
Proceedings of Machine Learning Research 222, 2023 ACML 2023

A Pragmatic Look at Deep Imitation Learning

Kai Arulkumaran kai arulkumaran@araya.org

Dan Ogawa Lillrank dan ogawa@araya.org

Araya Inc., Tokyo, Japan

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

The introduction of the generative adversarial imitation learning (GAIL) algorithm has
spurred the development of scalable imitation learning approaches using deep neural net-
works. Many of the algorithms that followed used a similar procedure, combining on-policy
actor-critic algorithms with inverse reinforcement learning. More recently there have been
an even larger breadth of approaches, most of which use off-policy algorithms. However,
with the breadth of algorithms, everything from datasets to base reinforcement learning al-
gorithms to evaluation settings can vary, making it difficult to fairly compare them. In this
work we re-implement 6 different IL algorithms, updating 3 of them to be off-policy, base
them on a common off-policy algorithm (SAC), and evaluate them on a widely-used expert
trajectory dataset (D4RL) for the most common benchmark (MuJoCo). After giving all
algorithms the same hyperparameter optimisation budget, we compare their results for a
range of expert trajectories. In summary, GAIL, with all of its improvements, consistently
performs well across a range of sample sizes, AdRIL is a simple contender that performs
well with one important hyperparameter to tune, and behavioural cloning remains a strong
baseline when data is more plentiful.

Keywords: imitation learning; inverse reinforcement learning; benchmarking

1. Introduction

Several years ago, Henderson et al. (2018) formally brought attention to the reproducibility
crisis in deep reinforcement learning (DRL). Some solutions have been to settle on evaluation
protocols for common benchmarks (Machado et al., 2018), improving the statistical tools
with which we evaluate results (Agarwal et al., 2021), or simply just providing reliable
algorithm implementations (Raffin et al., 2021). Still, sometimes it is necessary to take a
step back and evaluate the (claimed) progress within different areas of machine learning
(ML; Oliver et al., 2018; Musgrave et al., 2020). In on-policy RL it has already been
observed that implementation details can matter more than the algorithmic contributions
of novel algorithms (Engstrom et al., 2020; Andrychowicz et al., 2021), and so in turn we
have opted to take a pragmatic look at (deep) imitation learning (IL), creating a single,
open source codebase to fairly compare algorithms.1

IL is the branch of ML that is concerned with learning from “demonstration” data (Hus-
sein et al., 2017). In other words, there exists agents, acting in environments, from which
we collect data, in order to train our own agent. IL is intimately linked with RL—learning

1. https://github.com/Kaixhin/imitation-learning

© 2023 K. Arulkumaran & D. Ogawa Lillrank.

https://github.com/Kaixhin/imitation-learning

Arulkumaran Ogawa Lillrank

to act optimally in a given environment—and hence is often analysed with respect to con-
cepts that are foundational to RL, such as states, actions, policies, reward functions, value
functions, etc. (Sutton and Barto, 2018). Indeed, one of the most prominent approaches to
IL is a technique known as inverse reinforcement learning (IRL; Arora and Doshi, 2021).

In the same way that deep learning (DL) has enabled RL to scale to high-dimensional
state and action spaces (Arulkumaran et al., 2017), DL has also enabled IL to be applied to
more complex domains. The most famous of these algorithms is generative adversarial IL
(GAIL; Ho and Ermon, 2016), which uses the generative adversarial framework (Goodfellow
et al., 2014) to learn a reward function which can then be used with IRL. In their work,
they show strong results against a range of baselines, including the simplest IL method, be-
havioural cloning (BC; Pomerleau, 1988). Although BC underperformed GAIL, they noted
that it “was able to reach satisfactory performance with enough data”—a common obser-
vation. However, to “generate the datasets, ... [they] subsampled the expert trajectories”.
While this reduces the number of samples available, it is not the same as providing fewer
trajectories without subsampling, as the former tends to result in better coverage of the
state space. Pragmatically, collecting trajectory data is a bottleneck for IL, so subsam-
pling should be avoided—and in this case BC’s performance improves. IL results where
trajectory data has been subsampled is not directly comparable to results where no sub-
sampling has occurred, and unsurprisingly practitioners may miss critical details revealed
in an appendix.2

Another major issue in the reproducibility of IL algorithms is encountered in the GAIL
paper—they generated their own expert trajectories using an RL agent. Out of the works
that we review herein, nearly all generate their own expert data. And naturally, as time
passes, the RL algorithms used within IL algorithms get replaced with more performant
versions. One of the most significant of these changes is the move from on-policy RL
algorithms, as used within the original work on GAIL, to more data-efficient off-policy
algorithms (Kostrikov et al., 2019; Blondé and Kalousis, 2019). Do some of the on-policy
IL algorithms that were competitive with GAIL (Kim and Park, 2018; Wang et al., 2019;
Brantley et al., 2020) still perform competitively when converted to be off-policy?

