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ABSTRACT

Continual/lifelong learning from a non-stationary input data stream is a cornerstone of intelligence.
Despite their phenomenal performance in a wide variety of applications, deep neural networks are
prone to forgetting their previously learned information upon learning new ones. This phenomenon
is called “catastrophic forgetting” and is deeply rooted in the stability-plasticity dilemma. Overcom-
ing catastrophic forgetting in deep neural networks has become an active field of research in recent
years. In particular, gradient projection-based methods have recently shown exceptional perfor-
mance at overcoming catastrophic forgetting. This paper proposes two biologically-inspired mech-
anisms based on sparsity and heterogeneous dropout that significantly increase a continual learner’s
performance over a long sequence of tasks. Our proposed approach builds on the Gradient Projec-
tion Memory (GPM) framework. We leverage k-winner activations in each layer of a neural network
to enforce layer-wise sparse activations for each task, together with a between-task heterogeneous
dropout that encourages the network to use non-overlapping activation patterns between different
tasks. In addition, we introduce two new benchmarks for continual learning under distributional
shift, namely Continual Swiss Roll and ImageNet SuperDog-40. Lastly, we provide an in-depth
analysis of our proposed method and demonstrate a significant performance boost on various bench-
mark continual learning problems.

1 INTRODUCTION

The capability to continually acquire and update representations from a non-stationary environment, referred to as
continual/lifelong learning, is one of the main characteristics of intelligent biological systems. The embodiment of
this capability in machines, and in particular in deep neural networks, has attracted much interests from the artificial
intelligence (AI) and machine learning (ML) communities (Farquhar & Gal, 2018; von Oswald et al., 2019; Parisi
et al., 2019; Mundt et al., 2020; Delange et al., 2021). Continual learning is a multi-faceted problem, and a contin-
ual/lifelong learner must be capable of: 1) acquiring new skills without compromising old ones, 2) rapid adaptation
to changes, 3) applying previously learned knowledge to new tasks (forward transfer), and 4) applying newly learned
knowledge to improve performance on old tasks (backward transfer), while conserving limited resources. Vanilla deep
neural networks (DNNs) are particularly bad lifelong learners. DNNs are prone to forgetting their previously learned
information upon learning new ones. This phenomenon is referred to as “catastrophic forgetting” and is deeply rooted
in the stability-plasticity dilemma. A large body of recent work focuses on overcoming catastrophic forgetting in
DNNS.

The existing approaches for overcoming catastrophic forgetting can be broadly organized into memory-based methods
(including memory rehearsal/replay, generative replay, and gradient projection approaches) (Shin et al., 2017; Farquhar
& Gal, 2018; Rolnick et al., 2019; Rostami et al., 2020; Farajtabar et al., 2020), regularization-based approaches
that penalize changes to parameters important to past tasks (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi
et al., 2018a; Kolouri et al., 2020; 1i2, 2021; von Oswald et al., 2019), and 3) architectural methods that rely on
model expansion, parameter isolation, and masking (Schwarz et al., 2018; Mallya & Lazebnik, 2018; Mallya et al.,
2018; Wortsman et al., 2020). Many recent and emerging approaches leverage a combination of the above mentioned
mechanisms, e.g., (Van de Ven & Tolias, 2019). Among the mentioned approaches, gradient-projection based methods
(Farajtabar et al., 2020; Saha et al., 2020; Deng et al., 2021; Wang et al., 2021; Lin et al., 2022) have recently shown
exceptional performance at overcoming catastrophic forgetting. In this paper, we will focus on the Gradient Projection
Memory (GPM) approach introduced by Saha et al. (2020), and propose two biologically-inspired improvements
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for GPMs, which are algorithmically simple yet they lead to a significant improvement in performance of the GPM
algorithm.

