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Appendix A. Proofs

Assumption 1 (M-smoothness ) Assume for any a ∈ Z2 ×H, the gradient of the loss
function ∇ℓ(a) is M-Lipschitz continuous, i.e. ∀w,w′ ∈ H,

∥∇ℓ(a)−∇ℓ(a′)∥ ≤ M
∥∥a− a′

∥∥
2
.

Assumption 2 (Convexity) Assume for any z, z′ ∈ Z, the loss function ℓ(·, z, z′) is convex
function, i.e. ∀w,w′ ∈ H,

ℓ(w, z, z′) ≥ ℓ(w′, z, z′) +∇ℓ(w′, z, z′)T (w − w′).

Assumption 3 (Finite Kernel) Assume for any ρ-probability measure on X 2 the positive
kernel function k : X 2 ×X 2 → R is ρ-integrable, i.e. for any (x, x′) ∈ X 2,∫ ∫

X 2

k((x, x′), (x̂, x̂′))dρ(x̂)dρ(x̂′) < ∞.

A.1. Proof of Lemma 1

Proof Let xi sampled example from the history of examples, where i ∼ uniform[1, t− 1],
then since the loss function is M -smooth we have,

∥∇ℓ(w, zt, (x, y))−∇ℓ(w, zt, (Ex, y))∥2 ≤ M ∥x− Ex∥2
then by adding and subtracting E∇ℓ(w, zt, z) to LHS after squaring both sides, and denote
Ez = (Ex, y) we have,

⇔∥∇ℓ(w, zt, z)− E∇ℓ(w, zt, z) + E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)∥2 ≤ M2∥x− Ex∥2

⇔∥∇ℓ(w, zt, z)− E∇ℓ(w, zt, z)∥2 + ∥E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)∥2

− 2(∇ℓ(w, zt, z)− E∇ℓ(w, zt, z))
T (E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)) ≤ M2∥x− Ex∥2

(1)
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taking expectation on both sides w.r.t. uniform distribution of i, and rearrange to have,

E∥∇ℓ(w, zt, z)− E∇ℓ(w, zt, z)∥2 + E∥E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)∥2

− 2E(∇ℓ(w, zt, z)− E∇ℓ(w, zt, z))
T︸ ︷︷ ︸

=0

(E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)) ≤ M2E∥x− Ex∥2

⇔E∥∇ℓ(w, zt, z)− E∇ℓ(w, zt, z)∥2 ≤ −∥E∇ℓ(w, zt, z)−∇ℓ(w, zt,Ez)∥2 +M2E∥x− Ex∥2

≤ M2E∥x− Ex∥2 (2)

Recall the definition of the variance of stochastic gradient to have final results. This completes
the proof.

A.2. Proof of Lemma 2

Proof Let gt(·) = 1
|Bt|

∑
j∈Bt

ℓ(·, zt, zj) be convex function for all t ≥ 1 where Bt is the
buffer of uniformly sampled i.i.d. history examples. Let ut ∈ ∂gt(wt−1). If we take the
distance of two subsequent models to the optimal model we have,

∥wt − w̄∗∥2 − ∥wt−1 − w̄∗∥2 = ∥wt−1 − ηtut − w̄∗∥2 − ∥wt−1 − w̄∗∥2

= ∥wt−1 − w̄∗∥2 − 2ηtu
T
t (wt−1 − w̄∗) + η2t ∥ut∥2 − ∥wt−1 − w̄∗∥2

= −2ηtu
T
t (wt−1 − w̄∗) + η2t ∥ut∥2

≤ −2η(gt(wt−1)− gt(w̄
∗)) + η2t ∥ut∥2 (3)

Where the last inequality implements Assumption 2, i.e. −uTt (wt−1 − w̄∗) ≤ −(gt(wt−1)−
gt(w̄

∗)).
Setting the step size ηt = η for all t, and take the expectation w.r.t. the uniform

randomness of the history points, and assume that if w is fixed then Egt(·) = Lt(·)

L(wt−1)− L(w̄∗) ≤ ∥wt−1 − w̄∗∥2 − ∥wt − w̄∗∥2

2η
+

ηE∥ut∥2

2
(4)

Finally using the identity E∥ut∥2 = V(ut) + ∥Eut∥2, summing from t = 2 to t = T and
setting w1 = 0, would completes the proof.