In this work, we review 6 different deep IL algorithms: GAIL (Ho and Ermon, 2016), gen-
erative moment matching imitation learning (GMMIL; Kim and Park, 2018), random expert
distillation (RED; Wang et al., 2019), disagreement-regularised imitation learning (DRIL;
Brantley et al., 2020), adversarial reward-moment imitation learning (AdRIL; Swamy et al.,
2021), and primal Wasserstein imitation learning (PWIL; Dadashi et al., 2021). To min-
imise differences between them, we update GMMIL, RED, and DRIL to be off-policy, give
them access to absorbing state indicators (Kostrikov et al., 2019), and use soft-actor critic
(SAC; Haarnoja et al., 2018a) as the base RL algorithm for all methods. We then evaluate
them on the standard MuJoCo continuous control benchmark environments (Todorov et al.,
2012; Brockman et al., 2016), using the D4RL expert trajectory datasets (Fu et al., 2020) for
reproducibility. For a fairer comparison, we give each algorithm the same hyperparameter
optimisation budget, and then run them with the best settings for several seeds, and report
results using current best practices (Agarwal et al., 2021). Given the many improvements
to GAIL, as well as prior effort performing extensive hyperparameter tuning on adversarial

2. Never mind implementation details not revealed within a paper.

A Pragmatic Look at Deep Imitation Learning

IL methods (Orsini et al., 2021), unsurprisingly it remains one of the best IL algorithms to
use. With more trajectories, AdRIL performs similarly to GAIL, whilst remaining simple
to implement and tune (unlike GAIL). And, as observed many times before, BC becomes a
competitive baseline with enough data.

2. Background

2.1. Imitation Learning

The goal of IL is to train a policy3, π̂(a|s; θ), mapping states s to a distribution over actions
a, to mimic an expert policy π∗(a|s), given either the expert policy itself, or more commonly,
a fixed dataset ξ∗ = {τ1, . . . , τN}, of trajectories τ = {s0, a0, s1, a1, . . . sT , aT } generated by
the expert, where N denotes the number of expert trajectories provided.

A common assumption within IL is that both the expert and our agent inhabit a Markov
decision process (MDP), defined by the tuple (S,A, T ,R, p0, γ): S and A are the state
and action spaces, T : S ×A → S is the state transition dynamics, R : S ×A → R is the
reward function, p0(s) is the initial state distribution, and γ ∈ [0, 1] is the discount factor
(used to weight immediate vs. future rewards). The expert policy is optimal in the sense
that π∗ = argmaxπ∈Π Eτ∼π[R0], where the return at timestep t, Rt, is the discounted sum
of rewards following a policy from state st until the end of the episode at timestep T :
Rt =

∑T−t
k=0 γ

krt+k+1. While in RL the goal is to interact with the environment in order to
find π∗ (Sutton and Barto, 2018), in IL we do not have access to R, and must instead find
π∗ assuming that we have access to optimal trajectories.4 All following methods, unless
specified otherwise, can be implemented using neural networks, providing flexible function
approximation that can scale to large state and/or action spaces.

2.2. Reduction to Supervised Learning

The simplest method, BC (Pomerleau, 1988), reduces IL to a supervised learning problem.
Using a∗ to denote the expert’s actions, BC can be formulated as minimising the 1-step
deviation from the expert trajectories:

argmin
θ

Es,a∗∼ξ∗ [L(a∗, π̂(a|s; θ))], (1)

where L can be, as in maximum likelihood estimation, the negative log likelihood.
BC is very simple, and benefits from a fixed objective over a stationary data distribution.

However, as π̂ is only trained on s ∼ ξ∗, it can fail catastrophically when it diverges from
the states covered by π∗. In order to mitigate this, π̂ must be evaluated on the environment
in order to correct for discrepancies between s, a ∼ π̂ and s, a ∼ π∗.

Interactive IL methods solve this issue of compounding errors (Ross et al., 2011) by
iterating over running π̂ in the environment, calculating π∗(a|s) on π̂’s state distribution,
and using supervised learning on the new data (Daumé et al., 2009; Ross and Bagnell,
2010; Ross et al., 2011). While these approaches solve the data distribution issue, they

3. In our case, a neural network with parameters θ.
4. In this work we do not consider the more complex settings that include suboptimal demonstrations

and/or noisy observations.

Arulkumaran Ogawa Lillrank

require access to an interactive expert during training, which may not be available in many
scenarios.

2.3. Inverse Reinforcement Learning

IRL instead overcomes this distribution shift by using RL to train π̂ to mimic π∗ in the
environment. The procedure consists of iterating between the following two steps:

1. Construct a reward function5 R̂(s, a;φ) using ξ∗, and optionally τ ∼ π̂

2. Train π̂ using RL

RL is more complicated than the typical supervised learning setting. In particular, as
the policy evolves, the data distribution changes. In the case of IRL, R̂ changing over time
can introduce further non-stationarity.

The basic objective of IRL can be stated as:

argmax
θ

Eτ∼π̂(s,a;θ)[R̂0] such that π∗ = argmax
π∈Π

Eτ∼π[R̂0], (2)

where R̂ is the return with respect to the learned reward function R̂. However, this is un-
derspecified (Ng et al., 2000); e.g., any policy is trivially optimal for R̂ = 0. IRL algorithms
therefore incorporate one or several of the following three properties.