Sparsity is a critical concept that commonly occurs in biological neural networks. Sparsity in biological systems
emerges as a mechanism for conserving energy and avoiding neural activations’ cost to an extent that is possible. Neu-
roscientists estimate only 5-10% of the neurons in a mammalian brain to be active concurrently (Lennie, 2003), leading
to sparse decorrelated patterns of neural activations in the brain (Yu et al., 2014). Similarly in ML, sparsity plays a
critical role for obtaining models that are more generalizable Makhzani & Frey (2013) and are robust to noisy inputs
and adversarial attacks Guo et al. (2018). Moreover, sparse neural networks are critical in deploying power-efficient
ML models. In continual learning, various recent studies show the role of sparsity in neural parameters (Schwarz
et al., 2021) or in neural activations (i.e., representations) (Aljundi et al., 2018b; Jung et al., 2020; Gong et al., 2022)
in overcoming catastrophic forgetting. The existing work combine sparse model with regularization based contin-
ual learning or memory replay approaches and show significant improvements over baseline performances. These
methods enforce sparsity via inhibition of activations (Aljundi et al., 2018b; Ahmad & Scheinkman, 2019), through
regularization (Jung et al., 2020), or by optimization reparameterization during training (Schwarz et al., 2021). In this
paper, we consider continual learning under power constraints and study the role of sparsity for continual learning
in the nullspace of neural activations. We propose an adaptation of the k-winner algorithm (Ahmad & Scheinkman,
2019), to enforce sparsity and encourage decorrelated neural activations among tasks. The power consumption of our
proposed algorithm at the inference is significantly smaller than that of the GPM, while it provides a demonstrable
advantage over GPM in learning a large sequence of tasks.

Contributions. Our main contributions in this paper are: 1) proposing a modification of the k-winner algorithm
that leads to a significant gain in continual learning from long sequences of tasks, 2) showing that sparse activations
through the modified k-winner algorithm result in low-rank neural activation subspaces at different layers of a neural
network, 3) introducing conditional dropout as a mechanism to encourage decorrelated activations between different
tasks, 4) introducing Continual Swiss Roll as a lightweight and interpretable, yet challenging, synthetic benchmark for
continual learning, and 5) introducing the ImageNet SuperDog-40 as a ‘distributional shift’ benchmark for continual
learning. We demonstrate the effectiveness of our proposed method on various benchmark continual learning tasks
and compare with existing approaches.

2 RELATED WORK

Gradient-projection based approaches. These methods rely on the observation that during learning a new task the
Stochastic Gradient Descent (SGD)- or its variants- is oblivious to the past knowledge Farajtabar et al. (2020). Hence,
generally speaking, these methods rely on carrying the gradient information from previous tasks, whether by storing
samples from old tasks or by learning gradient subspaces, and adjust the gradient for the current task such that it does
not unlearn or interfere with previous tasks. In Orthogonal Gradient Descent (OGD), Farajtabar et al. (2020) store a
memory of the loss gradients on previous tasks and project the loss gradient for the current task onto the nullspace of
the previous gradients in the memory. This method requires a growing memory in the number of tasks. This idea is
extended in Saha et al. (2020) and Wang et al. (2021) take this idea one step further and propose to carry and update
a gradient subspace for previous tasks, and project the current loss gradient onto the nullspace of previous gradients,
requiring a fix-size memory. This core idea has been extended in numerous directions in recent publications, e.g.,
Deng et al. (2021). One major shortcoming of the gradient projection approaches, however, is that, by design, these
methods provide no backward transfer. This shortcoming has led to more recent studies (Lin et al., 2022), that relax
the orthogonal projection and allow for gradients to live in the subspace of ‘similar’ previous tasks leading to some
backward transfer among tasks.

Neural networks with low-rank activation subspaces. low-rank structure of neural activations (i.e., low-rank rep-
resentations) is a relatively understudied research area. The existing work, for instance, show that inducing low-rank
structure on neural activations could result in networks that are more robust to adversarial attacks, and are also, not
surprisingly, more compressible Sanyal et al. (2019). As another example, Chen et al. (2018) show the effectiveness
of a low-rank constraint on the embedding space of an autoencoder in clustering applications. More relevant to our
work, is the fantastic work by Chaudhry et al. (2020), in which the authors learn tasks in orthogonal low-rank vector
subspaces (layer-wise) to minimize interference between tasks. We approach the problem from a different angle. Our
rationale is that having a lower rank subspace for neural activations of previous tasks, would lead to a larger nullspace
for projecting the loss gradient of the current task. In other words, enforcing lower rank neural activation subspaces
for previous tasks leads to learning new tasks with a better accuracy as the projection of the loss gradient onto the
nullspace introduces a smaller error. Finally, we emphasize that having low rank subspaces for layer-wise neural
activations does not imply having sparse activations, and hence it does not provide a lower power consumption.
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Sparse neural activations. Sparsifying neural networks has been an active field of research with a focal point of model
compression and minimizing power consumption. Sparsity in neural networks could refer to sparsity in parameters
(i.e., synapses), or sparsity in neural activations (i.e., sparse representations). In Powerpropagation, Schwarz et al.
(2021) propose a reparameterization scheme that encourages larger parameters to become larger and the smaller ones
become smaller during training. The authors then showed that pruning a network that is trained with powerpropagation
would lead to a very sparsely connected network, that can be combined with the PackNet algorithm Mallya & Lazebnik
(2018) and effectively solve continual learning problems on various benchmarks for large sequences of tasks. Similar
to PackNet Mallya & Lazebnik (2018), the resulting approach in (Schwarz et al., 2021) requires task identities during
the inference/test time. In Selfless Sequential Learning, Aljundi et al. (2018b) show the role of sparse neural activations
for regularization-based approaches in continual learning, e.g., Kirkpatrick et al. (2017); Aljundi et al. (2018a). In this
work, we leverage k-winner activations (Ahmad & Scheinkman, 2019) to induce sparsity in our network and show the
benefit of this induced sparsity in the GPM framework.