A.3. Proof of Theorem 5

Proof
Starting from equation 4 with fact that the cluster-based buffer loss is unbiased of true

local loss;

L(wt−1)− L(w̄∗) ≤ ∥wt−1 − w̄∗∥2 − ∥wt − w̄∗∥2

2η
+

ηE∥ut∥2

2
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and using the M-smoothness of the function g i.e. L(wt) ≤ L(wt−1) + EuTt (wt − wt−1) +
M
2 ∥wt − wt−1∥2, and the update wt = wt−1 − ηtvt,

EL(wt) ≤ EL(wt−1)− η∥Eut∥2 +
η2M

2
E∥ut∥2 (5)

By combining the last two inequalities and considering that the expectation is with respect
to uniform sampling, we obtain the following inequality.

L(wt)− L(w̄∗) ≤ ∥wt−1 − w̄∗∥2 − ∥wt − w̄∗∥2

2η
+ (

η

2
+

η2M

2
)E∥ut∥2 − η∥Eut∥2

Using the fact that V(ut) = E∥ut∥2 − ∥Eut∥2 and choosing η = (0, 1
M ], we have,

L(wt)− L(w̄∗) ≤ ∥wt−1 − w̄∗∥2 − ∥wt − w̄∗∥2

2η
+ ηV(ut)

Finally summing from t = 2 to t = T and setting w1 = 0 would complete the proof.

It is worth noting that our analysis remains valid in both scenarios: the FIFO buffer update,
which requires independent examples, and the randomized update of the buffer which doesn’t
require online independent examples. While there is a coupling between the model wt and
the buffer Bt, as the model wt−1 incorporates information from the buffer at the previous
step, we can still maintain the validity of the analysis by considering that this coupling
is limited, as demonstrated in previous research (e.g., Zhao et al. (2011)). Although the
gradient is not an unbiased statistic due to this coupling, we argue that the impact on the
analysis is minimal.

Moreover, it is important to highlight that the main difference lies in the buffer size.
In the case of coupling, the buffer size needs to be at least log T , as determined through
rigorous analysis utilizing techniques such as Rademacher complexity or covering number
(for more details, refer to Kar et al. (2013) and Wang et al. (2012)). These analyses provide
a deeper understanding of the underlying mechanisms and further support the validity of
our approach.

A.4. Certificate of Variance Reduction

Assume that there exist κt clusters, and denote ût(·) the cluster-based buffer gradient
constructed using online stratified sampling 1, and ut(·) represents the estimate obtained
from uniform sampling without online clustering,
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V(ut) =
1

