
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Supplementary: Federated Learning with Uncertainty via
Distilled Predictive Distributions

1. Learning Posterior Predictive Distribution (PPD) locally at each
client

At each client, we aim to distill the Monte Carlo approximation of its PPD into a single
neural network. We do this using an online approach, similar to (Korattikara Balan et al.,
2015). We maintain two deep neural networks on each client: 1) the first neural network is
optimized using SGLD on client’s private dataset to draw samples from its posterior (these
samples denote the collection of teacher models on each client), and 2) the second neural
network represents the distilled version of the client’s Monte Carlo approximation of its
PPD (student model). In each local iteration at client, we draw a sample (i.e., a teacher
model) from its posterior distribution and distill it into the student model which represents
the PPD. This incremental distillation process, when all the teacher models are distilled into
the student model, ultimately gives the student model representing the PPD (in form of a
single deep neural network) at the client. We summarize the client updates in Algorithm 1.

Algorithm 1: Local update at client k

Data: Dataset Dk = (xi, yi)
Nk
i=1, batch-size Mk, number of local iterations V , teacher

model weights θ, student model weights w, teacher learning rate at iteration v,
αv, student learning rate at iteration v, βv, teacher prior hyperparameters γk,
student prior hyperparameters µk

for v = 0 ... V − 1 do
/* teacher model update */

Sample a minibatch B of size Mk

Sample Gaussian Noise zv ∼ N (0, αvI)

θv+1
k = θvk +

αv

2 ∇θk(log p(θ
v
k|γk) +

Nk
Mk

∑
(x,y)∈B log p(y|x, θvk)) + zv

Generate minibatch B′ of size Mk

/* student model update */

Add Gaussian Noise to B′

wv+1
k = wv

k + βv∇wk
(1
Mk

∑
x∈B′

∑
c p(y = c|x, θk) log p(y = c|x,wv

k) + log p(wv
k|µk)).

end

© 2023 .

2. Federated Active Learning

Active learning is an iterative process which aids a learner in achieving desired performance
with limited number of labeled input instances. In each iteration of active learning, the
learner identifies the most informative inputs, requests their labels, adds them to its pool
of labeled instances and retrain the model with augmented labeled dataset. This process
repeats until the labeling budget is not fully exhausted. Similarly, in federated active
learning (Ahn et al., 2022), active learning can be performed on each client using the global
model (informative of global data distribution) instead of its local model to identify the most
helpful instances. Thus, in each iteration of federated active learning, each client identifies
the most helpful inputs, annotates it locally (or using oracle preserving data privacy), adds
it to its local dataset and participates in federated learning until the convergence of the
global model. In our work, we use entropy of the model’s output as the score function to
identify the most helpful inputs, though other predictive uncertainty based score functions
used in active learning can be employed as well. Also, note that to compute p(y|x), FedPPD
uses posterior predictive distribution whereas the other baseline methods like FedAvg uses
the point-estimate of the global model. Our federated active learning algorithm is sketched
in detail in Algorithm 2.

Algorithm 2: Federated Active Learning

Data: Number of active rounds A, client id {1, 2, 3, . . . , k}, client labeled dataset
{Li}ki=1, client unlabeled dataset {Ui}ki=1, budget per round B, set of inputs to
be annotated S′, global server model θ

for each round r = 0, . . . , A− 1 do
for each client i = 0, . . . , k do

Si = {}
for each input x ∈ U do

p(y|x) = θr(x)

I(x) = −
∑C

i=1 p(y = yi|x) log p(y = yi|x)
Si = Si ∪ {(x, I(x)}

end
Select subset S′

i of size B from Si with maximum entropy and get it annotated
Li = Li ∪ S′

i Ui = Ui − S′
i

end

θr+1 = Updated global model using federated learning on {Li}ki=1

end

3. Experimental Setup

We now provide the implementation details of the experiments mentioned in main paper.
The code for our method is available in the form of a zip file as a part of the supplemen-
tary material. The instructions for executing the experiments are also provided in the file
readme.md.

2

Model architecture We evaluate all the variants of FedPPD and baseline algorithms
on MNIST, FEMNIST, and CIFAR-10 using customized CNNs and use ResNets for CIFAR-
100. To have a fair comparison, the architecture of the teacher model in FedPPD and client
model in all the baseline approaches is the same. We provide the architecture details of the
teacher and student model for all datasets in Table 1 and 2, respectively.

MNIST FEMNIST CIFAR-10

Conv2D(5× 5, 10) Conv2D(5× 5, 32) Conv2D(5× 5, 6)
MaxPool(2× 2) MaxPool(2× 2) MaxPool(2× 2)

Conv2D(5× 5, 20) Conv2D(5× 5, 64) Conv2D(5× 5, 16)
Dropout2D(0.5) Dropout2D(0.5) MaxPool(2× 2)
MaxPool(2× 2) MaxPool(2× 2) Linear(120)

Linear(50) Linear(128) Linear(84)
Dropout(0.5) Dropout(0.5) Linear(10)
Linear(10) Linear(52)

Table 1: Model Architecture for Teacher Network and Baselines Methods

MNIST FEMNIST CIFAR-10

Conv2D(5× 5, 20) Conv2D(5× 5, 50) Conv2D(5× 5, 16)
MaxPool(2× 2) MaxPool(2× 2) MaxPool(2× 2)

Conv2D(5× 5, 40) Conv2D(5× 5, 100) Conv2D(5× 5, 16)
Dropout2D(0.5) Dropout2D(0.5) MaxPool(2× 2)
MaxPool(2× 2) MaxPool(2× 2) Linear(256)
Linear(100) Conv2D(5× 5, 200) Linear(128)
Dropout(0.5) Dropout2D(0.5) Linear(10)
Linear(10) MaxPool(2× 2)