Firstly, one can match the state-action distribution under π∗, known as the expert’s

occupancy measure ρπ∗ = Eτ∼π∗
[∑T

t=0 γ
t
1s,a

]
(Syed et al., 2008; Ho and Ermon, 2016),

or, alternatively, feature expectations (Ng et al., 2000). This is achieved using the learned
reward function, and is hence dependent on the expressivity of R̂. In particular, the con-
stant function is underspecified and allows an infinite set of solutions. Secondly, one can
“penalise” following trajectories taken by (previous iterations of) π̂ (Ng et al., 2000). This
allows R̂ to focus on relevant parts of the state-action space, but implicitly assumes that
current/past versions of π̂ are suboptimal. Thirdly, one can use the maximum entropy
principle (Jaynes, 1957) to find a unique best solution out of the set of solutions that match
the expert’s occupancy measure/feature expectations (Ziebart et al., 2008). Using the La-
grangian multiplier λ, and denoting H as the entropy, this results in the following modified
RL objective: argmaxθ Eτ∼π(s,a;θ)[R0] + λH[π(s, a; θ)]. Entropy regularisation is a classic
technique in RL (Williams and Peng, 1991).

A simple algorithm that uses these properties is soft Q imitation learning (SQIL; Reddy
et al., 2020). SQIL uses the constant reward function:

R̂ =

{
1 if (s, a) ∈ ξ∗

0 if (s, a) ∼ π̂,
(3)

which encourages not just imitating the expert’s actions, but also visiting the same states.
Building upon the maximum entropy model of expert behaviour (Ziebart et al., 2008),
Reddy et al. (2020) show that their algorithm can be interpreted as regularised BC with a
sparsity penalty on the reward function (Piot et al., 2014).6 The full SQIL algorithm (for

5. In the parametric case, parameterised by φ, but potentially nonparametric.

6. Due to R̂ being +1 at expert state-action pairs, and 0 elsewhere.

A Pragmatic Look at Deep Imitation Learning

Table 1: Adversarial imitation reward functions (Ghasemipour et al., 2020).

R̂ Positive (bounded) Negative (bounded)

GAIL logD(s, a) 7(-) 3(7)
AIRL h(s, a) = log(D(s, a))− log(1−D(s, a)) 3(7) 3(7)

FAIRL −h(s, a) · eh(s,a) 3(3) 3(7)

continuous action spaces) trains a SAC agent on half-half mixed batches of expert and agent
data with its constant reward function. While simple, the downside of the constant reward
function is that as the agent improves, its transitions still get labelled with zero rewards,
potentially leading to a collapse in performance with over-training.

2.4. Adversarial Imitation Learning

Adversarial IL methods instead learn a reward function online using adversarial training,
motivated by maximum entropy occupancy measure matching (Ho and Ermon, 2016). In
generative adversarial network training (Goodfellow et al., 2014), the “generator” is trained
to output samples that fool the “discriminator” D : S×A → (0, 1), whilst the discriminator
is trained to discriminate between samples from the generator and the data distribution.
This is a minimax game, in which the equilibrium solution corresponds to minimising the
Jensen-Shannon divergence between the generated and real distributions. In GAIL, π̂ plays
the role of the generator, and the discriminator is trained on state-action pairs from π̂
and π∗: minG maxD Es,a∼π∗ [log(D(s, a))] + Es,a∼π̂[log(1−D(s, a))]. Under this formula-
tion, higher values indicate how “expert” D believes its input to be.

There are several options for constructing R̂ from D. Prominent examples include those
introduced in GAIL, adversarial inverse reinforcement learning (AIRL; Fu et al., 2018)
(corresponding to the reverse Kullback-Leibler (KL) divergence DKL(ρπ̂‖ρπ∗)), and forward
KL AIRL (FAIRL; Ghasemipour et al., 2020) (Table 1). As discussed by Kostrikov et al.
(2019) and empirically investigated by Jena et al. (2020), there is a potential reward bias in
these functions. They note that positive R̂, i.e., − log(1 −D(s, a)), biases agents towards
survival, whereas negative R̂, i.e., log(D(s, a)) biases agents towards early termination. This
bias means that even constant reward functions can outperform either of these depending
on the type of the environment. We recommend the original works for discussions on the
properties of various reward functions (Kostrikov et al., 2019; Jena et al., 2020; Ghasemipour
et al., 2020). Kostrikov et al. (2019) also make the observation that many IL algorithms do
not correctly handle terminal states, and propose appending an absorbing state indicator
to states, which allows IRL algorithms to properly estimate values for terminal states. This
requires processing complete trajectories from both the expert and the agent, and allowing
both the RL agent and the discriminator to learn from the indicator feature.

While GAIL implicitly returns a reward function, if trained to optimality then D will
return 0.5 for state-action pairs from both π̂ and π∗. Finn et al. (2016) propose changing

the form of the D to exp(f(τ))
exp(f(τ))+π̂(τ) , allowing the optimal reward function to be recovered

as f(+const). AIRL makes a practical algorithm from this by changing D to operate over
state-action pairs, as in GAIL, and also further disentangling the recovered reward function

Arulkumaran Ogawa Lillrank

f as the sum of a reward approximator g(s, a) and a reward shaping term (Ng et al., 1999)
h(s): f(s, a, s′) = g(s, a) + γh(s′)− h(s), where s′ is the successor state.

One of the most significant improvements to adversarial IL methods came from mov-
ing to more sample-efficient off-policy RL algorithms (Kostrikov et al., 2019; Blondé and
Kalousis, 2019), which perform updates on batches of data stored in an experience replay
memory (Lin, 1992). The discriminator can similarly be more efficiently trained on replay
data, and although this should include an importance weighting term to account for the
change in data distribution, in practice this is not needed (Kostrikov et al., 2019).

