
The Complexity of k-Means Clustering when Little is Known

Robert Ganian * 1 Thekla Hamm * 1 Viktoriia Korchemna * 1 Karolina Okrasa * 2 Kirill Simonov * 1

Abstract

In the area of data analysis and arguably even in
machine learning as a whole, few approaches have
been as impactful as the classical k-means clus-
tering. Here, we study the complexity of k-means
clustering in settings where most of the data is
not known or simply irrelevant. To obtain a more
fine-grained understanding of the tractability of
this clustering problem, we apply the parameter-
ized complexity paradigm and obtain three new
algorithms for k-means clustering of incomplete
data: one for the clustering of bounded-domain
(i.e., integer) data, and two incomparable algo-
rithms that target real-valued data. Our approach
is based on exploiting structural properties of a
graphical encoding of the missing entries, and we
show that tractability can be achieved using sig-
nificantly less restrictive parameterizations than
in the complementary case of few missing entries.

1. Introduction
k-means clustering is a fundamental task in machine learn-
ing and data analysis, one that has been the focus of exten-
sive empirical as well as theoretical research. In general, the
aim in k-means clustering is to partition the rows in an input
matrix A into k clusters and compute one center per clus-
ter so as to minimize the within-cluster sum of squares—or,
when viewed as a decision problem, achieve a within-cluster
sum of squares of at most a specified target value `. De-
pending on the setting, A could be real-valued (Lloyd, 1982;
Moshkovitz et al., 2020; Fomin et al., 2021) or contain
integers from a bounded domain; for instance, Fomin et
al. (Fomin et al., 2018) studied the case where A was binary,

*Equal contribution 1Algorithms and Complexity Group,
TU Wien, Austria 2Institute of Informatics, University of
Warsaw, Poland. Correspondence to: Robert Ganian <rga-
nian@gmail.com>, Thekla Hamm <thamm@ac.tuwien.ac.at>,
Viktoriia Korchemna <vkorchemna@ac.tuwien.ac.at>, Kir-
ill Simonov <ksimonov@ac.tuwien.ac.at>, Karolina Okrasa
<k.okrasa@mini.pw.edu.pl>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

and Ganian et al. (Ganian et al., 2018) the bounded-domain
case where ` = 0.

It is well known that k-means clustering is NP-complete,
even when restricted to k = 2 clusters (Drineas et al., 2004;
Aloise et al., 2009). On the theoretical side, a prominent
approach used to circumvent such lower bounds is the use
of the parameterized complexity2 paradigm, which provides
a more fine-grained look into the complexity of problems.
Since its inception, parameterized complexity has been suc-
cessfully applied to a multitude of problems relevant to
machine learning and artificial intelligence such as, e.g.,
Bayesian network learning (Ordyniak & Szeider, 2013;
Grüttemeier et al., 2021; Ganian & Korchemna, 2021), inte-
ger linear programming (Ganian & Ordyniak, 2018; 2019;
Dvorák et al., 2021), principal component analysis (Si-
monov et al., 2019; Dahiya et al., 2021), and of course
clustering (Cohen-Addad et al., 2018; Fomin et al., 2018).

Apart from classical clustering problems, one direction that
has been gaining traction in recent years is the study of
clustering in settings where some of the data is not known
or simply irrelevant—a task that essentially combines data
completion with clustering (Wang et al., 2019). Indeed,
several authors have studied the parameterized complexity
of various clustering problems for data with missing en-
tries (Ganian et al., 2018; Koana et al., 2020; 2021; Eiben
et al., 2021b), and Eiben et al. (Eiben et al., 2021a) ob-
tained a fixed-parameter approximation algorithm specif-
ically for (k-)MEANS CLUSTERING WITH MISSING EN-
TRIES (MCME).

