillation
idea on each client to represent the client’s PPD using a single neural network which can
then be communicated and aggregated at the server in pretty much the same way as it is
done in standard federated learning. We also note that, although we use the distillation
framework proposed in (Korattikara Balan et al., 2015), our approach is general and can
leverage various other recently proposed methods for distribution/ensemble distillation.
Our approach can be summarized as follows (and is illustrated in Figure. 1)

1. For each client, we perform approximate Bayesian inference for the posterior distribu-
tion of the client model weights using Markov Chain Monte Carlo (MCMC) sampling.
This gives us a set of samples from the client’s posterior and these samples will be used
as teacher models which we distill into a student model. We use stochastic gradient
Langevin dynamics (SGLD) sampling (Welling and Teh, 2011) since it gives us an
online method to efficiently distill these posterior samples into a student model (step
2 below).

2. For each client, we distill the MCMC samples (teacher models) directly into the pos-
terior predictive distribution (PPD), which is the student model. Notably, in this
distillation based approach (Korattikara Balan et al., 2015), the PPD for each client
is represented succinctly by a single deep neural network, instead of via an ensemble
of deep neural network. This makes prediction stage much faster as compared to
typical Bayesian approaches.
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3. For each client, the teacher model with largest posterior probability (i.e., the MAP
sample) from its posterior distribution and the student model representing the client’s
PPD (both of which are deep neural networks), are sent to the server.

4. The server aggregates the teacher and student models it receives from all the clients.
For the aggregation, we consider several approaches described in Sec 2.2.

5. The aggregated teacher and student models are sent back to each client, and the
process continues for the next round.

6. We continue steps 1-5 till convergence.

2.1. Posterior Inference and Distillation of Client’s PPD

We assume there are K clients with labeled data Dy, ..., Dk, respectively. On each client,
we take the Monte Carlo approximation of its posterior predictive distribution (PPD) and
distill it into a single deep neural network using an online Bayesian inference algorithm, as
done by the Bayesian Dark Knowledge (BDK) approach in (Korattikara Balan et al., 2015).
Each iteration of this distillation procedure first generates a sample from the client’s poste-
rior distribution using the stochastic Langevin gradient descent (SGLD) algorithm (Welling
and Teh, 2011) and incrementally “injects” the sample into a deep neural network S (re-
ferred to as “student”) with parameters w, representing a succinct form of the client’s
(approximate) PPD. This is illustrated by each of the client blocks shown in Figure 1. For
client k, assuming the set of samples generated by SGLD to be 0,(61), ceey 9,(€m), this distillation
procedure can be seen as learning the parameters wy of the client k’s student model S by
minimizing the following loss function (Korattikara Balan et al., 2015) using an unlabeled
distillation dataset Dj, at client k

m
Blu) = =37 ST By log Skly = 71’ w) 1)
i=1 xleD;

Note that, in the above equation, log Sx(y = j|z’, wy) is the log of the student model
output value indicating the predicted probability of the label y taking value j for some
input 2’. The unlabeled dataset D), can be generated from the original labeled dataset Dy,
by adding perturbations to the inputs, as suggested in (Korattikara Balan et al., 2015).

We sketch the full algorithm for optimizing for wy in the Supplementary Material.
We use this algorithm at each client to learn the student model S which represents a
compact approximation of the client k’s PPD in form of a single deep neural network (as
shown in the client block in Figure 1), which can be now communicated to the server
just like client models are communicated in standard federated learning algorithms. Note
that, as shown in Figure 1, in our federated setting, in addition to weights w;, of its PPD
approximation (the student model), each client & also sends the approximate maximum-a-

posteriori (MAP) sample 9,&}4 AP defined as the sample 9,(:), i€{1,2,...,m} with the largest

posterior density p(&lil)]l?k). Note that 024 is typically an approzimate MAP sample
since the posterior p(0;|D) itself is approximated using sampling. The overall sketch of
our federated learning procedure, which we call FedPPD (Federated Learning via Posterior
Predictive Distributions), is shown in Algorithm 1.
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Algorithm 1: FedPPD
Data: Number of communication rounds T, total clients K, unlabeled dataset
U= {mi}il, server teacher model weights 0, server student model weights w,,
client teacher model weights {6;}1,, client student model weights {w;}X |,
number of training samples at client {n;}X
Result: Final Server Student Model Weight wéT)
for each roundt =20,...,7 —1 do