Nonoverlapping activations. Using non-overlapping neural representations for overcoming catastrophic forgetting is
not a new idea French (1991; 1999). But this idea has recently revived in the continual learning community (Masse
etal., 2018; Mallya & Lazebnik, 2018; Chaudhry et al., 2020). Mirzadeh et al. (2020) makes an interesting observation
that the vanilla Dropout helps with the catastrophic forgetting problem via inducing an implicit gating mechanism that
promotes non-overlapping neural activations. In our work, we introduce a task conditional Dropout that encourages
non-overlapping sparse activations between tasks. We show that the addition of task-conditional Dropout to our sparse
neural activation framework provides an additional boost in the performance of GPM.

3 METHOD

3.1 PROBLEM FORMULATION

Following the recent works in continual learning (Saha et al., 2020; Lin et al., 2022), we consider the setting where the
learning agent learns a sequence of tasks T = {¢}_ that arrive sequentially. Each task ¢ has its corresponding data set
Dy = {(z1; € Ry € Rk)}l 1> where x; ; is the d-dimensional sample, and y; ; is its corresponding label vector.
Also, while we consider the tasks to be supervised learning tasks, our approach is applicable to unsupervised/self-
supervised tasks as well. We consider a neural network with L layers, where each layer’s weights are denoted by W'
leading to the parameter set W = {WW!} = 1 For the 7’th sample from the ¢’th task, we denote the neural activations at

the I’th layer of the network as z} ; with xi, = a4, and le =f (Wlxt ;) for VI < L where f is the operation of the
network layer. Lastly, we assume that the agent does not have access to data from previous tasks while learning a new
task (i.e., no memory buffer), and that the agent does not have knowledge about task IDs during training or testing.
Note that the model still needs to know about the task boundaries during training but does not require the task IDs.

The core idea behind the gradient projection approaches (Farajtabar et al., 2020; Saha et al., 2020; Deng et al., 2021;
Wang et al., 2021) is to update the model parameters on the new task, such that it guarantees preservation of neural
activations on previous tasks. Of particular interest to us is the Gradient Projection Memory (GPM) framework of
Saha et al. (2020), which we briefly describe here. Let S! = span({x.,}) denote the subspace spanned by the neural
activations of the ¢’th task at layer [. Then while learning task 7, GPM enforces the gradient updates for the !’th
layer of the network to be in the null-space of S! for V¢ < 7 by projecting the gradients onto the null space. Let
W, = {Wi}{‘:l denote the model parameters after learning task 7. Then under the gradient projection constraint, we
can see that, after learning task 7, the neural activations for task ¢ remain unchanged:

Wiz, = (W} + AW! )}, = Wi, + AW ol , = W/al, (1)

where AW!, = WL — W} and AW/ 2}, = 0 follows from the fact that we only optimize the network in the

null spaces of S's. GPM and other gradient-projection based approaches have shown remarkable performance on
overcoming catastrophic forgetting. However, despite their great success, one can observe two drawbacks with such
gradient-projection approaches: 1) the framework does not allow for backward transfer, and 2) the network can saturate
very fast, i.e., the null space of S! could become empty after a few tasks leading to intransigence. Regarding the
first drawback, the lack of backward transfer have led to follow-up work (Lin et al., 2022) that relax the orthogonal
projections according to a notion of task similarities in favor of backward transfer. As for the second drawback,
which is the focal point of our work, Saha et al. (2020) approximate the null-space by discarding dimensions with
low variance of activation (i.e., small eigenvalues). While this practical strategy ensures avoiding intransigence it can
violate equation 1 and lead to catastrophic forgetting of the old tasks. We observe that if S!s are low-rank subspaces,
then the null space remain to be large and the network can be trained on more tasks. In this case, one can use
a regularization to enforce low-rank activations, for instance through the nuclear norm of the covariance of neural
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Figure 1: Depicting the overall structure of a multi layer perceptron along-with the k-winner activation and the pro-
posed heterogeneous dropout layers.

activations. The low-rank constraint, however, does not enforce sparsity in the activations, which can help in reducing
the power consumption at the inference time. Next, we propose our neural network with sparse activations for low-
power continual learning.

3.2 k-WINNER SPARSITY

We leverage sparsity in neural activations with the target of: 1) reducing power consumption, and 2) reducing the rank
of the subspaces S! for Vt € T and I € {2, ..., L}. Of course, sparsity of xil does not guarantee a low rank S!, e.g.,
even one-sparse activations could lead to neural activation subspaces that are full rank. However, we show numerically
that neural networks trained with sparse activations often form low-dimensional activation subspace, S.

Sparse Activations: Following the recent work of Ahmad & Scheinkman (2019) we leverage k-winner activations to
induce sparse neural representations. The framework is similar to the work of Majani et al. (1988), Makhzani & Frey
(2013), and ?4Srivastavacompete2compute. In short, each layer of our network follows, xﬁl =f (Wlxiﬂv) where
f() is an adaptive threshold corresponding to the k’th la rgest activation. Hence, only the top-k activations in each

layer are allowed to propagate to the next layer leading to ||:cit1 llo < k. One advantage of the k-winner framework is

that we have control over the sparsity of neural activations through parameter k.

But why would training with the k-winner activations lead to a low-dimensional activation subspace, S!, at the {’th
layer for task ¢? The answer is implicitly presented in the work of Ahmad & Scheinkman (2019), where the authors
observe that using k-winner activations in a network would lead to a small number of neurons that dominate the neural
representation, i.e., they become active for a large percentage of input samples. This observation is also aligned with
the previous observations made by Makhzani & Frey (2013) and Cui et al. (2017). Ahmad & Scheinkman (2019)
view the dominance of a few neurons as a practical issue and solve this issue through a novel boosting mechanism that
prioritizes the neurons with a lower frequency of activations. In our framework, however, we prefer to have a small set
of dominantly active neurons in each layer of the network for each task, which translates to having a low-dimensional
activation subspace, S!. Hence, unlike the work of Ahmad & Scheinkman (2019), we do not require any boosting
within a task.
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Figure 2: Demonstrating that a multi-layer perceptron, with two hidden layers of size 512 and with k-winner activations
exhibits low-dimensional neural activation subspaces, S¢, in its layers. The left column shows the captured variance
as a function of top 50 eigenvalues/eigenvectors of the activations’ covariance matrix for the densely trained model
(no sparsity), and the networks trained with k-winner activations for ¥ = 8 and 32, in the two layers of the networks.
The right column shows the approximate dimensionality of S! at different thresholds on captured variance, €, for the
two layers. It can be seen that networks with k-winner activations consistently provide lower-dimensional activation
subspaces (at all thresholds). The reported Accuracy is the average accuracy over all tasks at the end of the training
for the last task.

Not having boosting while learning a task, could lead to dominant neurons across tasks, which could significantly
reduce the overall performance of the model. To address this newly emerged practical issue in continual learning,
and motivated by the approaches using non-overlapping neural representation for continual learning, we propose a
conditional dropout between tasks, that encourages diverse neural activations between different tasks.