κt
Ei∥∇ℓ(w, zt, zi)− Ei∇ℓ(w, zt, z)∥2

=
1

κt
Ei∥∇ℓ(w, zt, zi)∥2 − ∥Ei∇ℓ(w, zt, z)∥2

(a)
=

1

κt
ECt

j
Ei|i∈Ct

j
∥∇ℓ(w, zt, zi|i ∈ Ct

j)∥2 − ∥Ei∇ℓ(w, zt, z)∥2

=
1

κt

κt∑
j=1

ctj
t− 1

Ei|i∈Ct
j
∥∇ℓ(w, zt, zi|i ∈ Ct

j)∥2 − ∥Ei∇ℓ(w, zt, z)∥2

=
1

κt

κt∑
j=1

ctj
t− 1

Vi|i∈Ct
j
∇ℓ(w, zt, zi|i ∈ Ct

j) + ∥Ei|i∈Ct
j
∇ℓ(w, zt, zi|i ∈ Ct

j)∥2 − ∥Ei∇ℓ(w, zt, z)∥2

(b)
=

1

κt

κt∑
j=1

ctj
t− 1

Vi|i∈Ct
j
∇ℓ(w, zt, zi|i ∈ Ct

j) + ∥Ei|i∈Ct
j
∇ℓ(w, zt, zi|i ∈ Ct

j)− Ei∇ℓ(w, zt, z)∥2

≥ 1

κt

κt∑
j=1

ctj
t− 1

Vi|i∈Ct
j
∇ℓ(w, zt, zi|i ∈ Ct

j) = V(ût) (6)

where equality (a) and equality (b) implements total expectation, i.e. ECt
j
Ei|i∈Ct

j
∇ℓ(w, zt, zi|i ∈

Ct
j) = Ei∇ℓ(w, zt, zi). The reduction in variance is influenced by the variances within each

partition and the number of examples in it. If each cluster has same number of examples
(t− 1)/κt, we can observe that the bound becomes 1/κt. Note that the maximum reduction
in variance is (t− 1), which is the case of full gradient. It is worth noting that the variance
reduction assumes comparable variances among clusters. If the clusters have different vari-
ances, it is advisable to sample more from the high-variance cluster. This extension can be
easily incorporated into our algorithm by considering the running variances of each cluster.

A.5. Proof of Theorem 8

The study in Bach (2017) assumes that the true and approximated kernel functions belong
to L2(ρ) i.e. space of square integrable functions (under the assumption 3), with the space
H being dense in L2(ρ). Before proving the theorem, the following Corollary bounds the
error of the pairwise kernel using main theorem in Rahimi and Recht (2007).

Corollary 1 Given x1, x2, x
′
1, x

′
2 ∈ X , and pairwise kernel k defined on X 2×X 2, the random

Fourier estimation of the kernel has mistake bounded with probability at least 1− 8 exp −D2δ
2

as follow,

|k̂(x1,x2)(x
′
1, x

′
2)− k(x1,x2)(x

′
1, x

′
2)| ≤ δ

The proof follows from claim 1 in Rahimi and Recht (2007) and the definitions of pairwise
kernel k, which has four sources of errors.
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Proof

T∑
t=2

Lt(w̄
∗)−

T∑
t=2

Lt(w
∗) =

T∑
t=2

1

t− 1

t−1∑
i=1

ℓ(w̄∗, zt, zi)−
T∑
t=2

1

t− 1

t−1∑
i=1

ℓ(w∗, zt, zi)

=
T∑
t=2

1

t− 1

t−1∑
i=1

ℓ(w̄∗, zt, zi)− ℓ(w∗, zt, zi)

≤
T∑
t=2

1

t− 1

t−1∑
i=1

M

2
∥w̄∗ − w∗∥22 (7)

where last inequality applies assumption 1, and that fact that ∇ℓ(w∗, z, z′) = 0 for any
z, z′ ∈ Z. Using the Representer theorem and the fact that the space H and Ĥ are dense in
L2(ρ) (space of squared integrable function, under assumption 3). Hence, we can approximate
any function in H by a function in L2(ρ), i.e. without loss of generality we assume that
w̄∗ =

∑t−1
j=1,k ̸=j α

∗
j,kk̂zt,zi , then we have ∥w̄∗ − w∗∥22 ≤ ∥

∑t−1
j=1,k ̸=j α

∗
j,k(k̂zt,zi − kzt,zi)∥2L2(ρ)

using the fact that ∥ · ∥L2(ρ) ≥ ∥ · ∥2, finally using the triangle inequality we have,

T∑
t=2

Lt(w̄
∗)−

T∑
t=2

Lt(w
∗)≤

T∑
t=2

sup
xi,xt∈X

M

2

t−1∑
j=1,k ̸=j

∥α∗
j,k(k̂zt,zi − kzt,zi)∥2L2(ρ)

a
≤

T∑
t=2

M

2

t−1∑
j=1,k ̸=j

(α∗
j,k)

2δ2

b
≤

T∑
t=2

M

2
δ2(

t−1∑
j=1,k ̸=j

|(α∗
j,k)|)2

=
M

2
T∥w∗∥21δ2 (8)

where inequality (a) implements corollary 1, inequality (b) use the fact that sum of squares is
less than the square of sum, and last equality assumes ∥w∗∥1 =

∑T
i,j ̸=i |a∗i,j |. This completes

the proof.