There are countless more advances within adversarial IL, making it difficult to know
which techniques increase performance robustly. Orsini et al. (2021) performed a large-scale
hyperparameter search over many of these methods. The key takeaways were that off-policy
RL algorithms help improve sample efficiency, discriminator regularisation is key, and that
hyperparameter choices which are optimal for AI-generated trajectories are not always the
same for human-generated trajectories—a valuable distinction that lies out of the scope of
this work. Their work also shows the importance of large-scale empirical evaluation, as their
results overturned theoretical claims about the importance of discriminator regularisation
(Blondé et al., 2022).

2.5. Distribution Matching Imitation Learning

One disadvantage of adversarial training is the requirement for the discriminator, which is
also undergoing training as part of the minimax game, to provide a useful training signal
to the generator. There are several other IRL algorithms that also attempt to match the
expert and agent’s state-action distributions, but use non-adversarial methods.

One solution is to replace the discriminator with a nonparametric model (Li et al., 2015;
Dziugaite et al., 2015). Specifically, distribution matching can be achieved by minimising
the maximum mean discrepancy (MMD; Gretton et al., 2012) defined over a reproducing
kernel Hilbert space (RKHS). Given distributions, P and Q, and a mapping ψ : X → H from
features X ∈ X to an RKHS H, the MMD is the distance between the mean embeddings of
the features: MMD(P,Q) = ‖Ex∼P [ψ(x)]− Ey∼Q[ψ(y)]‖H. Using a kernel function k, one
can calculate MMD2(P,Q) = Ex,x′∼Pk(x, x′) + Ey,y′∼Qk(y, y′)− 2Ex∼P,y∼Qk(x, y).

GMMIL (Kim and Park, 2018) extends this principle to the IL setting. Dropping terms
that are constant with respect to π̂, GMMIL has the reward function:

R̂ =
1

M

M∑
i=1

k((s, a), (s∗i , a
∗
i))−

1

N

N∑
j=1

k((s, a), (sj , aj)), (4)

where M and N are the number of state-action pairs from π∗ and π̂, respectively.
Two disadvantages of GMMIL are that 1) the “discriminator” cannot learn relevant

features, and 2) it has O(MN) complexity. RED (Wang et al., 2019) solves these issues by
building upon random network distillation (RND; Burda et al., 2018). In RND, a predictor
network fφ : S ×A → RK is trained to minimise the mean squared error (MSE) against a
fixed, randomly initialised network fφ̄ : S ×A → RK . Empirically, the MSE indicates how
out-of-distribution new data is. RED uses a Gaussian function over the MSE, resulting in

R̂ = exp(−σ‖fφ(s, a)− fφ̄(s, a)‖22), (5)

A Pragmatic Look at Deep Imitation Learning

where σ is a bandwidth hyperparameter. Wang et al. (2019) interpret RND as an approxi-
mate support estimation method, and hence the RED reward function encourages the agent
to have a support over its state-action distribution that matches the expert’s.

Similarly to RED, DRIL (Brantley et al., 2020) constructs a reward function based on
the disagreement between models trained on the expert data, and can also be interpreted
as a support estimation method. However, unlike the other methods which operate over the
joint distribution of state-action pairs, DRIL builds simply upon BC, operating over p(a|s).
DRIL first trains an ensemble of E different policies using the BC objective (Equation 1)
on the expert data, and then uses a function of the (negative of the) variance between the
policies to estimate a reward for the agent:

R̂ = −Cclip
U (s, a) =

{
1 if Varπ∈ΠE [π(a|s)] ≤ q
−1 otherwise,

(6)

where the q is a top quantile of the uncertainty cost computed over the expert dataset.
While deep ensembles are known to produce reasonable uncertainty estimates (i.e., variance
in outputs) on out-of-distribution data (Lakshminarayanan et al., 2017), it is also possible
to approximate them using sampling with dropout (Srivastava et al., 2014). Brantley et al.
(2020) showed empirically that this performed comparatively to using independent models.

The Wasserstein distance is another way of defining a distance between two probability
distributions on a given metric space M, and minimising it can be interpreted as finding
the optimal coupling, γ, for transporting probability mass from one distribution to other,
whilst minimising the transport cost given by a metric d on M (Villani, 2009).7 PWIL
(Dadashi et al., 2021) aims to minimise the Wasserstein-2 distance between the agent and
expert’s state-action distributions:

inf
π∈Π
W2

2 (ρπ̂, ρπ∗) = inf
π∈Π

inf
γ∈Γ

T∑
t=1

M∑
m=1

d((st, at), (s
∗
t , a
∗
t))

2γ[t,m]︸ ︷︷ ︸
ct,π

, (7)

where ct,π is the (time-dependent) optimal transport cost.
The optimal coupling for policy π, γ∗π, requires the full trajectory generated by π,

so Dadashi et al. (2021) define a greedy coupling γgπ that transports probability mass at
each timestep t, allowing the cost to be calculated online as the agent interacts with the
environment. The cost with the greedy coupling, cgt,π, is an upper bound to the Wasserstein
distance, and hence optimising it still minimises the distance between the agent and expert’s
state-action distribution. The reward can be defined by applying a monotonously decreasing
function to the cost:

R̂t = α exp(− βT√
|S|+ |A|

cgt,π), (8)

where α and β are reward scale hyperparameters, and d is set to the Euclidean distance
between Z-score normalised state-action pairs.