3.3 HETEROGENEOUS DROPOUT

While training a network on a task, we keep track of the frequency of the neural activations. In short, we assign an
activation counter per neuron, which increments when a neuron’s activation is in the top-k activations in its layer (i.e.,
the neuron is activated). Let [b}]; denote the activation counter for the j’th neuron in the I’th layer of the network, after
learning task ¢. Note that [b}] ;j represents the number of times the j’th neuron in layer [ was in the top £ activations
over all previously seen tasks 7 € [1,...,¢]. Then, while learning task ¢ + 1, we would like to encourage the network
to utilize the less activated neurons. To that end, we propose a dropout (Srivastava et al., 2014) mechanism that favors
to retain neurons that are less activated in previous tasks. We define a binary Bernoulli random variable, [5! 414, for
the 7 °th neuron in layer ! during training on task ¢ 4 1 that indicates whether the neuron is disabled by the dropout or
not. In particular, we set P([6}, ,]; = 1) = [pl, ], for:

[b}]
[pi+1]j = ea:p(—ma) 2

where o > 0 is a hyper-parameter of our proposed dropout mechanism. Larger P corresponds to less dropout and
larger values of « lead to a more stringent enforcement of non-overlapping representations.

We call the proposed dropout a heterogeneous dropout as the probability of dropout is different for various neurons
in the network. Importantly, the probability of dropout is directly correlated with the frequency of activations of a
neuron for previous tasks. Hence, heterogeneous dropout will encourage the network to use non-overlapping neural
activations for different tasks. Interestingly, the proposed heterogeneous dropout induces a “lifetime sparsity” of a
neuron, which is well studied in the neuroscience literature (Beyeler et al., 2016).

In the following section, we first show that the k-winner framework leads to low-dimensional neural activation sub-
spaces, St. We show that this low-dimensional structure enables learning more tasks with less forgetting using the
GPM framework, leading to a significant performance boost. Finally, we show that our heterogeneous dropout encour-
ages non-overlapping neural activations, which provide an additional boost in the performance of GPM over a large
sequence of tasks.
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Figure 3: The Jensen-Shannon divergence (JSD in equation 3) between activations’ probability mass functions, ¢} and
g4, for I € {1,2}. The plot quantifies the overlap between neural activations of two tasks as a function of our dropout
hyperparameter o (See equation 2). Higher JSD values mean lower overlap. We can see that we are able to decrease
the overlap between neural activations by increasing « (o = 0 results in no dropout).

4 NUMERICAL EXPERIMENTS

4.1 TRAINING WITH K-WINNER ACTIVATIONS LEADS TO LOW-DIMENSIONAL SUBSPACES

Our rationale is that having low-dimensional activation subspaces, S!, while using gradient-projection based continual
learning algorithms, like GPM, would lead to less gradient projection error in learning subsequent tasks (i.e., we have
a larger null-space). On the other hand, we prefer sparsely activated networks to reduce the power consumption in a
continual learner. However, a network with sparse neural activations does not necessarily guarantee low-dimensional
activation subspaces. In this section, as one of our core observations, we show that using the k-winner activations to
learn a task leads to low-dimensional activation subspaces, S! at each layer of the network. Then, in the subsequent
sections, we show that these low-dimensional activation subspaces lead to a significantly better learning performance
on a long sequence of tasks.

We start by training a multi-layer perceptron with two hidden layers of size 512 on the MNIST dataset (LeCun et al.,
1998). We first train the model without the k-winner activations, i.e., with & = 512, and call this model the Dense
model. Next, we train the model using k-winner activations with k& = 8 and £ = 32. For each model we calculate
the activations x! for all i and for I € {1,2}. We then calculate the Singular Value Decomposition (SVD) of X! =
[z, ..., a:é\,], calculate the eigenvalues of the covariance matrix (i.e., squared singular values), and sort the eigenvectors
according to their eigenvalues. Lastly, we calculate the percentage captured variance (i.e., cumulative sum of sorted
eigenvalues devided by the sum of the eigenvalues) for these networks. Figure 2 visualizes the captured variance
as a function of the first 50 eigenvectors for both layers of the network for all three models. We observe that the
models trained with k-winner activations lead to lower dimensional activation subspaces, S{. Importantly, we note
that Saha et al. (2020), and subsequent works, do not calculate the exact null-space of the activation subspaces, but
they approximate the null-space by zeroing out the eigenvalues that capture a small percentage of the variance. This
is done via thresholding the captured variance at 0 < ¢;;, < 1. Note that the exact null-space may be very small due
to very small but non-zero eignevalues. To that end, we show that for various thresholds of the captured variances,
ie., en € {.90,0.95,0.99,1.00}, the networks using k-winner activations require fewer eigenvectors. Finally, the
low-dimensional activation subspaces are achieved without a major loss in the accuracy of the trained networks.