While their approaches and techniques differ, all of these
works target the case where nearly all entries are known, i.e.,
where the unknown entries only occur in a precisely defined
“sparse” way. On the other hand, very little is known about
the complexity of MCME when the number of unknown
entries is large; such situations are of practical relevance
in, e.g., recommender systems and predictive analytics. For
example, in the classical Netflix Prize challenge where the
task was to predict user ratings for movies based on previous
ratings, only about 1% of the user-movie pairs were orig-
inally supplied with a rating.3 The central mission of this

2See Preliminaries for a brief introduction.
3The dataset is available at https://www.kaggle.com/

netflix-inc/netflix-prize-data.

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data

The Complexity of k-Means Clustering when Little is Known

article is to push the boundaries of tractability for MCME
to instances where known entries are sparse.

Contribution. A natural approach for handling instances
of MCME with many missing entries would be to invert
the parameterizations that have been developed for tackling
instances where almost all entries are known. For instance,
Eiben et al. (Eiben et al., 2021b) and Ganian et al. (Ganian
et al., 2018) obtained several fixed-parameter clustering
algorithms by using a parameter called the covering number,
which is the minimum number of rows and columns needed
to cover all the unknown entries. Equivalently, if we use
an auxiliary binary matrix W (the mask) to specify which
entries of A are relevant/known, the covering number is
simply the minimum number of rows and columns needed
to cover all the 0’s in W . It would be tempting to instead
parameterize by the number of rows and columns needed to
cover all the 1’s in W ; such an “inverse covering number”
would lead to fixed-parameter algorithms targeting instances
where all known entries occur in a few columns and rows.

However, we show that in our setting it is in fact possible to
do much better than that. Our approach is based on using
the incidence graph representation of W , which is the graph
containing one vertex for each column and for each row
of W and where an edge connects row a with column b if
and only if W [a, b] = 1. Observe that the inverse covering
number considered in the previous paragraph would simply
be the size of a minimum vertex cover in W , while the cov-
ering number is the size of a minimum vertex cover in the
complement of W . It is worth noting that in graph-theoretic
settings, the size of a minimum vertex cover is considered a
highly restrictive parameterization, one that is used primar-
ily when more desirable parameterizations fail. On the other
hand, the by far most prominent parameter used for graphs
is treewidth (Robertson & Seymour, 1984), which has found
ubiquitous applications throughout computer science and
which is smaller (i.e., less restrictive as a parameter) than
the size of a minimum vertex cover. As our first result, we
use the treewidth of the incidence graph of the mask W (the
incidence treewidth) to prove:

Result 1: Bounded-domain MCME is fixed-parameter
tractable when parameterized by the incidence treewidth
of the mask.

Result 1 is noteworthy not only due to the use of treewidth
instead of the inverse covering number, but also because
incidence treewidth is the only parameter required to achieve
tractability. In particular, unlike previous algorithms for
clustering incomplete (bounded-domain or real-valued) data
by Eiben et al. (Eiben et al., 2021a;b), Ganian et al. (Ganian
et al., 2018), and Koana et al. (Koana et al., 2020; 2021),
Result 1 can also be applied to instances where the number
k of clusters is large. As we will see later, we will be able

to retain this benefit in all our algorithms.

Unfortunately, an extension of Result 1 towards real-valued
instances seems difficult at this point. Indeed, a fixed-
parameter algorithm for real-valued MCME parameterized
by the incidence treewidth of the mask would imply, as a
special case, fixed-parameter tractability parameterized by
the number d of columns. However, the existence of a fixed-
parameter algorithm even for k-MEANS (corresponding to
the restriction of MCME where all entries are known) when
parameterized by d is a long-standing open problem dating
back to Inaba et al.’s celebrated XP algorithm parameterized
by k + d (Inaba et al., 1994).

Instead, we show that one can obtain fixed-parameter al-
gorithms for real-valued MCME by using the treewidth of
a different graph representation of W . In particular, we
use the primal graph—a well-established counterpart to the
incidence graph representation in settings such as Boolean
satisfiability (Samer & Szeider, 2009), constraint satisfac-
tion (Samer & Szeider, 2010) or integer programming (Ga-
nian & Ordyniak, 2019). In our context, the primal graph of
W contains a vertex for each row of W , with edges connect-
ing pairs of rows that share at least one coordinate which
is known/relevant according to the mask, and the primal
treewidth is simply the treewidth of this graph.