7. Note that in this subsection alone we use γ for couplings, in line with optimal transport literature.

Arulkumaran Ogawa Lillrank

Another view on distribution matching, known as moment matching8, can be achieved
through optimising integral probability metrics (IPM; Müller, 1997). IPMs provide a dis-
tance function between two distributions, supf∈F Ex∼P [f(x)] − Ey∼Q[f(y)], for a function
class F containing functions f : X → R. Different function classes F recover different IPMs;
for instance, F = {f : ‖f‖H ≤ 1} with RKHS H gives the MMD and F = {f : ‖f‖L ≤ K}
with bounded Lipschitz constant K gives the Wasserstein distance.

Swamy et al. (2021) use this to provide a more general view on IL, arguing that training
an agent to match the moments of the expert’s reward or action-value distributions will
achieve the same performance. When the agent is able to interact with the environment,
Swamy et al. (2021) show that it is possible to do reward moment-matching, with a form
that is similar to GMMIL, penalising the difference in moments between the agent and
expert’s state-action pairs. However, in their view on IL they also focus on the moment
matching happening within a minimax game between the agent and the reward function,
which motivates the need to update the reward function. Solving for a closed-form reward
function in an RKHS with the indicator kernel function, the AdRIL reward function is:

R̂ =


1
|ξ∗| if (s, a) ∈ ξ∗

0 if (s, a) ∼ π̂
−1

round·|ξ| if (s, a) ∼ π̂old,

(9)

where the final term assigns a negative reward to state-action pairs from old trajectories,
inversely proportional to the number of rounds of updates (a hyperparameter that corre-
sponds to a fixed number of updates), and the current number of agent trajectories, |ξ|.
AdRIL can therefore be considered an improvement upon SQIL’s constant reward function,
obviating the need for early stopping (Reddy et al., 2020).

3. Experiments

3.1. Environments + Data

We evaluate all algorithms on the popular MuJoCo simulated robotics benchmarks: Ant,
HalfCheetah, Hopper, and Walker2D (Todorov et al., 2012; Brockman et al., 2016). To
improve reproducibility and enable fairer comparison against other reported results, we use
the D4RL “expert-v2” trajectory datasets (Fu et al., 2020).9 When loading the expert data
we process each episode to distinguish between “true” and time-dependent terminations
(Pardo et al., 2018), and provide absorbing state indicators (Kostrikov et al., 2019); these are
also tracked for agent episodes. By default, we maximise available data by not subsampling
expert transitions. We choose 3 different trajectory “budgets” for the IL algorithms to learn
from: 5, 10 and 25 expert trajectories.

3.2. Algorithms + Hyperparameter Search + Evaluation

All IL algorithms use SAC (Haarnoja et al., 2018a), with automatic entropy tuning (Haarnoja
et al., 2018b), as the base RL agent, as theoretically required by SQIL and AdRIL, and

8. Matching the moments of the model distribution to the empirical target distribution.
9. Although this benchmark was developed for offline RL, we use it for IL by ignoring the saved rewards.

A Pragmatic Look at Deep Imitation Learning

as was empirically shown to be performant for adversarial IL algorithms (Orsini et al.,
2021). The actor applies a tanh transformation to scale actions ∈ (−1, 1), and dual critics
are trained to reduce value overestimation (Fujimoto et al., 2018). We also include BC as
a baseline, with the same actor architecture. All algorithms are optimised with AdamW
(Loshchilov and Hutter, 2019). We use PyTorch (Paszke et al., 2019) for all of our code.

We group the IL algorithms and their variants into 6 key methods: AdRIL, DRIL,
GAIL, GMMIL, PWIL, and RED. Our hyperparameter search spaces were determined
based on hyperparameter ranges within the original works, a large subset of options tried
by Orsini et al. (2021), and general hyperparameters such as learning rate and batch size,
resulting in 7-18 hyperparameters to tune per algorithm. For each trajectory budget, we
give each algorithm 30 hyperparameter evaluations using Bayesian optimisation (Balandat
et al., 2020), with the minimum of the cumulative reward for each of the 4 environments
used as the optimisation objective, which can be seen as minimising regret over a set of
environments. We then evaluate agents over 10 seeds with the best hyperparameters found,
and report performance according to best practices (Agarwal et al., 2021). We therefore
train 2880 agents for the final results, not including the extensive training and testing of
agents performed while replicating and augmenting IL algorithms.

DRIL, GAIL and RED include several options for their trained discriminators, including
network hidden size, depth, activation function, dropout, and weight decay. The GAIL
discriminator has additional options, detailed below.

AdRIL options include balanced sampling (alternating sampling expert and agent data
batches vs. mixed batches, Swamy et al., 2021), and the discriminator update frequency
≥ 1, which determines the number of “rounds”. We also include “0” in the search space,
which if chosen reverts to using the SQIL reward function.

DRIL options include the quantile cutoff ∈ [0, 1]. As per the original work (Brantley
et al., 2020), we include an auxiliary BC loss during training. For simplicity we use the
dropout ensemble. As using absorbing state indicators requires importance sampling, we
adapt the BC loss used within DRIL to account for importance weights.

