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Abstract

Pairwise learning is essential in machine learning, especially for problems involving loss
functions defined on pairs of training examples. Online gradient descent (OGD) algorithms
have been proposed to handle online pairwise learning, where data arrives sequentially.
However, the pairwise nature of the problem makes scalability challenging, as the gradient
computation for a new sample involves all past samples. Recent advancements in OGD
algorithms have aimed to reduce the complexity of calculating online gradients, achieving
complexities less than O(T) and even as low as O(1). However, these approaches are
primarily limited to linear models and have induced variance. In this study, we propose
a limited memory OGD algorithm that extends to kernel online pairwise learning while
improving the sublinear regret. Specifically, we establish a clear connection between the
variance of online gradients and the regret, and construct online gradients using the most
recent stratified samples with a limited buffer of size of s representing all past data, which
have a complexity of O(sT') and employs O(v/T log T') random Fourier features for kernel
approximation. Importantly, our theoretical results demonstrate that the variance-reduced
online gradients lead to an improved sublinear regret bound. The experiments on real-world
datasets demonstrate the superiority of our algorithm over both kernelized and linear online
pairwise learning algorithms. The code is available at https://github.com/halquabeh/
ACML-2023-FPOGD-Code.git.

Keywords: Pairwise learning, AUC maximization, Random Fourier features, Online
stratified Sampling

1. Introduction

Pairwise learning is a machine learning paradigm that focuses on problems where the loss
function is defined on pairs of training examples. It has gained significant attention due to
its wide range of applications in various domains. For instance, in metric learning Kulis et al.
(2012), pairwise learning is used to learn a similarity or distance metric between data points.
In bipartite learning Kallus and Zhou (2019), it is employed to address fairness concerns when
making decisions based on two distinct groups. Multiple kernel learning utilizes pairwise
learning to combine multiple kernels and enhance the performance of kernel-based methods
Gonen and Alpaydm (2011). AUC maximization involves pairwise learning to optimize the
Area Under the ROC Curve, a popular evaluation metric for binary classification Hanley and
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McNeil (1982). Pairwise differential Siamese networks utilize pairwise learning to compare
and classify pairs of samples Kang et al. (2018); Song et al. (2019).

Online pairwise learning is an effective approach for real-time decision-making, particularly
when dealing with large-scale and dynamic datasets. The process involves sequentially
processing data points and updating the model using pairwise examples. One technique that
has been explored is online gradient descent, which provides computational efficiency and
scalability. However, a drawback of online gradient descent in pairwise learning is its time
complexity of O(T?), where T represents the number of received examples. This is due to
the requirement of pairing each new data point with all previous points, leading to significant
computational complexity. To address this limitation, researchers have been investigating
alternative methods such as buffering and sampling strategies Zhao et al. (2011); Kar et al.
(2013); Yang et al. (2021). These approaches aim to reduce the computational burden and
enable efficient learning on large-scale problems.

Online gradient descent has gained significant attention in the domain of online pairwise
learning, leading to the development of various approaches. These methods, including online
buffer learning Zhao et al. (2011); Kar et al. (2013), second-order statistic online learning
Gao et al. (2013), and saddle point-problem methods Ying et al. (2016); Reddi et al. (2016),
have all employed linear models. Moreover, there has been limited exploration of non-linear
models in this field, particularly with kernelized learning Ying and Zhou (2015); Du et al.
(2016). One noteworthy approach in pairwise learning is online buffer learning, introduced by
Zhao et al. Zhao et al. (2011). This method utilizes a finite buffer with reservoir sampling to
reduce the time complexity to O(sT'), where s denotes the buffer size. By storing a subset of
the data and ensuring uniform samples within the buffer, this technique effectively alleviates
the computational burden. Furthermore, Yang et al. Yang et al. (2021) achieved optimal
generalization with a buffer size of s = 1, marking a significant advancement in the field.

The existing frameworks in the literature have primarily focused on linearly separable
data, overlooking the challenges associated with non-linear pairwise learning. Moreover,
the online buffer methods proposed so far have not adequately addressed the sensitivity
of generalization to the variance of the gradient. This limitation restricts their ability to
capture the complexity present in real-world datasets. Moreover, there is a lack of extensive
research on non-linear pairwise learning, particularly in the context of kernel approximation.
Although non-linear methods provide increased expressive power, the computational cost
associated with kernel computation, which scales as O(T?) Lin et al. (2017); Kakkar et al.
(2017), poses challenges to their scalability and efficiency in practical applications. In terms
of generalization bounds, the analysis of online pairwise gradient descent with buffers and
linear models has been extensively explored in previous works Wang et al. (2012); Kar et al.
(2013). These studies establish a bound of O(1/s + 1/+/T) for this approach. However, it is
important to note that this bound is only optimal when the buffer size s is approximately
O(V/T), posing challenges for scenarios where a smaller buffer size is desired. Additionally,
the generalization analysis in Yang et al. (2021) assumes independent examples in the
sequential data, disregarding the temporal nature of the data and the potential ordering
and correlation among data points. This assumption may lead to inaccurate performance
estimation and unreliable convergence guarantees in online learning scenarios. Taken together,
these weaknesses highlight the need for further research and development in the field of
online pairwise learning to address the limitations of linear frameworks, explore non-linear
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Table 1: Recent pairwise learning algorithms(where 7" is the iteration number, d: the dimen-
sion, D is random features, V.R. denotes variance reduction, and s is a buffer size),
note the time complexity is w.r.t. gradients computations.