Appendix B. More Experiemnts

B.1. Number of Clusters

The number of clusters in our algorithm is determined by the hyperparameter epsilon. In
our experiments, we set a maximum limit on the cluster number, even if epsilon allows for
more clusters. This limit helps to control memory requirements and computational costs.

In the figure below, we illustrate the impact of different cluster limits on the AUC score
for the "a9a" dataset, using a small epsilon value. The results demonstrate that as the
number of clusters increases, the AUC score takes more time to reach its maximum value.
However, it is also evident that by limiting the number of clusters, the variance is significantly
reduced while still achieving satisfactory performance.
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Table 1: Datasets used in the experiments, where N−/N+ is the ratio of negative to positive
examples.

Dataset Size Features N−/N+

diabetes 768 8 34.90
ijcnn1 141,691 22 9.45
a9a 32,561 123 3.15
MNIST 60,000 784 1.0
covtype 581012 54 1.0
rcv1.binary 20,242 47,236 0.93
usps 9,298 256 1.0
german 20,242 24 2.3

102 103

Random features "D"

8.4

8.6

8.8

9.0

9.2

AU
C

1e 1
mnist
a9a

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

7.5

8.0

8.5

9.0
AU

C

1e 1

s =1
s =2
s =4
s =8
s =16
s =32

Figure 1: On left, AUC versus number of random features D used to approximate the kernel,
for a9a and MNIST datasets. On right,AUC versus maximum number of clusters
"s" in algorithm 1 for the dataset "a9a".

B.2. Number of Random Feature

By utilizing the Mercer decomposition theorem and the properties of eigenvalues, we can
derive bounds on the number of random Fourier features needed for different decay rates
of the eigenvalues. Specifically, for a decay rate of 1/i, the sufficient number of features is
D ≥ 5T log 2T . For a decay rate of R2/i2c, the sufficient number of features is D ≥ T 1/2c log T .
And for a geometric decay rate of ri (r > 1), the sufficient number of features is D ≥ log2 T .

In our experiments, we focus on a Gaussian kernel with a constant width of 1/d, where
d is the dimension of the input space. For this kernel, the required number of random
features is O(

√
T log(T )). Figure 1 illustrates the results of our experiments, which show

that D = O(
√
T log(T )) is sufficient for a good approximation of the kernel, as the AUC

does not improve significantly beyond this point.
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B.3. More datasets
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Figure 2: Analyzing Gradient Variance with 4-Size Buffer Across Four Datasets: This study
investigates gradient variance using a 4-size buffer across four datasets. The top
row shows running variances, while the bottom row presents logarithmic box plots.
"Received examples" are online inputs at each time step, with ut as the online
stochastic gradient, and Eut as the expected gradient. The red line in the box
plots represents the mean variance of stochastic gradients across all algorithms.
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Figure 3: Comparing Regret Across Algorithms and Datasets: This figure illustrates regret,
defined as

∑
t Lt(wt)− Lt(w

∗), across diverse algorithms and datasets. The first
row depict various algorithms applied to i.i.d. datasets, while the second row
features non-i.i.d. datasets generated by sorting examples based on a single feature.
Notably, our approach exhibits stronger sublinear regret in the non-i.i.d. setting
compared to other algorithms.
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Figure 4: The AUC vs. time comparison of the algorithms in different datasets showing
superior performance of the proposed method.
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