GAIL options include reward shaping (Fu et al., 2018), subtracting log π̂(a|s) from the
predicted reward (Fu et al., 2018), the GAIL, AIRL and FAIRL reward functions (Ho and
Ermon, 2016; Fu et al., 2018; Ghasemipour et al., 2020), discriminator gradient penalty
(Kostrikov et al., 2019; Blondé and Kalousis, 2019), discriminator spectral normalisation
(Blondé et al., 2022), discriminator entropy bonus ≥ 0 (Orsini et al., 2021), binary cross-
entropy, Mixup, and nn-PUGAIL discriminator loss functions (Ho and Ermon, 2016; Chen
et al., 2021; Xu and Denil, 2021), and 3 additional hyperparameters for these loss functions
(Mixup alpha ≥ 0, positive class prior ≥ 0,≤ 1, and non-negative margin ≥ 0).

To adapt GMMIL for absorbing states, we adapt it to use the weighted MMD (Yan
et al., 2017). Due to the O(MN · dim(X)) complexity of MMD, it is prohibitive to use the
entire expert dataset per update in the off-policy setting, and hence we randomly sample a
batch of expert transitions per update. For this reason we also restrict the maximum batch
size of GMMIL’s hyperparameter search space.

PWIL options include the reward scale α ≥ 0 and reward bandwidth scale β ≥ 0. To
make PWIL more comparable to the other algorithms, we use the “nofill” variant, which
does not prefill the replay buffer with expert transitions (Dadashi et al., 2021).

Arulkumaran Ogawa Lillrank

Figure 1: Normalised scores over different trajectory budgets (IQM ± 95% CI). GAIL per-
forms well across all budgets, with AdRIL performing joint-best for high budgets.
AdRIL’s weakness is its sensitivity to the discriminator update frequency, which
can cause policy collapse if not tuned well. PWIL is reasonably strong across
budgets. BC is a strong baseline for high budgets.

To adapt RED for absorbing states, we train its discriminator with a weighted MSE
loss.

The hyperparameter search spaces and optimised hyperparameters can be found docu-
mented in the codebase.

3.3. Results

All IL algorithms (except BC) are trained with 106 environment interaction steps, and
are evaluated 30 times with a deterministic policy every 104 steps. To aggregate test
returns, we calculate the interquartile mean (IQM) over the 30 evaluation episodes, and then
once again over seeds, reporting the final IQM ± 95% confidence interval (CI) using 1000
stratified bootstrap samples (Agarwal et al., 2021). The final returns over all environments
are reported in Table 2.10 We also show performance over time in Figure 1, where the
returns are aggregated over environments, normalised by the D4RL environment min and
max reference scores: normalised score = score - random score

expert score - random score , with the reference scores
produced by random and expert agents.

Overall, GAIL performs robustly across all trajectory budgets, presumably due to the
large amount of research that has gone into improving the performance and robustness of
adversarial IL methods. However, AdRIL, which is practically much simpler (and faster),
performs the same (with higher sample efficiency) with higher budgets, as near-expert data
from the agent is less likely to overpower the effect of the expert data. This can also be
seen in the hyperparameter optimisation, with the discriminator update frequency going
from 0 (reverting to the SQIL reward function) to 12500 to 25000 as the trajectory budget
increased. PWIL also performed well across budgets. Hyperparameter optimisation set the
reward (α) and reward bandwidth (β) scales to 1 for 5 trajectories, but increased the values

10. For reference we also include the results of our SAC implementation, trained for 3× 106 steps.

A Pragmatic Look at Deep Imitation Learning

Table 2: Returns over different trajectory budgets and environments (IQM ± 95% CI).
Optimising for minimum regret across all environments results in hyperparameter
choices that are suboptimal for individual environments. Although GAIL performs
the best over all trajectory budgets for most environments, AdRIL is always the
most effective in the Hopper environment.

Trajectories Ant HalfCheetah Hopper Walker2D

SAC 5155.97 ± 812.74 13994.64 ± 2304.52 2086.81 ± 608.70 5903.79 ± 340.09

5

BC 587.82 ± 255.80 52.48 ± 153.96 701.03 ± 134.96 909.28 ± 558.42
AdRIL 1191.88 ± 787.27 36.58 ± 60.07 3584.20 ± 30.61 169.10 ± 576.42
DRIL −89.15 ± 84.87 −63.48 ± 20.80 367.35 ± 324.27 −20.69 ± 58.24
GAIL 5439.19 ± 253.85 11238.76 ± 217.55 3517.76 ± 178.49 5110.03 ± 66.72
GMMIL 575.01 ± 903.94 299.80 ± 272.75 820.35 ± 488.22 60.05 ± 56.30
PWIL 3168.17 ± 1285.61 10775.81 ± 386.64 3529.61 ± 32.47 3678.89 ± 167.96
RED −90.94 ± 252.32 −111.72 ± 466.09 2500.67 ± 1024.09 1052.36 ± 184.32