!(Jt) and wét)

Server broadcasts 6

for each client i € {1,...,K} do

91’ = Qét), w; = wét)

Update 6; and w; locally as per (Korattikara Balan et al., 2015)
end

Communicate { K and {w;} X | to server
Hét“), wétH) = Server Update({0MAPVE  Lw K {n;}E)

=1 =1

9£V[AP}

end

2.2. Aggregation of Client Models

As described in the previous section, the server receives two models from client k - the
(approximate) MAP sample 02747 (the teacher) as well as the (approximate) PPD wy, (the
student). We denote the teacher models (approximate MAP samples) from the K clients as
{oMAP . ,H%AP} and the respective student models (approximate PPD) as {wy, ..., wx}.
These models are aggregated at the server and then sent back to each client for the next
round. We denote the server aggregated quantities for the teacher and student models as
6, and wy (we use g to refer to “global”).

In this work, we consider and experiment with two aggregation schemes on the server.
Simple Aggregation of Client Models: Our first aggregation scheme (shown in Al-
gorithm 2) computes dataset-size-weighted averages of all the teacher models and all the
student models received at the server. Denoting the number of training examples at client
k as n, and N = Zszl ng, we compute 0, = % Zszl nkHéWAP and wy = %Zszl N W,
similar to how FedAvg algorithm (McMahan et al., 2017) aggregates client models on the
server.

Distillation-based Aggregation of Client Models: Our second aggregation scheme
goes beyond computing (weighted) averages of models received only from the clients. The
motivation behind this approach is that the client models (both teachers as well as students)
received at the server may not be diverse enough to capture the diversity and heterogeneity
of the clients (Chen and Chao, 2020). To address this issue, this approach (shown in
Algorithm 3) first fits two probability distributions, one over the K teacher models and the
other over the K student models received from the clients. It then uses these distributions
to generate M additional client-like teacher models and student models. Using the actual
teacher models (resp. student models) and the additionally generated teacher models (resp.
student models), we perform knowledge distillation on the server to compute the global
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Algorithm 2: Server_Update (Average)

Data: client teacher model’s MAP estimate {#}MAF}K | client student model weights
{w;}K |, number of training samples at client {n;}X

Result: Resultant Teacher Model 6, Student Model @
N = Zfil n; /* total number of samples */

n_ 1 K nMAP
0= NZi:lnlei

1 K
=N Qi1 NiWi

gl

teacher model 6, and the global student model w,. This server-side distillation procedure
requires an unlabeled dataset U on the server. Applying the actual and generated teacher
models (resp. student models) on the unlabeled dataset U gives us pseudo-labeled data 7
where each pseudo-label is defined as the averaged prediction (softmax probability vector)
obtained by applying the actual and generated teacher models (resp. student models)
to an unlabeled input. For the distillation step, we finally run the Stochastic Weighted
Averaging (SWA) algorithm (Izmailov et al., 2018) using the pseudo-labeled data 7 and the
simple aggregation of the client models as initialization. Both 6, and w, can be obtained
by following this procedure in an identical manner. Recently, this idea was also used in
Federated Bayesian Ensemble (FedBE) (Chen and Chao, 2020) to learn the global model.

The two aggregation schemes for server-side updates are shown in Algorithm 2, and 3.
Note that, among the two aggregation schemes, only Algorithm 3 assumes the availability
of unlabeled dataset at the server. Also, owing to high computation capacity, server can
compute 0, and wy in parallel for all the aggregation schemes; incurring no additional delays
in communication rounds.

3. Related Work

Federated learning has received considerable research interest recently. The area is vast
and we refer the reader to excellent surveys (Li et al., 2020a; Kairouz et al., 2021) on the
topic for a more detailed overview. In this section, we discuss the works that are the most
relevant to our work.