Result 2: Real-valued MCME is fixed-parameter tractable
when parameterized by the primal treewidth of the mask.

Note that, due to the nature of the primal graph represen-
tation, the primal treewidth is a more restrictive parameter
than the incidence treewidth (in the sense of being bounded
on fewer classes of instances). In fact, the primal treewidth
of a mask may in certain cases be unboundedly large even
when its incidence graph is just a tree. It would hence be
useful to also have an algorithm for real-valued MCME
that can exploit properties of the incidence graph, even for
properties that are more restrictive than incidence treewidth.

However, the same obstacle towards extending Result 1 to
the real-valued setting also applies to all traditional struc-
tural parameters that are, intuitively, based on small vertex
separators in the graph—including pathwidth (Robertson &
Seymour, 1983), treedepth (Nesetril & de Mendez, 2012),
the feedback vertex number e.g., (Mertzios et al., 2020) and
even the vertex cover number e.g., (Gaspers & Najeebullah,
2019; Fellows et al., 2018), which is the most restrictive ver-
tex separator based parameter. In spite of this, as our third
and final result we identify a parameter of the incidence
graph that yields fixed-parameter tractability of real-valued
MCME: the recently introduced local feedback edge num-
ber (lfen) (Ganian & Korchemna, 2021). On a high level,
lfen can be seen as an edge-based restriction of treewidth,
and as a less restrictive parameter than the edge deletion
distance to acyclicity (i.e., the feedback edge number).

The Complexity of k-Means Clustering when Little is Known

Result 3: Real-valued MCME is fixed-parameter tractable
when parameterized by the local feedback edge number of
the incidence graph of the mask.

We note that the parameters used in Results 2 and 3 are
orthogonal and the gap between them may be arbitrarily
large. Because of this, both results are incomparable and
give rise to different tractable classes for the problem.

Statements where proofs or details are omitted due to space
constraints are marked with ?. A full version of the paper
containing all proofs and details is provided in the appendix.

2. Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪
{0}. On the other hand, if p is an equivalence relation on
domain X , we denote by [p] the set of equivalence classes
of p and by |[p]| the cardinality of [p], i.e., the number of
equivalence classes of p. For every x ∈ X , [x]p ∈ [p] is the
equivalence class containing x.

Notation and Problem Formulation. Let A be a matrix
with n rows and d columns. We use VA andCA to denote the
set of row and column indices ofA, i.e., VA = [n] andCA =
[d]. Let MA = maxv∈VA

maxc∈CA
|A[v, c]|. For two ma-

trices A,B, we denote by A−B the entry-wise subtraction
of the two matrices, i.e., (A− B)[i, j] = A[i, j]− B[i, j],
and similarly by A ◦ B the entry-wise product of the two
matrices, i.e., (A ◦ B)[i, j] = A[i, j] · B[i, j]. For a ma-
trix A ∈ Rn×d we denote its squared Frobenius norm by
||A||2F =

∑n
i=1

∑d
j=1A[i, j]2. We can now formalize our

problems of interest (abbreviated as MCME):

MEANS CLUSTERING WITH MISSING ENTRIES

Input: Matrix A ∈ Dn×d over a domain D ⊆ R,
binary matrix W (the mask), integers k and `.

Task: Determine if there exists a matrix B over D
containing at most k distinct rows such that
‖W ◦ (A−B)‖2F ≤ `.

We distinguish between BOUNDED-DOMAIN MCME and
REAL-VALUED MCME depending on whether D = [z]0
for some fixed integer z, or D is the set of reals. In par-
ticular, for z = 1 this coincides with BINARY k-MEANS
CLUSTERING (Fomin et al., 2018). In this case, minimizing
the Frobenius norm also minimizes the sum of Hamming
distances for each row to its cluster center. Using the Frobe-
nius norm also for z > 1 is not only consistent with the
continuous case, but also allows us to capture further appli-
cations, e.g., when the data matrix to cluster is composed of
user ratings each taking a small numeric value. While we
state MCME as a decision problem for complexity-theoretic
reasons, every algorithm presented here is constructive and
can output a solution matrix B if one exists.