Algorithm Problem Model Scheme V.R. Time Space
Gu et al. (2019) AUC Linear  Offline NA o(T) 0o(1)
Natole et al. (2018) AUC Linear  Online NA o(T) 0(1)
Ying et al. (2016) AUC Linear  Online NA o(T) 0(1)
Zhao et al. (2011) AUC Linear  Online No O(sT) O(s)
Gao et al. (2013) AUC Linear  Online No o(T) O(d)
Yang et al. (2021) General Linear  Online No o(T) 0(1)
Kar et al. (2013) General Linear  Online No O(sT) O(s)
Lin et al. (2017) General Kernel  Online NA O(T?) o(T)
Kakkar et al. (2017) AUC Kernel  Offline NA  O(TlogT) O(T?)
FPOGD (Ours) General Kernel  Online Yes O(%T) O(s

methods more comprehensively, and overcome the computational challenges associated with
kernel computation.

Our approach extends online pairwise learning to handle nonlinear data by incorporating
kernelization of the input space. We address the impact of variance on regret through online
stratified sampling, selectively updating the model based on cluster relevance. Utilizing
random Fourier features, we efficiently estimate the kernel with sublinear error bound,
achieving computational savings without sacrificing performance. By combining kernelization,
efficient kernel approximation, and online stratified sampling, our method overcomes linear
limitations, handles nonlinear data, and mitigates variance impact, resulting in a robust
and effective online pairwise learning approach (Table 1). Our main contributions can be
summarized as follows:

e We present an online pairwise algorithm for non-linear models with fast convergence.
Our algorithm achieves sublinear regret with a buffer size of O(s).

e We address variance impact on regret and propose online stratified sampling to control
and improve the regret rate.

e For the case of Gaussian kernel, we approximate the pairwise kernel function using
only O(v/Tlog T) features in comparison to O(T) in previous works, while maintaining
a sublinear error bound.

e We demonstrate the effectiveness of our proposed technique on numerous real-world
datasets and compare it with state-of-the-art methods for AUC maximization. Our
methodology showcases improvements across both linear and nonlinear models for the
majority of the examined datasets.

The following sections are organized as follows. Section 2 introduces the problem setting,
section 3 presents the proposed method, section 4 provides the regret analysis, section 5
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discusses related work, followed by section 6 producing the experimental results, and finally
section 7 concludes the paper.

2. Problem Setting

The concept of pairwise learning arises in the context of a subset X € R% and a label space
Y C R. It can be categorized into two cases:

e Pairwise hypothesis: This case involves learning a pairwise hypothesis, such as in metric
learning, where the goal is to determine the relationship or distance between pairs of
data points in X'. In particular, the hypothesis predicts the distance between pairs of
instances i.e. f: X2~ Y, and therefore given n examples, the loss function is a finite
sum of (Z) terms.

e Pairwise loss function: In this case, the focus is on minimizing a pairwise loss function,
such as in AUC (area under curve) maximization. The objective is to optimize the
ordering or ranking of pairs of data points based on their labels in ). In general
the hypothesis is pointwise as in SVM, regression and binary deep classification, i.e.
f X = Y, however the loss function itself represents the probability of predicting
correctly the labels of opposing examples.

In our analysis, we specifically investigate pairwise loss functions from both branches. We
establish a connection between the pairwise kernel associated with pairwise hypotheses and
regular kernels. This enables us to explore the characteristics of the pairwise loss functions
within the framework of regular kernels. Consider an algorithm that learns from examples
zi = (zi,y;) € Z:= X x Y, where i € [T]| denotes the number of examples. Let f belong
to space H. In this paradigm, the pairwise loss function serves as a performance measure,
denoted as £ : H x Z? — R,.

Likewise, in online learning with pairwise losses, when a new data point 2z; is received,
a local error is generated by incorporating the new data point together with all previous
t — 1 points. The local error is then determined based on the chosen pairwise loss function
as follows,

(ft 1 725 ft 1,Zt7Zz (1)

The core objective in online pairwise learning is to create an ensemble of models, denoted as
fi, fo, ..., fr, aimed at minimizing the expected risk. Assuming the data is mapped to a
higher-dimensional space where linear separability is achieved, we consider a linear model
represented as w. To address the issue of memory requirements, we employ a buffer-based
local error denoted as L;(w;_1), as defined in Equation 2. At each step ¢, the buffer, denoted
as By, contains a limited number of historical example indices, and the cardinality of the
buffer is represented as |B;| (equivalent to s in the existing literature).