While standard federated learning approaches assume that each client does point esti-
mation of its model weights by optimizing a loss function over its own data, recent work
has considered posing federated learning as a posterior inference problem where a global
posterior distribution is inferred by aggregating local posteriors computed at each client.
FedPA (Al-Shedivat et al., 2020) is one such recent approach which performs approximate
inference for the posterior distribution of each client’s weights. However, it assumes a re-
strictive form for the posterior (Gaussian), as also assumed in some other recent works (Liu
et al., 2021; Guo et al., 2023). Moreover, the method needs to estimate the covariance ma-
trix of the Gaussian posterior, which is difficult in general and approximations are needed.
Moreover, although FedPA estimates the (approximate) posterior on each client, due to
efficiency /communication concerns, at the server, it only computes a point estimate (the
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Algorithm 3: Server_Update (Distill)

Data: Unlabeled dataset U, client teacher model’s MAP estimate {MAP}K | client
student model weights {w;}X,, number of training samples at client {n;}X,

Result: Resultant Teacher Model 6,, Student Model w,

N = Zfil n; /* total number of samples */

0= % sz; ni@lMAPa w = % Zfil n;w;

begin

Construct global teacher model distribution p(#|D) from {§MAP}E | /* using
Gaussian approximate */

Sample M additional teachers and form teacher ensemble
Br = {0; ~ p(9|D)}}L, U {0} U {6},

Annotate U using E7 to generate pseudo-labeled dataset T
Distill Ep knowledge to 6 using SWA : §, = SWA(O,Er,T)
end

Similarly follow the above steps with {w;}%, and @ to get w,

mean) of the global posterior. Thus, even though the approach is motivated from a Bayesian
setting, in the end, it does not provide a posterior distribution or a PPD for the global model.

Recently, (Linsner et al., 2021) presented methods for uncertainty quantification in feder-
ated learning using a variety of posterior approximation methods for deep neural networks,
such as Monte Carlo dropout (Gal and Ghahramani, 2016), stochastic weight averaging
Gaussian (SWAG) (Maddox et al., 2019), and deep ensembles (Lakshminarayanan et al.,
2017). These approaches, however, also suffer from poor quality of approximation of the
posterior at each client. (Lee et al., 2020) also propose a Bayesian approach for feder-
ated learning. However, their approach also makes restrictive assumptions, such as the
distribution of the gradients at each of the clients being jointly Gaussian.

Probabilistic/Bayesian approaches for federated learning have also been proposed in
recent work in the context of learning personalized models at each client, using ideas such
as Gaussian Process Achituve et al. (2021) and variation inference Zhang et al. (2022). In
contrast to these works, our setting is aimed at learning a global model that can be served
to all the clients.

Instead of a simple aggregation of client models at the server, FedBE (Chen and Chao,
2020) uses the client models to construct a distribution at the server and further distills
this distribution into a single model using distillation. However, FedBE only performs point
estimation ignoring any uncertainty in the client models. Another probabilistic approach
to federated learning Thorgeirsson and Gauterin (2020) fits a Gaussian distribution using
the client models, and sends the mean of this Gaussian to each client for the next round of
client model training. This approach too does not estimate a posterior at each client, and
thus ignores the uncertainty in client models.
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In the context of Bayesian learning, recent work has also explored federated versions
of Markov Chain Monte Carlo sampling algorithms, such as stochastic gradient Langevin
dynamics sampling (Lee et al., 2020; El Mekkaoui et al., 2021). While interesting in their
own right in terms of performing MCMC sampling in federated settings, these methods
are not designed with the goal of real-world applications of federated learning, where fast
prediction and compact model sizes are essential.

Among other probabilistic approaches to federated learning, recent work has explored
the use of latent variables in federated learning. In Louizos et al. (2021), a hierarchical
prior is used on client model’s weights where the prior’s mean is set to the server’s global
model, and additional latent variables can also be used to impose other structures, such as
sparsity of client model weights. However, these approaches do not model the uncertainty
in the client model.

Some of the recent work on federated learning using knowledge distillation is also rel-
evant. Note that our work leverages the ideas of teacher-student distillation, both at the
clients (when learning a representation of the PPD using a single deep neural network), as
well as in our second aggregation strategy where server-side distillation is used for learning
the global model. In federated learning, the idea of distillation has been used in other
works as well, such as federated learning when the client models are of different sizes and
the (weighted) averaging does not make sense due to the different size/architecture of differ-
ent client models (Zhu et al., 2021). Moreover, server-side distillation of client models Lin
et al. (2020) has in general been found to outperform simpler aggregation schemes, such as
FedAvg.

Recently, Kassab and Simeone (2022) proposed an approach for Bayesian federated
learning which represents each client’s posterior using a set of particles. However, in each
round, all the particles needs to be sent to the server, making both communication as well
as server-side aggregation very expensive.