In this formulation, the distinct rows of B are the centers of
the sought-after clusters while ` is the target upper-bound
on the sum of squares. For V ′ ⊆ VA, we call a mapping
ϕ : V ′ → [k] a cluster-assignment w.r.t. B if for every
v1, v2 ∈ V ′ such that ϕ(v1) = ϕ(v2), it holds that B[v1] =
B[v2]. Notice that the existence of a cluster assignment
w.r.t. a matrix B′ implies that B′ has at most k distinct rows.
The clusters associated with ϕ are then sets of the form
{v ∈ V | ϕ(v) = i} for some i ∈ [k].

In our algorithms, we often construct the solution matrix
dynamically by “merging” smaller matrices; we formalize
this procedure below. Let {Bi | i ∈ [m]} be a set of matrices,
where each Bi has row labels Vi, column labels Ci and is
associated with a cluster-assignment ϕi : Vi → [k] and the
following two consistency conditions hold:

• ϕi(v) = ϕj(v) for every v ∈ Vi ∩ Vj , i, j ∈ [m],

• if ϕi(vi) = ϕj(vj) for some vi ∈ Vi and vj ∈ Vj , then
Bi[vi, c] = Bj [vj , c] for every c ∈ Ci ∩ Cj .

Let ϕ =
⋃

i∈[m] ϕi. We define the composition of (Bi, ϕi),
i ∈ [m], to be the matrixB∗ with row labels V =

⋃
i∈[m] Vi,

column labels C =
⋃

i∈[m] Ci and entries as follows. For
every v ∈ V and c ∈ C, pick any i ∈ [m] such that c ∈
Ci and there exists vi ∈ Vi with ϕ(vi) = ϕ(v). We set
B∗[v, ci] = Bi[vi, ci]. If there is no such i ∈ [m], we
simply set B∗[v, c] to some arbitrary but uniform default
value—in our case, we will always use 0. Observe that if
both consistency conditions hold, then both B∗ and ϕ are
well-defined and that ϕ is a cluster-assignment w.r.t. B∗.

Parameterized Complexity. In parameterized algorith-
mics (Downey & Fellows, 2013; Cygan et al., 2015), the
running-time of an algorithm is studied with respect to a
parameter k ∈ N0 and input size n. The basic idea is to
find a parameter that describes the structure of the instance
such that the combinatorial explosion can be confined to this
parameter. In this respect, the most favorable complexity
class is FPT (fixed-parameter tractable), which contains all
problems that can be solved in time f(k) ·nO(1), where f is
a computable function. Algorithms with this running-time
are called fixed-parameter algorithms.

Sparse Matrices. It follows from definition of MCME
that entries of the input matrix A and the target matrix B
are only relevant when the respective entry of the mask
W is set to “1”. We thus assume that only those entries
are stored explicitly; in particular, the size of the input is
therefore linear in the number of non-zero entries of W . All
the structural parameters in our considerations automatically
imply that the mask W is sparse, in the sense that it has at
most Ok(n+ d) non-zero entries, where the constant under
Ok(·) depends on the respective parameter k. All algorithms
in this paper except one are linear-time in the number of

The Complexity of k-Means Clustering when Little is Known

non-zero entries of the mask, and the above allows us to
state their running times in the form (n+ d) · f(k), where
f is a certain function of the respective parameter k.

Treewidth. A nice tree-decomposition T of a graph G =
(V,E) is a pair (T, χ), where T is a tree (whose vertices
we call nodes) rooted at a node r and χ is a function that
assigns each node t a set χ(t) ⊆ V such that:

• For every uv ∈ E there is a node t where u, v ∈ χ(t).

• For every vertex v ∈ V , the set of nodes t satisfying
v ∈ χ(t) forms a subtree of T .