4.2 HETEROGENEOUS DROPOUT FOR NON-OVERLAPPING REPRESENTATIONS

Here we numerically confirm that our heterogeneous dropout leads to fewer overlaps between neural representations of
different tasks. For these experiments, we use the GPM algorithm on a model with k-winner activations and learn two
tasks from Permuted-MNIST sequentially, where the first task is MNIST and the second task is a permuted version.
After training on Task 1, we calculate the number of times each neuron is activated for all samples in the validation
set of Task 1. Then, we learn Task 2 using gradient-projection and afterwards calculate the number of times each
neuron is activated for all samples in the validation set of Task 2. For task ¢ and for the j’th neuron in layer [, we
denote the neural activations on the validation set as [1/}];. Note that v/ is different from b} introduced in Subsection
3.3, as it is calculated on the validation set (as opposed to the training set), and it is calculated per task, while b} is

the accumulation of activations over all tasks. Let 7! = Zjl: ,[V}]; where d; is the number of neurons in the I’th
layer, then we can define a probability mass function of activations for each layer as [¢}]; = [v}],;/7}. Finally, we

measure the neural activation overlap between tasks ¢; and ¢», via the Jensen-Shannon divergence (i.e., the symmetric
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Figure 4: The Continual Swiss Roll dataset consisting of 50 binary classification tasks (a) and the final decision
boundaries of different methods, after having learned the 50 tasks sequentially (b)-(d). GPM+K denotes GPM with
k-winner activations. We note that contrary to permuted-MNIST, and due to the high level of similarity between
consecutive tasks, adding heterogeneous dropout does not improve the performance.
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Figure 3 measures the overlap between neural representations (between Task 1, MNIST, and Task 2, a Permuted
MNIST) when the networks are trained with and without our heterogeneous dropout and for different values of «.
Higher Jensen-Shannon divergence means less overlap. In short, « = 0 means no dropout, and we confirm that
higher « translates to less overlap (higher JS-divergence) between the neural representations. Finally, we note that the
choice of « truly depends on the amount of forward transfer we expect to see between two tasks. Lower values of
« are beneficial when we expect our network to rely more on previously learned features (i.e., forward transfer from
previous tasks), while higher values are preferred to learn new features for the new task.

In what follows, we combine k-winner sparse activations with our heterogeneous dropout, utilize Gradient Projection
Memory (GPM) as our core continual learning algorithm, and demonstrate the benefits of sparsity and non-overlapping
representations in learning long sequences of tasks in GPM.

4.3 CONTINUAL SWISS RoLL

In this section, we first introduce Continual Swiss Roll as a lightweight and easily interpretable, yet challenging,
synthetic benchmark for continual learning. Continual Swiss Roll is generated from two classes of two-dimensional
Swiss rolls, where the dataset is shattered into 7" binary classification tasks according to their angular positions on the
roll (See Figure 4 (a)). The continual learner needs to solve the overall Swiss roll binary classification problem by
only observing the sequence of tasks. In addition to being simple and interpretable, one can arbitrarily increase the
number of tasks and there is also an inherent notion of similarity between tasks in our proposed Continual Swiss Roll
(according to their angular location).
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Perm-MNIST (20 Tasks) Perm-MNIST (50 Tasks)

Accuracy BT Accuracy BT
EWC (Kirkpatrick et al., 2017) 64.53 -24.70 GPM 36.56 £0.69 -54.28 +0.75
ER (Rolnick et al., 2018) 78.63 -21.81 GPM + K 5496 +1.92 -31.03+1.76
GPM (Saha et al., 2020) 81.23 -14.70 4 GPM + RD 33.60 £1.40 -50.85 4 1.63
AGEM (Chaudhry et al., 2018) 85.54 -14.33 GPM + HD 28.30 +£2.02 -20.55 +2.27
GEM (Lopez-Paz & Ranzato, 2017b) 91.28 -8.07 GPM+K+RD | 52904248 -27.52+2.15
GPM + K + HD (Ours) 89.74 -1.62 GPM+K+HD | 61.09 +£0.87 -21.57 £+ 0.39