L ('I,Ut 1 Z wt 17zt722) (2)
‘Bt| 1€ By

The buffer plays a critical role in the learning process, being updated at each step using diverse
strategies, ranging from randomized techniques like reservoir sampling Zhao et al. (2011);
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Kar et al. (2013) to non-randomized approaches like FIFO Yang et al. (2021). However, it is
worth noting that there is a noticeable research gap regarding the variance implications of
these sampling methods, despite their widespread utilization.

To handle complex real-world data, our pairwise online approach assumes mapping both
the hypothesis and the data to a Reproducing Kernel Hilbert Space (RKHS) denoted as H.
The associated Mercer pairwise kernel function k : X4 — R satisfies the reproducing property
(k(z,27),9) = g(x,2") , where z,2" € X? and g € H. In the case of pointwise hypothesis but
pairwise loss functions, such as AUC loss, the kernel function simplifies to k : X2 — R. The
space H encompasses all linear combinations of the functional mappings {k(; ,|(x,2') € X 2
and their limit points.

To address the computational complexity of kernelization in the online setting, we utilize
random Fourier features (RFF) as an efficient approximation of the Mercer kernel function.
RFF provides a lower-dimensional mapping r(+), which approximates the kernel function ,
the estimate is denoted as k(-). This approximation allows us to perform computations using
linear operations, significantly reducing the computational complexity. The space spanned
by the new kernel functions is denoted as 7L. Previous work has studied the error of random
Fourier approximation in pointwise and offline settings. In the online setting, the minimum
number of random features required to ensure sublinear regret has been found to be O(T).
In our method, we introduce an error bound for pairwise problems using only O(v/T logT)
random features (see Section 5 for more details).

2.1. Assumptions

Before introducing our main theorems, we outline a set of widely accepted assumptions
concerning the properties of the loss function and kernels. These assumptions hold significance
in the realm of convex optimization and encompass commonly used loss functions such as
square loss as well as popular kernels like the Gaussian kernel.

Assumption 1 (M-smoothness ) Assume for any a € Z? x H, the gradient of the loss
function VE(a) is M-Lipschitz continuous, i.e. Yw,w' € H,

[Ve(a) — V()| < M |ja— a/HQ.
Assumption 2 (Convexity) Assume for any z,z' € Z, the loss function £(-, z, 2') is convex
function, i.e. Yw,w' € H,
Uw,z,2") > 0w, 2,2) + Ve, 2,2 )T (w — w').

Assumption 3 (Finite Kernel) Assume for any p-probability measure on X? the positive
kernel function k : X% x X% — R is p-integrable, i.c. for any (z,z') € X2,

/ /X K(x,2'), (&,4'))dp(2)dp(3') < oo.

2.2. Preliminaries

In the analysis of buffer-based pairwise online gradient descent algorithms, two key concepts
are essential for understanding the relationship between regret and variance in the proposed
method.
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Variance of Stochastic Gradient. Let us denote the variance of the stochastic gradient
as V(uy), with u; := VLs(w;_1) is the gradient based on finite buffer. The variance is defined
as the trace of the covariance matrix: V(u;) := E|lu; — Euy||?>. The following lemma sheds
light on the connection between the variance of the gradient and the distance between inputs
and their corresponding expected values.

Lemma 1 Assuming that the loss function is M-smooth, as mentioned in assumption 1,
let z; denote the i-th sample drawn from a uniform distribution i.e. i ~ Uniform(1,t—1).
Then, the variance V(uy) of the stochastic gradient is bounded by:

V(ur) < M°E|l; — Eai® (3)
where the expectation is w.r.t. the uniform random wvariable i. Proof in appendiz.

Regret Bound and Stochastic Gradient Variance. The variance of the stochastic
gradient plays a crucial role in determining the regret bound of pairwise online gradient
descent algorithms. The following lemma establishes a connection between regret and the
variance of the stochastic gradient.

Lemma 2 With assumption 2, let [wt]iTzl be the sequence of models returned by running
any buffer-based algorithm for T time-steps using an online sequence of data. If w* =
argmin, Z?:z Li(w), and By is sampled from the history of the received examples uniformly
and independently, then the following hold,

H2

T T
ZLtwms; )+ HG 0+ 3 SV + Bl @

where the expectation is w.r.t. the uniform distribution of buffer examples. The detailed
derivation is in appendiz.

Hence, reducing the variance of the stochastic gradient can improve the regret of buffer
online pairwise learning, which can be achieved using online stratified sampling as illustrated
in next section.

3. Proposed Method

The proposed method consists of two essential parts that are mutually dependent. Firstly, by
mapping non-linearly separable data to the RKHS H, we achieve a transformation that renders
the data linearly separable. This mapping serves as the foundation for effectively addressing
non-linearity. Secondly, through the strategic implementation of stratified sampling, we
potentially reduce the variance, preserve low memory utilization, and achieve sublinear
regret. The initial mapping to the RKHS empowers us to seamlessly fulfill the objectives of
the second component, ensuring an efficient approach overall as illustrated in figure 1.
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Figure 1: The incoming point z; from the left are transformed through kernelization and
RFFs to a new space. Subsequently, they are clustered and added to the buffer
using either a FIFO strategy or with a probability-based approach.