• |χ(`)| = 1 for every leaf ` of T and |χ(r)| = 0.

• There are only three kinds of non-leaf nodes in T :

– Introduce node: a node t with exactly one child
t′ such that χ(t) = χ(t′) ∪ {v} for some vertex
v 6∈ χ(t′).

– Forget node: a node t with exactly one child
t′ such that χ(t) = χ(t′) \ {v} for some vertex
v ∈ χ(t′).

– Join node: a node t with two children t1, t2 such
that χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is
maxt∈V (T)(|χ(t)| − 1), and the treewidth of the graph
G, denoted tw(G), is the minimum width of a nice tree-
decomposition of G. We let Tt denote the subtree of
T rooted at a node t, and we use χ↓t to denote the set⋃

t′∈V (Tt)
χ(t′). The sets χ(t) are commonly called bags.

Fixed-parameter algorithms are known for computing nice
tree-decompositions of optimal width and linearly many
nodes (Bodlaender, 1996; Kloks, 1994), albeit more efficient
fixed-parameter approximation algorithms are often used to
achieve better running times (Bodlaender et al., 2016).

Local Feedback Edge Number. The local feedback
edge number was recently introduced by Ganian and Ko-
rchemna (2021) as an edge-cut based restriction of treewidth
that acts as a “local” measure of the size of a feedback edge
set; they used the parameter to obtain fixed-parameter algo-
rithms for learning Bayesian networks and polytrees.

For a connected graph G = (V,E) and a spanning
tree T of G, the local feedback edge set at x ∈
V is defined as ET

loc(x) = {yz ∈ E \ E(T) |
the unique path between y and z in T contains x}. The lo-
cal feedback edge number of (G,T) (denoted lfen(G,T))
is then equal to maxx∈V |ET

loc(x)|, and the local feedback
edge number of G is simply the smallest local feedback
edge number among all possible spanning trees of G, i.e.,
lfen(G) = minT is a spanning tree of G lfen(G,T). An example
of a graph G with lfen(G) = 2 is provided in Figure 1.

Figure 1. Example of a graph G with the spanning tree T (marked
in thick red) such that lfen(G) = lfen(G,T) = 2. The feedback
edge number of G, i.e., its edge deletion distance to acyclicity,
is exactly the number of black edges and can be made arbitrarily
large in this fashion while preserving lfen(G) = 2.

3. Solving Bounded-Domain MCME by
Exploiting the Mask

Since BOUNDED-DOMAIN MCME is NP-
complete (Drineas et al., 2004; Aloise et al., 2009),
it is natural to attempt and circumvent this lower bound
by exploiting structural measures of the inputs to obtain
fixed-parameter tractability. Eiben et al. (Eiben et al.,
2021a) recently obtained a fixed-parameter approximation
algorithm for BOUNDED-DOMAIN requiring the simulta-
neous parameterization by three measures: the number of
clusters, the desired approximation ratio, and a technical
measure that captures the sparsity of the missing data (i.e.,
the “0” entries in W).

In this section, we will present a fixed-parameter algorithm
for BOUNDED-DOMAIN MCME which is aimed at the com-
plementary case where the relevant data is sparse. To formal-
ize this, we consider the incidence graph representation GI

ofW which is defined as follows: V (GI) = VW ∪CW , and
E(GI) = {ab | a ∈ VW , b ∈ CW ,W [a, b] = 1}. Figure 2
later on can also be used as an example of the representation.

Intuitively, each “1” entry in W will correspond to an edge
in GI , and hence “structurally sparse” incidence graphs
correspond to settings where most data is unknown. There
is a well-studied hierarchy of structural graph parameters
which measure, in a certain sense, the sparsity of graphs
(see, e.g., Figure 1 in (Bodlaender et al., 2013)). Treewidth
will be our parameter of choice here, as the best known
and also most general parameter in this hierarchy. How-
ever, it is worth noting that the use of the incidence graph
may provide a new perspective on previous algorithms for
clustering problems—for instance, the so-called covering
number parameter (Ganian et al., 2018; Eiben et al., 2021b)
is simply the vertex cover number of the complement of GI .