Table 1: Final accuracy and backward transfer on Permuted-MNIST with 20 tasks, for benchmark approaches vs
our proposed approach (left). Ablation study on 50 tasks of Permuted-MNIST, averaged over 5 runs. Abbreviations
correspond to: K (k-winner), RD (Random Dropout), and HD (Heterogeneous Dropout). Our method (GPM + K +
HD) achieves the highest accuracy and comparable backward transfer to other combinations of modules (right)

Here, we consider a Continual Swiss Roll problem with 7" = 50 binary classification tasks. We use two single-head
multi-layer perceptrons with two hidden layers of size 1024, one using Rectified-Linear Unit (ReLU) activations (i.e.,
Dense) and the other using the k-winner activations with k& = 64. For this problem, we set & = 0, as the consecutive
tasks share much similarities, and we would like to get forward transfer. We solve the continual learning using GPM.
Figure 4 shows the learned decision boundaries after learning the 50’th task for GPM, and for our proposed method
(i.e., GPM+k-winner). We see that adding sparse activations lead to a significant boost in performance and a much
better preservation of the decision boundary in long sequences of tasks. We repeat this experiment 10 times and report
the average and standard deviation of the test accuracy over all seen tasks as a function of number of tasks in Figure 5.
In addition, in Figure 5, we show the test accuracy of the current task as well as all previous tasks after learning each
new task, as a lower triangular 50 x 50 matrix for both methods. The (¢1,t2) element of this lower-triangular matrix
contain the test accuracy of the model on Task ¢; immediately after training it on Task ¢5. We see that the network
with k-winner activations not only preserves the performance on old tasks better, but also leads to learning new tasks
better. Figure 4 shows the final decision boundaries (after learning the 50th task) learned with GPM, GPM-+k-winner
activations (ours), and the multitask learner (i.e., joint training).

4.4 PERMUTED-MNIST

Here, we perform our experiments on the Permuted-MNIST continual learning benchmark with 50 tasks. Each of the
50 Permuted-MNIST tasks is a 10-classes classification problem obtained from a random permutation (fixed for all
images of a task) of the MNIST dataset, where the pixels in each figure are permuted according to the permutation
rule. For our models, similar to the models used in Section 4.1, we use multi-layer perceptron with two hidden layers
of size 512, and with ReLLU activations (i.e., dense resulting in GPM), and with k-winner activations for £k = 8 and 32.
For dropout, we use o = 24/k (i.e., 3 for k = 8 and 0.75 for k = 32).

Figure 6 (left) shows the average accuracy of the models on previously seen tasks, as a function of the number of
tasks. The results are aggregated from 5 runs. We can see that our proposed networks with k-winner sparsity and
heterogeneous dropout significantly out-perform the GPM algorithm applied to a dense model. In addition to GPM,
we compared our method to some of the benchmark algorithms in the literature including Elastic Weight Consoli-
dation (Kirkpatrick et al., 2017), Experience Replay (Rolnick et al., 2018), Gradient Episodic Memory (Lopez-Paz
& Ranzato, 2017a), and Averaged Gradient Episodic Memory (Chaudhry et al., 2018) on 20 Task Permuted-MNIST.
Table 4.4 shows the results of the benchmark algorithms compared to ours. We generate the results of other methods
using the wonderful code repository provided by Lomonaco et al. (2021); Lin et al. (2021).

Lastly, we performed various ablation studies to shed light on the effect of each proposed component. First, we
look at the effect of k£ in the k-winner activations on our 50-tasks permuted-MNIST experiment with and without
heterogeneous dropout and compare it with vanilla GPM. The results of this experiment are reported in Figure 6
(right). This experiment demonstrates that both sparsity and heterogeneous dropout play critical roles in improving
the performance of GPM when learning a long sequence of tasks. To further provide insights into the performance of
the proposed components, we ran a full ablation study with k& = 32, and also compared our proposed heterogeneous
dropout with random dropout. The results of our full ablation study for this problem is shown in Table 1.

4.5 CIFAR-100

In this section, we extend our results on MLPs to Convolutional Neural Networks (CNNs), and demonstrate the
practicality of the k-winner activations and Heterogeneous Dropout beyond MLP architectures. We first point out that
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Figure 6: The results of our proposed approach with k-winner sparsity and heterogeneous dropout on the Permuted-
MNIST continual learning benchmark with 50 tasks (a). An ablation study quantifying the effect of sparsity and
heterogeneous dropout in learning 50 Permuted-MNIST tasks. We see that sparsity and our heterogeneous dropout
contribute to the performance boost in a complementary manner.