10

BC 2178.80 ± 311.20 184.06 ± 176.27 1139.22 ± 559.33 4687.82 ± 380.03
AdRIL 115.84 ± 520.84 5957.19 ± 2747.32 3594.14 ± 8.50 2267.06 ± 2121.80
DRIL −318.65 ± 104.92 −117.86 ± 32.44 37.51 ± 103.46 −12.32 ± 8.58
GAIL 5368.46 ± 54.49 11571.12 ± 154.39 3580.90 ± 85.99 5041.87 ± 51.92
GMMIL 590.47 ± 1022.66 448.40 ± 643.33 1325.33 ± 307.86 235.79 ± 196.27
PWIL 5133.04 ± 72.93 10591.22 ± 1204.07 3558.52 ± 224.55 4185.11 ± 490.59
RED 6.15 ± 168.53 978.77 ± 408.87 322.68 ± 62.43 216.50 ± 197.14

25

BC 4698.29 ± 207.67 5550.51 ± 1780.47 3271.88 ± 369.44 4955.85 ± 21.21
AdRIL 5246.33 ± 70.14 11244.16 ± 129.42 3579.96 ± 12.15 4962.86 ± 15.00
DRIL 1077.66 ± 475.96 −60.11 ± 27.60 9.24 ± 1.16 −29.86 ± 10.68
GAIL 5557.74 ± 81.01 11392.09 ± 377.15 3467.73 ± 299.07 5055.76 ± 64.13
GMMIL −7.81 ± 176.54 620.01 ± 319.07 854.59 ± 244.31 13.29 ± 48.66
PWIL 5040.18 ± 114.00 10785.65 ± 170.43 3418.18 ± 434.71 3855.43 ± 296.41
RED 284.14 ± 181.12 −62.76 ± 181.27 323.86 ± 22.49 246.23 ± 165.69

Arulkumaran Ogawa Lillrank

for these for 10 and 25 trajectories. However, we note that since each environment step
requires computing the reward between the current state-action pair and a subset of the ex-
pert data, starting with the entire dataset at the start of each episode, it is computationally
expensive for high budgets. BC scales well as the number of trajectories increase.

Unfortunately, we were unable to successfully optimise off-policy versions of DRIL, GM-
MIL and RED. In an early version of our codebase we were able to optimise their original,
on-policy versions successfully, so with considerable effort put into hyperparameter tuning
and trying additional regularisation strategies, we believe that their is some fundamental
issue caused from going from training on on-policy to off-policy returns. One would expect
that for successful training the inferred rewards for the agent’s trajectories should increase
over time, but this was observed for runs of these methods as well, and is therefore not
predictive of successful imitation. Q-values are a function of the predicted rewards, so did
not provide further diagnostic insights. We also created variants of DRIL and RED in which
the discriminators were trained online, similarly to GAIL, but were unsuccessful; however,
there are many ways to do so, and our attempts do not preclude a successful online dis-
criminator variant from being developed. Finally, we note that DRIL performs better at
the start of training, which we can attribute to the BC auxiliary loss; experiments with
uncertainty-only DRIL (UO-DRIL; Brantley et al., 2020) did not show this trend, with
scores remaining low during the entirety of training.

Some weak trends we noticed from hyperparameter optimisation were that both batch
and discriminator sizes increased with the trajectory budget. We hypothesise that the
former is due to added stochasticity in optimisation aiding when data is scarce, whilst the
latter is due to the need to prevent overfitting in low-data regimes. However, we caution
that these trends do not always hold, as, for example, the optimal batch size for GAIL
decreased with the trajectory budget.

4. Discussion

In this paper, we took a pragmatic look at deep IL methods, reviewing the relationships
between the different approaches, updated older methods to use more data-efficient off-
policy RL algorithms, and finally performed a fair comparison between them on a standard
benchmark. As BC is simple and does not involve environment interaction, we recommend
that it should always be considered as a baseline. AdRIL is an attractive option for deep IL
due to its simplicity and strong performance, although it has one critical hyperparameter
that needs tuning. And although the myriad of options for GAIL make it more complicated
to work with, we have empirical data on what does and doesn’t work (Orsini et al., 2021).

Although we were only able to test extensively on standard environments with expert
data, we plan to release our framework to enable further, fair experiments on different
environments, datasets, algorithms. Valuable open questions in the field of IL remain in
the use of proxy reward functions for evaluating IL (Hussenot et al., 2021), and how best
to learn from human demonstration data (Orsini et al., 2021).

Acknowledgments

This work was supported by JST, Moonshot R&D Grant Number JPMJMS2012.

A Pragmatic Look at Deep Imitation Learning

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc
Bellemare. Deep Reinforcement Learning at the Edge of the Statistical Precipice. In
NeurIPS, 2021.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin,
Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michal-
ski, et al. What Matters in On-policy Reinforcement Learning? A Large-scale Empirical
Study. In ICLR, 2021.

Saurabh Arora and Prashant Doshi. A Survey of Inverse Reinforcement Learning: Chal-
lenges, Methods and Progress. Artif. Intell., 297:103500, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
Deep Reinforcement Learning: A Brief Survey. IEEE SPM, 34(6):26–38, 2017.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G
Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian
Optimization. In NeurIPS, 2020.

Lionel Blondé and Alexandros Kalousis. Sample-efficient Imitation Learning via Generative
Adversarial Nets. In AISTATS, 2019.

Lionel Blondé, Pablo Strasser, and Alexandros Kalousis. Lipschitzness is All You Need
to Tame Off-policy Generative Adversarial Imitation Learning. Mach. Learn., 111(4):
1431–1521, 2022.