The main goal of this section is to establish the fixed-
parameter tractability of MCME parameterized by tw(GI).
As a first step towards this goal, we obtain a dynamic pro-
gramming algorithm that handles the simpler case where k
is also part of the parameterization.

Theorem 1. BOUNDED-DOMAIN MCME is fixed-
parameter tractable when parameterized by k + tw(GI).

The Complexity of k-Means Clustering when Little is Known

Proof. We begin by applying the well-established 5-
approximation algorithm for treewidth (Bodlaender et al.,
2016) to compute a nice tree-decomposition of GI of width
q ≤ 5 tw(GI) in time 2O(tw(GI))(n+ d). Let r be the root
of T . Given a node t of T , let Vt and Ct be the sets of
vectors and coordinates in χ(t), respectively. Moreover, let
C↓t and V ↓t be the restrictions of χ↓t to sets of coordinates
and vectors correspondingly.

To prove the theorem, we will design a leaf-to-root dynamic
programming algorithm which will compute and store a set
of records at each node t of T , whereas once we ascertain
the records for r we will have the information required to
output a correct answer. Intuitively, the records will store
the cluster centers restricted to the coordinates that appear
in the bag, the partition of the vectors in the bag into clusters
and the sum of minimum distances from vectors in V ↓t to
the cluster centers along the coordinates in C↓t .

Formally, the records will have the following structure. We
call a pair (cent,part) a snapshot in t if the following holds:

• cent : [k]× Ct → D,

• part : Vt → [k].

Let S(t) be the set of all snapshots of t. The recordRt of t
is then a mapping from S(t) to the set R+ of non-negative
reals. Observe that |S(t)| ≤ |D|k(q+1)kq+1.

To introduce the semantics of our records, let Bt be the set
of all matrices with row labels V ↓t , column labels C↓t and
entries of domain D. Let Bt be a matrix in Bt. We define
the partial weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
∑
v∈V ↓

t

∑
c∈C↓

t

W [v, c] · (A[v, c]−Bt[v, c])
2.

For Bt ∈ Bt, we say that (cent,part) ∈ S(t) is the snap-
shot of Bt in t if there is a cluster-assignment ϕ w.r.t. Bt

such that the following conditions hold:

• part = ϕ|Vt
,

• for every c ∈ Ct and v ∈ V ↓t , Bt[v, c] =
cent[ϕ(v), c].

Recall that the existence of a cluster-assignment implies, in
particular, that Bt has at most k distinct rows. We are
now ready to define the record Rt. For each snapshot
(cent,part) ∈ S(t), we set Rt(cent,part) = τ if there
exists Bt ∈ Bt such that:

• (cent,part) is the snapshot of Bt in t,

• pwd(Bt, t) = τ , and

• ∀B′t ∈ Bt such that (cent,part) is the snapshot of B′t,
pwd(B′t, t) ≥ τ .

In this case we say that Bt witnessesRt(cent,part) = τ .

Recall that for the root r, we assume χ(r) = ∅. Hence S(r)
contains only one element (∅, ∅), and Rr(∅, ∅) is equal to
the minimum value of ‖W ◦(A−B)‖2F that can be achieved
by any matrix B with entries of domain D containing at
most k distinct rows. In other words, the instance is a YES-
instance if and only ifRr(∅, ∅) ≤ `. To prove the theorem,
it now suffices to show that the records can be computed in
a leaf-to-root fashion by proceeding along the nodes of T .