CIFAR-100 Super Class (5 Tasks) SuperDog-40 (8 Tasks)
Accuracy BT Accuracy BT
GPM 28.84 £ 0.64 -22.51 £ 1.06 39.66 £ 1.06 -29.88 + 1.30
GPM + K 26.57 £0.74 -18.60 £+ 0.95 3791 £1.79 -25.73 £1.69
GPM + RD 24.86 + 0.51 -23.34 +£0.74 38.72 £2.33  -32.61 £3.11
GPM + K+RD | 17.55 + 0.68 -11.87 + 0.68 36.73 £ 1.51 -2428 £2.19
GPM + K+ HD | 29.77 £ 0.41 -9.55 + 0.38 4258 £0.76 -23.17 + 1.58
GPM + HD 32.11 £ 0.71 -11.09 + 0.79 42.82 £ 096 -26.60 +2.05

Table 2: Averaged final accuracy and backward transfer (over 5 runs) of an experiment on five 20-superclass clas-
sification tasks on CIFAR-100 (middle) and eight 5-superclass classification tasks on SuperDog-40 (right). Both
experiments use a single-head AlexNet as their backbone. Since AlexNet has random dropout in its architecture, GPM
and GPM + RD correspond to AlexNet without dropout and regular AlexNet, respectively.

many of the existing benchmarks in the continual learning literature, e.g., split CIFAR-10, or split CIFAR-100, contain
few tasks and do not really reflect the scalability issues of the existing approaches with respect to the number of tasks.
Moreover, the majority of the existing approaches focus on multi-head neural architectures, while the arguably more
challenging ‘domain incremental learning’ Van de Ven & Tolias (2019) remains comparably understudied. Following
the work of Ramasesh et al. (2021), here we use the ‘distribution shift CIFAR-100’ as a domain incremental continual
learning setting with five tasks. Each task, in this setting, is a 20-class classification problem, which contains one
subclass from each superclass. We used AlexNet Krizhevsky et al. (2012) as our backbone. Table 2 shows our results
for this experiment. We observe that AlexNet with Heterogeneous Dropout outperforms other networks. We also
noticed that k-winner activations combined with Heterogeneous Dropout results in the least amount of forgetting at
the cost of a slight drop in the accuracy.

4.6 IMAGENET SUPERDOG-40

Here, we introduce ImageNet SuperDog-40 as an effective continual learning benchmark for domain incremental
learning. SuperDog-40 is a subset of ImageNet Deng et al. (2009) with images from 40 dog breed classes. These
dog breeds belong to five superclasses, namely 1) sporting dog, 2) terrier, 3) hound, 4) toy dog, and 5) working dog,
resulting in eight five-way classification tasks. Similar to the ‘domain shift CIFAR-100 experiment, here we use an
AlexNet to learn these 8§ tasks. The results are shown in Table 2. Consistent with our results on CIFAR-100, here we
observe that the models containing Heterogeneous Dropouts and k-winner activations are the two top performers.

5 CONCLUSION

This paper studied the effects of sparsity and non-overlapping neural representations in the Gradient projection mem-
ory (GPM) framework in continual learning. In addition to providing a power-efficient sparsely activated network, we
showed that a network trained with k-winner activations has low-dimensional neural activation subspaces. The low-
dimensionality of the neural activation subspaces translates to having a large null-space, which leads to lower gradient
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projection error for learning new tasks in GPM. Moreover, we proposed a heterogeneous dropout mechanism, which
encourages non-overlapping patterns of neural activations between tasks. We showed that heterogeneous dropout
complements the k-sparse activations of the k-winner framework and significantly improves performance when using
the GPM algorithm to learn a long sequence of tasks. We introduced Continual Swiss Roll and ImageNet SuperDog-40
as two benchmark problems for domain incremental learning. Continual Swiss Roll is a lightweight and interpretable
yet challenging, continual learning synthetic benchmark, while ImageNet SuperDog-40 is a subset of ImageNet with
hand-picked dog images from 40 different breeds that belong to 5 superclasses. Finally, we analyze our proposed ap-
proach on the Continual Swiss Roll, Permuted-MNIST, CIFAR-100, and ImageNet SuperDog-40 datasets and provide
an ablation study to clarify the contribution of each proposed component.
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