4. Experiments

In this section, we compare our client uncertainty-driven probabilistic federated learning
approach with various relevant baselines on several benchmark datasets. We report results
on the following tasks: (1) Classification in federated setting, (2) Active Learning in feder-
ated setting, and (3) OOD detection on each client. In this section, we refer to our approach
with simple averaging on the server side as FedPPD, and the variant with distillation based
aggregation on the server side as FedPPD+Distill. We have also made our code publicly
available at https://github.com/aishgupta/fedppd.

4.1. Experimental Setup
4.1.1. BASELINES

We compare our methods with the following baselines

(1) FedAvg (McMahan et al., 2017) is the standard federated algorithm in which the
local models of the participating clients are aggregated at server to compute a global model
which is then sent back to all the clients for initialization in the next round.
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(2) FedBE (Chen and Chao, 2020) is another state-of-the-art baseline which provides a
more robust aggregation scheme. Instead of only averaging the client models at the server,
a probability distribution is fit using the client models, several other models are generated
from this probability distribution, and then the client models as well as the generated models
are distilled into a single model to yield the global model at the server, which is sent to all
the clients for initialization in the next round. Note however that the clients in FedBE only
perform point estimation of their weights unlike our approach which estimates the posterior
distribution and the PPD of each client.

(3) Federated SWAG (Linsner et al., 2021) is a Bayesian federated learning algorithm
which is essentially based on a federated extension of the SWAG Maddox et al. (2019) which
is an efficient Bayesian inference algorithm for deep neural networks. However, Federated
SWAG relies on a simplification that it executes standard federated averaging for all except
the last round and in the last round, the SWAG algorithm is invoked at each client to yield
a posterior. Also note that Federated SWAG requires Monte-Carlo sampling at test time
(thus relying on ensemble based slow prediction) unlike our method which only requires a
single neural network to make the prediction.

In addition to the above baselines, in the supplementary material, we also provide a
comparison with FedPA (Al-Shedivat et al., 2020), a Bayesian federated learning method,
which estimates local posteriors (assumed to be Gaussian) over the client weights, and
aggregates them at the server to form an approximate global posterior.

4.1.2. DATASETS

We evaluate and compare our approach with baseline methods on four datasets: MNIST (Le-
Cun and Cortes, 2010), FEMNIST (Cohen et al., 2017), and CIFAR-10/100 (Krizhevsky
et al., 2009). MNIST comprises of images of handwritten digits categorized into 10 classes.
It has a total of 60,000 images for training and 10,000 images for testing. FEMNIST consists
of images of handwritten characters (digits, lowercase, and uppercase alphabets resulting
in total of 62 classes) written by multiple users. It has a total of 80,523 images written
by 3,550 users. CIFAR-10 consists of 32 x 32 dimensional RGB images categorised into 10
different classes. It has a total of 50,000 images for training and 10,000 images for testing.
CIFAR-100 is similar to CIFAR-10 but has 100 distinct classes.

4.1.3. MODEL ARCHITECTURE AND CONFIGURATIONS

In all our experiments, the student model has a larger capacity compared to teacher model
as it is modeling the PPD by distilling multiple models drawn from the posterior distribu-
tion. We have used a customized CNN architecture for both teacher and student model on
MNIST, FEMNIST and CIFAR-10 dataset, with student model being deeper and/or wider
than its corresponding teacher model. For CIFAR-100, ResNet-18 and ResNet-34 are used
as the teacher and student model, respectively.

In all our experiments, we consider K = 10 clients with data heterogeneity (experimental
results for IID setting are reported in the Supplementary Material). Each client holds a small
non-i.i.d. subset of training data - approximately 2000 samples for FEMNIST, CIFAR-10
and CIFAR-100 and around 500 samples for MNIST. Except for the FEMNIST data where
we have used the Leaf (Caldas et al., 2018) benchmark to distribute data among clients