3.1. Non-Linear Mapping to RKHS

In pairwise online gradient descent algorithms, our goal is to handle non-linearly separable
data. To achieve this, we employ a transformation ® : X — H that maps the input space X to
a high-dimensional RKHS H. By performing this transformation, we project the non-linearly
separable data into a higher-dimensional space where it becomes linearly separable.

However, the computational complexity associated with using explicit kernel computations
can be prohibitive. To address this challenge, we leverage the RFFs technique, which allows
us to approximate the inner products in the target space H more efficiently. Instead of
directly computing the inner products in H, we map the input space to an approximate
space H using a randomized mapping function. This approximation enables us to estimate
the inner products of the original data points in the approximated space, rather than in the
full high-dimensional space.

By applying this non-linear mapping using RFFs to the RKHS, we effectively handle
the non-linearity in pairwise online gradient descent algorithms. This approach facilitates
better separation of data points in the transformed space 7:[, while maintaining a lower
computational complexity of O (%T), compared to the O(T?) complexity associated with
explicit kernel computations.

3.2. Online Stratified Sampling

In addition to the non-linear mapping, we employ stratified sampling to further improve
the efficiency and reduce the variance of the stochastic gradient estimates. Online Stratified
Sampling (OSS) partitions the input space into balls of radius €, and ensures that each ball is
represented by a uniform sample every iteration. By doing so, we achieve several advantages.

Firstly, stratified sampling reduces the variance of the stochastic gradient estimates. By
partitioning the input space and uniformly sampling within each partition, we effectively
minimize the variance of the stochastic gradient. This is achieved by reducing the expected
distance between the sampled variables and their corresponding expected values, as highlighted
in Lemma 1.

Secondly, stratified sampling preserves low memory utilization. Instead of storing the
entire history of received examples, we maintain one uniform sample from each partition at
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every step t. This approach reduces the memory requirement while still providing sufficient
information to estimate the gradients accurately.

Finally, stratified sampling enables us to achieve sublinear regret. By reducing the
variance and preserving low memory utilization, our method ensures efficient exploration
and exploitation of the data, leading to improved regret bounds. To this end, we redefine
the loss at each time step by considering the presence of k; partitions, denoted as Cjt», where
each partition has a cardinality of |C§-|, and its corresponding gradient shown in equation 5.

_ ]
VEi(we) =Y =5 Vewir, 2 25,(7) (5)
j=1

Note that the gradient mentioned above is unbiased, i.e. EV L;(w;_1) = VL;(w;_1). In order
to reduce the variance in the stochastic gradient estimation, we maintain one uniform sample
from each partition at every step ¢, ensuring that |B|; = k¢ . This update approach enables
us to achieve lower variance. To accomplish this, we aim to find the optimal partitions at
each time step ¢, which involves solving the following optimization problem or its upper
bound based on Lemma 1.

. (Ici)?
min V(ug) = ZWEg|gectHV€(w 2ty 2j) — Ejljec;?vg(waztvzj)”Q (6)
J j—1

lct ) Kt |Ct )
Z ]|]€CtHxJ jljecjt.xjH Z 2 Z l|z; — j\jecjij

Jj=1 Jj= 1 Jjecs

The objective in our approach bears resemblance to a conventional clustering problem,
where Ej|jec§$j = Zj€C§ éﬁ represents the centroid of partition j (Note that the partition
may be referred to as “cluster” intermittently.). Our approach offers an effective solution by
simultaneously addressing memory efficiency and variance reduction.

3.3. The Algorithm

We introduce the algorithm in 1 for general pairwise learning with kernel approximation
using RFFs. The centroid update of the OSS algorithm involves minimizing the upper bound
given in equation 6. This minimization can be achieved by utilizing the gradient of the upper
bound with respect to the centroid ¢ of partition j, denoted as ¢ := E;, ject [z;]. The centroid
update is then performed as follows:

¢ c+ne(z—c) (7)

where z; represents the newly assigned example to partition j, and 7. is the step size. This
update ensures that the centroid moves towards the assigned example in order to minimize the
upper bound. In the subsequent section, we provide an analysis that decomposes the regret of
the algorithm into two distinct components, first is regret of learning w* := argmin,_» L(w),
and second regret of the approximation of the kernel function using RFFs mapping 7(-).
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Algorithm 1 Fourier Pairwise Online Gradient Descent (FPOGD)

Require: Initialization wy € 7:[, random fea- Online Stratified Sampling (OSS) with
ture size D, initial example z;, Fourier FIFO Buffer Update

feature distribution p of kernel k, step Require: Buffer B, Centroids C, Clustering

size 1, clustering distance e. threshold €, new example z; = (¢, ;)
1: By < {z1}, C1 < {21} 1: if mineeo ||z — ¢||?> < € then
2 fort=2,...,T do 2:  Select cluster
3:  Receive new example (z,y;) € 2
4:  Sample Fourier feature {%}flf ~ D j := argmin |[z; — ¢||?
5 Map to new space: cec