Linear(1600)
Dropout(0.5)
Linear(180)
Dropout(0.5)
Linear(52)

Table 2: Model Architecture for Student Networks

Hyperparameters We tune the hyperparameters (learning rate and weight decay) on
each dataset for all the variants of FedPPD and baseline methods. The optimal learning
rate of the teacher and student model during local learning in FedPPD are {0.045, 0.055},
{0.050, 0.085} and {0.055, 0.020} on MNIST, FEMNIST and CIFAR respectively. In case
of FedPPD with distillation at server, the teacher and student learning rates during local
training are {0.045, 0.055}, {0.060, 0.085} and {0.055, 0.020} on MNIST, FEMNIST and
CIFAR respectively. Also, during distillation at server, teacher and student model are
updated using SWA optimizer with learning rates of {0.0010, 0.0010} and {0.0015, 0.0025}
for MNIST/FEMNIST and CIFAR-10/100 respectively.

BaselineWe compare our approach with FedAvg (McMahan et al., 2017) and FedBE (Chen
and Chao, 2020) on MNIST, FEMNIST, CIFAR-10 and CIFAR-100 and the results are pre-
sented in the main paper. Here, we provide the model convergence plot for all the approaches

3

on FEMNIST and CIFAR-100 in Fig 1, showing the superior performance of FedPPD and
its variants as compared to the other baselines.

0 50 100 150 200
Communication Rounds

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

FedAvg
FedBE
FedPPD
FedPPD+Distill

(a) FEMNIST

0 50 100 150 200
Communication Rounds

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

FedAvg
FedBE
FedPPD
FedPPD+Distill

(b) CIFAR-100

Figure 1: Convergence of different federated approaches

We also compare our method against FedPA (Al-Shedivat et al., 2020) (approximates
the posterior distribution by a Gaussian) using their publicly available code obtained from (
https://github.com/google-research/federated/tree/master/posterior_averaging).
We extend their implementation to our experimental setting as described in main paper.
The results of FedPA in our experimental setup are either comparable or worse than FedAvg.
We report the results of FedPA on all the datasets in Table 3. A possible reason for the
poor performance of FedPA could be because the Gaussian approximation of global poste-
rior may not be accurate enough, and moreover since, at the server, FedPA only computes
the Gaussian posterior’s mode/mean but not the covariance, using only the mode/mean
ignores the uncertainty, leading to poorer predictions.

MNIST FEMNIST CIFAR-10 CIFAR-100

FedPA 96.86 86.47 50.88 42.18

Table 3: Performance of FedPA on test dataset

IID Data Distribution We now consider a setting in which the data is distributed
among clients in IID fashion. We have experimented on CIFAR-10 and CIFAR-100 dataset
and compared our proposed approach with the baseline methods. We have assigned a subset
of 4000 randomly selected labeled images to 10 client and have maintained a small subset of
10000 unlabeled images as the proxy dataset on the server for FedBE and FedPPD+Distill.
We have also considered complete client participation i.e. all the 10 clients participate in
every communication round of the federated learning. Also, for all the remaining hyper-
parameters, we have used same values as we did for the non-IID setting. The results of
the experiments are reported in Table 4 where FedPPD and its variant clearly outperforms
the baseline methods. This shows that FedPPD and FedPPD+Distill result in improved
performance even when the data distribution among clients is homogeneous.

4

https://github.com/google-research/federated/tree/master/posterior_averaging

FedAvg FedBE FedPPD FedPPD+Distill

CIFAR-10 73.80% 73.99% 74.91% 75.26%
CIFAR-100 53.38% 53.16% 63.67% 63.43%

Table 4: Classification performance of the global model on the test dataset for IID data
distribution among clients

Resources used We ran all our experiments on Nvidia 1080 Ti GPUs with 12 GB of
memory. We have implemented our method in PyTorch and utilized its multiprocessing
library to spawn multiple threads for parallel computation.

4. Potential Limitations/Future Work

We have shown the efficacy and robustness of our approach against multiple baseline meth-
ods on various datasets. Even though, to obtain (an approximation to) the PPD at each
client, we use a specific approach based on stochastic gradient MCMC (SGMCMC) com-
bined with knowledge distillation, our work provides a general framework for Bayesian
federated learning where we can use a variety of methods at each client to obtain the pos-
terior/PPD approximation, and then leverage techniques developed for standard federated
learning. The key is to represent the PPD approximation via a single deep neural network.
In our work, we use the vanilla SGMCMC at the clients which sometimes can have con-
vergence issues. However, recent process on SGMCMC has led to more robust variants of
SGMCMC which can be employed under our framework for better performance.

Generation of posterior samples using MCMC/SGMCMC and then distilling them into
a student model (even using an online procedure like us) can be slow, especially since
MCMC methods can sometimes exhibit slow convergence. One possible avenue of future
work could be to represent the posterior of the model implicitly and distill it without having
to explicitly generate samples from it (Ratzlaff and Fuxin, 2019).

References

Jin-Hyun Ahn, Kyungsang Kim, Jeongwan Koh, and Quanzheng Li. Federated active
learning (f-al): an efficient annotation strategy for federated learning. arXiv preprint
arXiv:2202.00195, 2022.

Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Feder-
ated learning via posterior averaging: A new perspective and practical algorithms. In
International Conference on Learning Representations, 2020.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable
to federated learning. In International Conference on Learning Representations, 2020.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian
dark knowledge. Advances in Neural Information Processing Systems, 28, 2015.

5

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural
networks. In International Conference on Machine Learning, pages 5361–5369. PMLR,
2019.

6

	Learning Posterior Predictive Distribution (PPD) locally at each client
	Federated Active Learning
	Experimental Setup
	Potential Limitations/Future Work