10
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(excluding digits to increase class imbalance), for all other datasets clients strictly maintains
a small subset of all the classes (at most 2 major classes for MNIST and CIFAR-10 and
at most 20 major classes for CIFAR-100) For a fair comparison, we run our method and
all the baselines for 200 rounds on all the datasets (except MNIST where we run it for 100
rounds) and train local client model for 10 epochs in each round. Also, we assume complete
client participation i.e. all the clients are considered in each round. However, we tune the
learning rate, momentum and weight decay for each method independently. For FedBE
and FedPPD+Distill, we run additional 20 and 50 epochs at the server for distillation on
CIFAR/MNIST and FEMNIST datasets, respectively.
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Figure 2: Convergence of all the methods on CIFAR-10 dataset

4.2. Tasks

Classification We evaluate FedPPD (its two variants) and the baselines on several clas-
sification datasets and report the accuracy on the respective test datasets. The results
are shown in Table 1. We also show the convergence of all the methods on CIFAR-10 in
Figure 2 (similar plots for other datasets are provided in Supplementary Material). Both
the variants of FedPPD outperform the other baselines on all the datasets. As compared to
the best performing baseline, our approach yields an improvement of 4.44% and 7.08% in
accuracy on CIFAR-10 and CIFAR-100, respectively. On MNIST and FEMNIST datasets
too, we observe noticeable improvements. The improvements across the board indicate that
FedPPD and its variants are able to leverage model uncertainty to yield improved predic-
tions especially when the amount of training data per client is small, which is the case with
the experimental settings (as mentioned in Sec 4.1.3). We also observe that in cases where
there is significant heterogeneity in the data distribution across the different clients (on
CIFAR-10 and CIFAR-100), the performance gains offered by FedPPD and its variants are
much higher as compared to the baselines. On other simpler tasks like MNIST dataset and
FEMNIST with the data distribution being roughly similar across different clients, FedPPD
results in reasonable gains in the performance. We also quantify the calibration error of our
approach and all the baselines models and report the results in Table 2 where FedPPD and
its variant have the least error on the test dataset.

The improved performance of our algorithm FedPPD can be attributed to the following
reasons: (1) ability to incorporate model uncertainty which helps us compute the predictive
uncertainty, whereas other approaches rely on point estimates of the model parameters; (2)

11
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although FedSWAG also captures model uncertainty, it uses a crude Gaussian approxima-
tion of the posterior whereas FedPPD do not make any such strict assumptions.

Model MNIST FEMNIST CIFAR-10 CIFAR-100
FedAvg 97.74 87.40 57.20 47.02
FedAvg+SWAG  97.75 87.45 57.34 47.07
FedBE 97.82 88.12 60.18 47.52
FedPPD 97.85 88.81 61.86 53.00
FedPPD+Distill  98.08 88.80 64.62 54.60

Table 1: Federated classification test accuracies on benchmark datasets

| | CIFAR-10 | CIFAR-100 |
Model ECE | MCE | BS | ECE | MCE | BS
FedAvg 16.88 | 24.71 | 0.60 | 28.83 | 42.26 | 0.78
FedAvg+SWAG | 16.69 | 23.16 | 0.60 | 29.07 | 44.36 | 0.78
FedBE 19.26 | 27.54 | 0.59 | 31.89 | 45.92 | 0.80
FedPPD 4.31 | 6.62 | 0.50 | 13.92 | 21.19 | 0.63
FedPPD+Distill | 10.83 | 16.71 | 0.49 | 13.57 | 23.69 | 0.61

Table 2: Expected Calibration Error (ECE), Maximum Calibration Error (MCE) and Brier-
score (BS) of all the models on CIFAR-10 and CIFAR-100

Federated Active Learning In active learning, the goal of the learner is to iteratively
request the labels of the most informative inputs instances, add these labeled instances
to the training pool, retrain the model, and repeat the process until the labeling budget
remains. Following (Ahn et al., 2022), we extend our method and the baselines to active
learning in federated setting using entropy of the predictive distribution of an input x as
the acquisition function. The entropy-based acquisition function for input x is computed
as I(z) = — chzl p(y = i|z)logp(y = i|x) (C refers to the number of classes) and is used
as a score function. In federated active learning setting (we provide a detailed sketch of the
federated active learning algorithm in the Supplementary Material), each client privately
maintains a small amount of labeled data and a large pool of unlabeled examples. In each
round of active learning, clients participate in federated learning with their currently labeled
pool of data until the global model has converged. Now, each client uses the global model to
identify a fixed number (budget) of the most informative inputs among its pool of unlabeled
input based on the highest predictive entropies I(x), which are then annotated (locally
maintaining data privacy) and added to the pool of labeled examples. Now, with this,
next round of active learning begins, where clients will participate in federated learning and
use the global model to expand their labeled pool. This process continues until either the
unlabeled dataset has been exhausted completely or desired accuracy has been achieved.
For a fair comparison, we have run federated active learning on CIFAR-10 dataset with
same parameters for all the approaches. We start active learning with 400 labeled and 3200
unlabeled samples at each client and use a budget of 400 samples in every round of active
learning. For federated learning, we use the same hyperparameters as for the classification
experiments. We stop federated active learning once all the clients have exhausted their
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unlabeled dataset and show the results in Figure 3 where FedPPD and its variant attain
the best accuracies among all the methods.