Update buffer B[j] <t
Update Centroid j using equation 7
else
Add new cluster C + C Ut
Add new examples B «+ B Ut
2L et 8: end if
t(wi-1) Z mg W1, 24, 2B, [5)) 9: Return B,C

(2T (T N P/2
Rt = (\/E[Sln(qz l‘t),COb(qZ xt)]i:l 7yt)

6:  Suffer loss

7 Select v, € agt(wt,l)

8:  Update model w; = wi—1 — nuy

9: Update By, Cy = OSS(Btfl, Ci_1, €, Zt)
10: end for

11: Return wyp

4. Regret Analysis

The regret of online algorithm relative to the optimal hypothesis in the space H, i.e. w* =
arg min, ., EtTZQ L;(w) when running on a sequence of 1" examples is,

T T

anT = ZLt(wt—l) - ZLt(w*), (8)

t=2 t=2

where the local all pairs loss L;(+) is defined in equation 1. We can decompose the regret
in equation 8 by introducing best-in-class hypothesis in the approximated space H, e.g:
w* = argmin, 23;2 Li(w) as follow:

T T
Ruer = Le(wi1) = Y L(@*) + Y Ly(w*) = Y Ly(w")
t=2 t=2

Ty T>

We provide the bound on Tj in Theorem 5 (Section 4.1), and then provide the bound on T3
in Theorem 8 (Section 4.2). Finally, combining them together, we could provide the main
theorem on the regret for the Algorithm 1 as follows.
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Theorem 3 Let {2 € Z}]_, be sequentially accessed by algorithm 1. Let D be the number
of RFFs. And assumptions 1, 2 and 3 hold, with M Lipschitz constant. Then, if the step
size n € (0,1/M], the regret bound compared to w* is bounded with probability at least
1— 28 (28) exp(—D4?/(4d + 8)) as follow,

M_ . ¥ |
Ru=1 < ?TH’U) 136 + o + UZV(Ut) (9)

where ||w*|; = sz# |aj |, & is the kernel approzimation error, iy is the number of clusters,
o is the kernel width, V(u) = tr(coviut]), R is the input diameter.

Remark 4 Choosing n = ﬁ and & = T4 makes the regret bound sublinear which is
optimal. Moreover, if V(uy) = 0 for all t’s, then it’s possible to have log(T') regret by choosing

n = @ and 0 = lo\g/(%r), which is similar to the case of full history update.Note that

D = O(vV/T1og(T)) in general, but can be as low as log?(T) for special kernels, (please refer
to appendiz B).

In the following, we provide the analysis to the upper bounds to 77 and 15 respectively.

4.1. Regret in the Approximated Space H

The choice of buffer updating method, whether randomized (e.g., reservoir sampling) or
non-randomized (e.g., FIFO), significantly impacts the analysis, as highlighted by Kar et al.
(2013) and Wang et al. (2012). To ensure independence between sampling randomness and
data randomness, we begin with a simple FIFO approach, proving T1 bound in Theorem 5
under the i.i.d. assumption. We then introduce reservoir sampling, which uniformly samples
from the stream without ¢.i.d. assumption, establishing convergence using the Rademacher
complexity of pairwise classes.

Consider the algorithm that has sequential access to the online stream . The following
theorem demonstrates that the algorithm achieves optimal regret with memory complexity

O(lit).

Theorem 5 With assumptions 1 and 2, let [wt]zT:1 be the sequence of models returned
by running Algorithm 1 for T times using the online i.i.d. sequence of data. Then, if
w* = argmin, 4 ST, Li(w), and 1 € (0,1/M], the following holds:

T T *HQ T

> Li(wi1) = Le(w*) < 1 Ny V(u) (10)

t=2 t=2 27) t=2

The proof is in appendiz.

Remark 6 If the original space is assumed to be linearly separable (without kernels) then
our algorithm has time complezity of O(krT) and offers sublinear regret with n = 1/\/T
Moreover note that for the case of € > R the algorithm is equivalent to Yang et al. (2021)
and if € < R/T it matches the algorithm in Boissier et al. (2016). In particular, if the
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clustering radius € is large enough, it will result in only one cluster, similar to Yang’s approach.
Conversely, if € is small (smaller than the distance between any two examples), it will create
a cluster for each example, similar to Boissier’s approach.

Remark 7 In the worst-case scenario, data points in pairwise learning are either assigned
to new clusters or grouped within an epsilon distance from the initial centroid. The maxi-
mum number of clusters k; at step t can be upper-bounded by considering non-overlapping
hyperspheres of radius epsilon in the bounded input space. Given the input space’s volume V;d
at time step t, cluster threshold of €, and the gamma function I'(-), we have:

7(d/2)ed

Ky = min{t—l, [thr(d/mu (11)

For a hypersphere input space with a constant radius R at all time steps, the mazimum
number of clusters simplifies to ky = min {t —1,[(R/€)4]}. In practice, the actual number
of clusters obtained may be lower due to the data distribution (For experimental validations,
please refer to Appendiz B.).