Kianté Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized Imitation Learn-
ing. In ICLR, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random
Network Distillation. In ICLR, 2018.

Annie S Chen, HyunJi Nam, Suraj Nair, and Chelsea Finn. Batch Exploration with Exam-
ples for Scalable Robotic Reinforcement Learning. IEEE RA-L, 6(3):4401–4408, 2021.

Robert Dadashi, Leonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal Wasser-
stein Imitation Learning. In ICLR, 2021.

Hal Daumé, John Langford, and Daniel Marcu. Search-based Structured Prediction. Mach.
Learn., 75(3):297–325, 2009.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training Generative
Neural Networks via Maximum Mean Discrepancy Optimization. In UAI, 2015.

Arulkumaran Ogawa Lillrank

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation Matters in Deep Policy Gradients: A
Case Study on PPO and TRPO. In ICLR, 2020.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A Connection Between
Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-based
Models. arXiv:1611.03852, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning. In ICLR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets
for Deep Data-driven Reinforcement Learning. arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error
in Actor-critic Methods. In ICML, 2018.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A Divergence Mini-
mization Perspective on Imitation Learning Methods. In CoRL, 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In
NeurIPS, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A Kernel Two-sample Test. JMLR, 13(1):723–773, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-critic: Off-
policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In
ICML, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft Actor-critic
Algorithms and Applications. arXiv:1812.05905, 2018b.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning that Matters. In AAAI, 2018.

Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In NeurIPS,
2016.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation
Learning: A Survey of Learning Methods. ACM CSUR, 50(2):1–35, 2017.

Leonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton
Raichuk, Lukasz Stafiniak, Sertan Girgin, Raphael Marinier, Nikola Momchev, Sabela
Ramos, et al. Hyperparameter Selection for Imitation Learning. In ICML, 2021.

Edwin T Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620,
1957.

A Pragmatic Look at Deep Imitation Learning

Rohit Jena, Siddharth Agrawal, and Katia Sycara. Addressing Reward Bias in Adversarial
Imitation Learning with Neutral Reward Functions. In Deep RL Workshop, NeurIPS,
2020.

Kee-Eung Kim and Hyun Soo Park. Imitation Learning via Kernel Mean Embedding. In
AAAI, 2018.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing Sample Inefficiency and Reward Bias
in Adversarial Imitation Learning. In ICLR, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. In NeurIPS, 2017.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative Moment Matching Networks. In
ICML, 2015.

Long-Ji Lin. Self-improving Reactive Agents Based on Reinforcement Learning, Planning
and Teaching. Mach. Learn., 8(3-4):293–321, 1992.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2019.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht,
and Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols
and Open Problems for General Agents. JAIR, 61:523–562, 2018.

Alfred Müller. Integral Probability Metrics and Their Generating Classes of Functions. Adv.
Appl. Probab., 29(2):429–443, 1997.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A Metric Learning Reality Check. In
ECCV, 2020.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy Invariance Under Reward Trans-
formations: Theory and Application to Reward Shaping. In ICML, 1999.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for Inverse Reinforcement Learning. In
ICML, 2000.

Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow.
Realistic Evaluation of Deep Semi-supervised Learning Algorithms. In NeurIPS, 2018.

Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan
Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychowicz.
What Matters for Adversarial Imitation Learning? In NeurIPS, 2021.

Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time Limits in Rein-
forcement Learning. In ICML, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In NeurIPS, 2019.

Arulkumaran Ogawa Lillrank

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted and Reward-regularized Classi-
fication for Apprenticeship Learning. In AAMAS, 2014.

Dean A Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. In
NeurIPS, 1988.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable Reinforcement Learning Implementations.
JMLR, 22(1):12348–12355, 2021.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. SQIL: Imitation Learning via Rein-
forcement Learning with Sparse Rewards. In ICLR, 2020.

Stéphane Ross and Drew Bagnell. Efficient Reductions for Imitation Learning. In AISTATS,
2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A Reduction of Imitation Learning
and Structured Prediction to No-regret Online Learning. In AISTATS, 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 15
(1):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, 2018.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of Moments and
Matching: A Game-theoretic Framework for Closing the Imitation Gap. In ICML, 2021.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship Learning using Linear
Programming. In ICML, 2008.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A Physics Engine for Model-based
Control. In IROS, 2012.

Cédric Villani. Optimal Transport: Old and New. Springer, 2009.

Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris. Random
Expert Distillation: Imitation Learning via Expert Policy Support Estimation. In ICML,
2019.

Ronald J Williams and Jing Peng. Function Optimization using Connectionist Reinforce-
ment Learning Algorithms. Conn. Sci., 3(3):241–268, 1991.

Danfei Xu and Misha Denil. Positive-unlabeled Reward Learning. In CoRL, 2021.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo.
Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised
Domain Adaptation. In CVPR, 2017.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy
Inverse Reinforcement Learning. In AAAI, 2008.

	Introduction
	Background
	Imitation Learning
	Reduction to Supervised Learning
	Inverse Reinforcement Learning
	Adversarial Imitation Learning
	Distribution Matching Imitation Learning

	Experiments
	Environments + Data
	Algorithms + Hyperparameter Search + Evaluation
	Results

	Discussion