= 551
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401 —— FedPPD+Distill

2 4 6 8
Active Learning Rounds

Figure 3: Federated Active Learning on CIFAR-10. Note: FedAvg+SWAG performed al-
most similarly to FedAvg on this task as well so we skip it from the plot.

Out-of-distribution (OOD) detection We also evaluate FedPPD and its variant,
and the other baselines, in terms of their ability to distinguish between Out-of-Distribution
(OOD) data and data used during training phase (in-distribution data). For this, given any
sample z to be classified among k distinct classes and model weights 6 (or PPD for our
approach), we compute Shannon entropy of the model’s predictive distribution for the input
x and compute the AUROC (Area Under ROC curve) metric. We use KMNIST as OOD
data for models trained on FEMNIST, and SVHN for CIFAR-10/CIFAR-100 models. Note
that, to avoid class imbalance, we sample an equal amount of data for both the distributions
(out and in) and repeat it 5 times. We report the results in Table 3 where FedPPD and
its variant consistently result in better AUROC scores on all the datasets validating its
robustness and accurate estimates of model uncertainty. In addition to OOD detection, we
also apply all the methods for the task of identifying the correct predictions and incorrect
predictions based on the predictive entropies. For this task too, FedPPD and its variant
outperform the other baselines as shown in Table 4.

| Model | FEMNIST | CIFAR-10 | CIFAR-100 |
FedAvg 0.957 = 0.003 | 0.728 £ 0.013 | 0.703 £ 0.011

FedAvg+SWAG | 0.956 £ 0.003 | 0.728 £ 0.013 | 0.704 £ 0.011
FedBE 0.966 = 0.003 | 0.728 % 0.006 | 0.669 % 0.009

FedPPD 0.983 £0.003 | 0.701 £ 0.007 | 0.698 £ 0.009
FedPPD+Distill | 0.949 +0.003 |0.765 £ 0.006 | 0.784 £+ 0.008

Table 3: AUROC score for OOD/in-domain data detection

5. Conclusion and Discussion

Leveraging model uncertainty in federated learning has several benefits as we demonstrate
in this work. To achieve this, we developed a uncertainty-driven approach to federated
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| Model | FEMNIST | CIFAR-10 | CIFAR-100 |

FedAvg 0.846 £0.011 | 0.742 £0.011 | 0.792 £ 0.003
FedAvg+SWAG | 0.845 £ 0.009 | 0.743 £ 0.010 | 0.800 % 0.004
FedBE 0.863 = 0.005| 0.753 £0.007 | 0.789 £ 0.005
FedPPD 0.862 £ 0.008 | 0.755 £ 0.007 | 0.814 £ 0.003
FedPPD+Distill | 0.853 £0.013 |0.769 £ 0.006 | 0.823 £ 0.002

Table 4: AUROC score for correct/incorrect data detection

learning by leveraging the idea of distilling the posterior predictive into a single deep neural
network. In this work, we consider a specific scheme to distill the PPD at each client.
However, other methods that can distill the posterior distribution into a single neural net-
work (Wang et al., 2018; Vadera et al., 2020) are also worth leveraging for probabilistic
federated learning. Another interesting future work will be to extend our approach to set-
tings where different clients could possibly be having different model architectures. Finally,
our approach first generates MCMC samples (using SGLD) and then uses these samples to
obtain the PPD in form of a single deep neural network. Recent work has shown that it
is possible to distill an ensemble into a single model without explicitly generating samples
from the distribution (Ratzlaff and Fuxin, 2019). Using these ideas for uncertainty-driven
probabilistic federated learning would also be an interesting future work.
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