Randomized Buffer Update In practical online learning scenarios, the assumption of an
i.i.d. online stream is often impractical since the data can be dependent. Further, uniformly
sampling from an online stream is not straightforward, making it challenging to achieve the
bound mentioned earlier when the history examples are not readily available in a memory.
To address this, we use buffer update strategies that force data independence in the buffer.
Stream oblivious methods are particularly useful as they separate the randomness of the
data from the buffer construction. To ensure effective buffer update and maintain the desired
representation, we adopt reservoir sampling in conjunction with the clustering strategy. This
approach treats each partition stream independently. When a new example arrives to cluster
C;-, the old example is replaced with a probability of 1/ ]C§|, which makes it challenging to
establish a uniform distribution among every cluster. Finally, the bound in theorem 5 holds
with the assumption of model-buffer independence (refer to appendix for proof).

4.2. Regret of RFFs Approximation

The kernel associated with the pairwise hypothesis in the space H is a function defined as
k:X? x X? — RT with a shorthand k, ;1 (-) := k((z,2'),(,-)) and can be constructed
given any uni-variate kernel G for any 1, z2, 2}, x5, € X as follow,

kw1, 39,21, 35) = G(w1, 21) + G (w2, 5) — G(21,75) — G(x2, 71) (12)
= (Ga, — g$27gx’1 - gx’2>g

It’s clear that the pairwise kernel k defined above is positive semi-definite on X2, and therefore
it’s Mercel kernel if G does on X (e.g. see Ying and Zhou (2015)). We further assume there
exist a lower dimensional mapping 7 : X +— R”, such that G,(-) ~ r(x)Tr(-).

The quality of the approximation of the pointwise kernel G by random Fourier features
is studied in literature (see Rahimi and Recht (2007),Bach (2017),Li (2022)), however the
approximation of pairwise kernel k(-) needs further analysis. Let the kernel function G(-)
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be shift invariant and positive definite, thus using Bochner’s theorem, it can be represented
by the inverse Fourier transform of a non-negative measure p as G(z,z') = G(z — 2') =
i p(q)eiqT("’*I/)du where i = /—1. For example if the kernel is the Gaussian kernel, the
measure is found by Fourier transform to be p o< N'(0, diag(c)), where o € R? is the kernel
width. In other words, the kernel G can be approximated using Monte Carlo method, denoted
as é , as follows:

D/2
5 / 2 / /
G(z,2) = 5 ;COS(%T(HJ — ")) = (r(x),r(2") (13)
Where ¢; ~ N(0,diag(c)), and r(z) = —2 [cos(q?a;),sin(q?,:c)]f):/f. The following

D/2
theorem bounds the random Fourier error in equation (9).

Theorem 8 Given a pairwise Mercer kernel k(, zy := k((z,2'), (,-)) defined on X* x X2.
Let l(w, z,7") be convex loss that is Lipschitz smooth with constant M. Then for any
w* = Zgj# a;jk(%xj), and random Fourier features number D we have the following with

probability at least 1 — 28 (%) exp(—Dé&%/(4d + 8)),

T

£l M
Ly(w*) — Y Li(w*) < —T|lw*||?62 14
tz:; ¢(w”) t; t(w") < 5 [|w* |1 (14)

where ||w*||; = Ezj#i |a;j ;1. The proof is in appendiz.

Remark 9 Note that ||w*||1 is controlled by the regularization, i.e. if there exist more than
one optimal solution, then the optimal one has minimal ||w*||;.

5. Related Work

Pairwise scalability poses a challenge in pairwise learning due to the quadratic growth of
the problem with the number of samples. To address this issue, researchers have proposed
different approaches in the literature. Some examples include offline doubly stochastic
mini-batch learning Dang et al. (2020); Gu et al. (2019), online buffer learning Zhao et al.
(2011); Kar et al. (2013); Yang et al. (2021), second-order statistic online learning Gao et al.
(2013), kernelized learning Hu et al. (2015); Ying and Zhou (2015), and saddle point-problem
methods Ying et al. (2016); Reddi et al. (2016). Online gradient descent, while having
a time complexity of O(T?) Boissier et al. (2016); Gao et al. (2013), is impractical for
large-scale problems. It pairs a data point (x4, y;) received at time ¢ with all previous samples
{zy,yp|1 <t <t —1} to calculate the true loss. However, computing the gradients for all
received training examples, which increases linearly with t, poses a significant challenge. To
address this, the work in Zhao et al. (2011) introduced two buffers, B, and B_, of sizes
N, and N_, respectively, using Reservoir Sampling to maintain a uniform sample from the
original dataset. While this approach provides a sublinear regret bound dependent on buffer
sizes, it is limited to AUC maximization with linear models (H = R?) and overlooks the
effect of buffer size on generalization error. Researchers have also explored the application
of saddle point-problem methods for tackling pairwise learning tasks involving metrics like
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Table 2: AUC maximization results (average + standard error)x10? using different batch

and online algorithms on different datasets

Dataset FPOGD SPAM-NET OGD S. Kernel Proj++ Kar
diabetes  81.91+0.48 82.034+0.32 82.53+0.31 82.64+0.37 77.92+1.44  79.8540.28
ijennl 92.3240.77  87.014+0.10 83.46+1.25 71.13+0.59 92.20+£0.27 83.44+1.21
a9a 90.03+0.41  89.95+0.42 88.41+0.42 84.20+£0.17 84.42+0.33  77.93%£1.55
mnist 92.984+0.38  88.57+0.54 88.65+0.34 89.21£0.15 89.82+0.15  84.16%0.15
revl 99.384+0.20 98.13+0.15 99.054+0.57 96.26+0.35 94.54 £0.36 97.78 £0.64
usps 95.024+0.84  85.12+0.88 92.884+0.47 91.25+0.84 90.14 £0.22 91.58+0.25
german 85.824+0.24  76.89+2.46 84.204+0.54 80.11+0.44 78.44 £0.66 84.2140.45
Reg. l2 ll + l2 lg l2 lQ lg

AUC Ying et al. (2016). By formulating the problem as a saddle point problem and utilizing
typical saddle point solvers, this approach achieves a time complexity of O(T') in terms of
gradient computations, providing an efficient solution for pairwise learning with reduced
computational requirements.

Another approach by the work Kar et al. (2013) is modified reservoir sampling (RSx),
which replaces random buffer samples with the received data point using s Bernoulli processes
with probability 1/¢. This ensures that s data points are i.i.d. samples from the preceding
stream. The authors show that the generalization bound depends on Rademacher complexity
and regret, but achieving optimal generalization in terms of buffer loss requires a buffer
size of O(\/T), impractical for large-scale problems. Recently, a study in Yang et al. (2021)
claims that a buffer size of s = 1, retaining only the last received sample, achieves optimal
generalization. However, their proof assumes i.i.d. stream of data, which is impractical in
online learning. Their work focuses on linear models (H = R%) and lacks explicit regret
minimization analysis.

6. Experiments

We perform experiments on several real-world datasets, and compare our algorithm to both
offline and online pairwise algorithms. Specifically, the proposed method is compared with
different algorithms of AUC maximization, with the squared function as the surrogate loss.

6.1. Experimental Setup
Compared Algorithms. The compared algorithms includes offline and online setting are,

o SPAM-NET Reddi et al. (2016) is an online algorithm for AUC with square loss that
is transformed into a saddle point problem with non-smooth regularization.

e OGD Yang et al. (2021), the most similar to our algorithm but with a linear model,
that uses the last point every iteration.

e Sparse Kernel Kakkar et al. (2017) is an offline algorithm for AUC maximization that
uses the kernel trick.

e Projection ++ Hu et al. (2015) is an online algorithm with adaptive support vector set.
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Figure 2: The first column presents AUC vs. time. Columns two and three display regret
comparisons, with column two focused on i.i.d. datasets and column three on
non-i.i.d. datasets. The fourth column provides insights into gradient variance
analysis using a 4-size buffer, offering a glimpse into stochastic gradient behavior
across buffer algorithms. Additional datasets are available in the appendix.

e Kar Kar et al. (2013) is an online algorithm with a randomized buffer update policy.

Datasets. The datasets used in this study are sourced from the LIBSVM website Chang and
Lin (2011). Appendix B provides an overview of the dataset statistics, including the dataset
name, size, feature dimension, and the ratio of negative to positive examples. Non-binary
datasets undergo a conversion process into binary by evenly dividing the labels.

Implementation. The experiments were validated for all algorithms through a grid
search on the hyperparameters, employing three-fold cross-validation. For instance, in each
algorithm, the step size, denoted as 7, was varied within the range of 2081 providing
flexibility for fine-tuning. Similarly, the regularization parameters, represented by A, were
explored over the range of 10781 In the case of the SPAM-NET algorithm, the elastic-net
regularization parameter, denoted as Ao, was determined through a grid search with values
ranging from 1078 to 10~!. To ensure a fair comparison, the use of kernelization is excluded
when comparing with linear algorithms. All algorithms were executed five times on different
folds using Python, running on a CPU with a speed of 4 GHz and 16 GB of memory.

6.2. Experimental Results and Analysis

The effectiveness of our random Fourier pairwise online gradient descent procedure in maxi-
mizing the area under the curve (AUC) is confirmed by our results obtained with a squared
loss function as illustrated in figure 2. Table 2 clearly demonstrates that our algorithm
outperforms both online and offline linear and nonlinear pairwise learning algorithms, yield-
ing enhanced AUC performance particularly on large-scale datasets. Furthermore, in the
appendix, we provide experimental results that demonstrate the relationship between the
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number of allowed clusters and the convergence of the algorithm. Additionally, we investigate
the impact of the number of random features on the algorithm’s performance.

7. Conclusion

In this research paper, we introduce a lightweight online kernelized pairwise learning algorithm.
Our approach involves maintaining an online clustering mechanism and utilizing it to calculate
the online gradient based on the current received sample. Additionally, we approximate
the kernel function using random Fourier mapping. As a result, our algorithm achieves a
gradient complexity of O(sT') for linear models and O( %ST) for nonlinear models, where T
represents the number of received examples and D denotes the number of random features.
Moreover, we establish a sublinear regret bound for our algorithm, utilizing only O(v/T log T)
random Fourier features. Furthermore, through experimental evaluations, we validate the
superiority of our algorithm over both online and offline pairwise learning algorithms.

REFERENCES

Francis Bach. On the equivalence between kernel quadrature rules and random feature
expansions. The Journal of Machine Learning Research, 18(1):714-751, 2017.

Martin Boissier, Siwei Lyu, Yiming Ying, and Ding-Xuan Zhou. Fast convergence of online
pairwise learning algorithms. In Artificial Intelligence and Statistics, pages 204-212. PMLR,
2016.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/“cjlin/libsvm.

Zhiyuan Dang, Xiang Li, Bin Gu, Cheng Deng, and Heng Huang. Large-scale nonlinear auc
maximization via triply stochastic gradients. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

Changying Du, Changde Du, Guoping Long, Qing He, and Yucheng Li. Online bayesian
multiple kernel bipartite ranking. In UAI 2016.

Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization. In
International conference on machine learning, pages 906-914. PMLR, 2013.

Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 12:2211-2268, 2011.

Bin Gu, Zhouyuan Huo, and Heng Huang. Scalable and efficient pairwise learning to achieve
statistical accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3697-3704, 2019.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29-36, 1982.

Junjie Hu, Haiqin Yang, Irwin King, Michael R Lyu, and Anthony Man-Cho So. Kernelized
online imbalanced learning with fixed budgets. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Vishal Kakkar, Shirish Shevade, S Sundararajan, and Dinesh Garg. A sparse nonlinear
classifier design using auc optimization. In Proceedings of the 2017 SIAM International
Conference on Data Mining, pages 291-299. STAM, 2017.


http://www.csie.ntu.edu.tw/~cjlin/libsvm

ALQUABEH MUKHOTY GU

Nathan Kallus and Angela Zhou. The fairness of risk scores beyond classification: Bipartite
ranking and the xauc metric. Advances in neural information processing systems, 32, 2019.

Bong-Nam Kang, Yonghyun Kim, and Daijin Kim. Pairwise relational networks for face
recognition. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 628-645, 2018.

Purushottam Kar, Bharath Sriperumbudur, Prateek Jain, and Harish Karnick. On the
generalization ability of online learning algorithms for pairwise loss functions. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
441-449, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/kar13.html.

Brian Kulis et al. Metric learning: A survey. Foundations and trends in machine learning, 5
(4):287-364, 2012.

Zhu Li. Sharp analysis of random fourier features in classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 7444-7452, 2022.

Junhong Lin, Yunwen Lei, Bo Zhang, and Ding-Xuan Zhou. Online pairwise learning
algorithms with convex loss functions. Information Sciences, 406:57-70, 2017.

Michael Natole, Jr., Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for AUC
maximization. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3710-3719. PMLR, 10-15 Jul 2018. URL https://proceedings.
mlr.press/v80/natolel8a.html.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
i neural information processing systems, 20, 2007.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine
learning, pages 314-323. PMLR, 2016.

Lingxue Song, Dihong Gong, Zhifeng Li, Changsong Liu, and Wei Liu. Occlusion robust
face recognition based on mask learning with pairwise differential siamese network. In
Proceedings of the IEEE/CVFE International Conference on Computer Vision, pages 773
782, 2019.

Yuyang Wang, Roni Khardon, Dmitry Pechyony, and Rosie Jones. Generalization bounds for
online learning algorithms with pairwise loss functions. In Conference on Learning Theory,
pages 13—1. JMLR Workshop and Conference Proceedings, 2012.

Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, and Yiming Ying. Simple
stochastic and online gradient descent algorithms for pairwise learning. Advances in Neural
Information Processing Systems, 34, 2021.

Yiming Ying and Ding-Xuan Zhou. Online pairwise learning algorithms with kernels. arXiv
preprint arXiw:1502.07229, 2015.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. Advances
in neural information processing systems, 29:451-459, 2016.

Peilin Zhao, Steven CH Hoi, Rong Jin, and Tianbo YANG. Online auc maximization.
Proceedings of the 28th International Conference on Machine Learning ICML 2011:, 2011.


https://proceedings.mlr.press/v28/kar13.html
https://proceedings.mlr.press/v28/kar13.html
https://proceedings.mlr.press/v80/natole18a.html
https://proceedings.mlr.press/v80/natole18a.html

	Introduction
	Problem Setting
	Assumptions
	Preliminaries

	Proposed Method
	Non-Linear Mapping to RKHS
	Online Stratified Sampling
	The Algorithm

	Regret Analysis
	Regret in the Approximated Space 
	Regret of RFFs Approximation 

	Related Work
	Experiments
	Experimental Setup
	Experimental Results and Analysis

	Conclusion