We distinguish the following cases:

t is a leaf node. Let χ(t) = {v} where v is a vector.
By definition, S(t) = {(∅,part)|part : [1] → [k]} and
Rt(∅,part) = 0 for every (∅,part) ∈ S(t) as there are no
coordinates to sum over. Let χ(t) = {c} for some coordi-
nate c. Then S(t) = {(cent, ∅)| cent : [k]× [1]→ D} and
Rt(cent, ∅) = 0 for each (cent, ∅) ∈ S(t).

t is a forget node. Let t′ be the child of t in T and χ(t) =
χ(t′) \ {v} for some vector v. We set R0

t (cent,part) :=
mini∈[k]Rt′(cent,part∪(v, i)) for each (cent,part) ∈
S(t). For correctness, it will be useful to observe that
Bt = Bt′ . If Rt(cent,part) = τ , then there exists a ma-
trix Bt which witnesses this. But then Bt also admits a
snapshot (cent,part∪(v, i)) at t′ for some i ∈ [k] and wit-
nesses Rt′(cent,part∪(v, i)) ≤ τ . So in our algorithm
R0

t (cent,part) ≤ Rt′(cent,part∪(v, i)) ≤ τ . If on the
other hand R0

t (cent,part) = τ , then there exists a snap-
shot (cent,part∪(v, i)) at t′ for some i ∈ [k] such that
Rt′(cent,part∪(v, i)) = τ . Rt(cent,part) ≤ τ now fol-
lows from the existence of a matrix witnessing the value
of Rt′(cent,part∪(v, i)). Hence, we can correctly set
Rt = R0

t .
If χ(t) = χ(t′) \ {c} for some coordinate c, we set
Rt(cent,part) equal to min{Rt′(cent′,part)| cent is a re-
striction of cent′ to all coordinates except c}. Correctness
can be argued similarly to the case of a forgotten vector.

t is an introduce node (introducing a vector). Let t′ be
the child of t in T and let χ(t) = χ(t′)∪{v0} for some vec-
tor v0. Fix a snapshot (cent,part) in S(t), let i = part(v0)
and part′ = part \(v0, i). We will denote by ∆0 the sum
of distances from v0 to the i-th cluster center along the co-
ordinates in Ct, i.e., ∆0 =

∑
c∈Ct

W [v0, c] · (A[v0, c] −
cent[i, c])2. We set R0

t (cent,part) = Rt′(cent,part′) +
∆0. For correctness, assume that R0

t (cent,part) = τ =
Rt′(cent,part′) + ∆0. Construct a matrix Bt from the
witness Bt′ of Rt′(cent,part′) with a cluster-assignment
ϕ′ by adding a new row with a label v0 as follows. If
i = ϕ′(v) for some v ∈ V ↓t′ , we set Bt[v0] := Bt[v].
Otherwise we define Bt[v0, c] := cent[i, c] for c ∈ Ct

and Bt[v0, c] := 0 in the rest of coordinates c. Note that
in both cases Bt[v0, c] = cent[i, c] for every c ∈ Ct: in
the second case it follows from the definition, while in
the first one we have Bt[v0, c] := Bt[v, c] = Bt′ [v, c] =
cent[ϕ′(v), c] = cent[i, c]. The matrix Bt with a cluster-

The Complexity of k-Means Clustering when Little is Known

assignment ϕ = ϕ′ ∪ (v0, i) has a snapshot (cent,part)
in t and pwd(Bt, t) =

∑
v∈V ↓

t

∑
c∈C↓

t
W [v, c] · (A[v, c]−

Bt[v, c])
2 = pwd(Bt′ , t

′) +
∑

c∈C↓
t
W [v0, c] · (A[v0, c]−

Bt[v0, c])
2. As pwd(Bt′ , t

′) = Rt′(cent,part′),
W [v0, c] = 0 for every forgotten coordinate c and
Bt[v0, c] := cent[i, c] for every c ∈ Ct, we have
pwd(Bt, t) = Rt′(cent,part′) + ∆0 = τ. So Bt witnesses
thatRt(cent,part) ≤ τ .

On the other hand, assume thatRt(cent,part) = τ . Then
there exists a matrix Bt in Bt admitting the snapshot
(cent,part) in t such that pwd(Bt, t) = τ . Let ϕ be
the corresponding cluster-assignment w.r.t. Bt. We con-
struct Bt′ from Bt by deletion of the row v0. Then Bt′

with cluster-assignment ϕ′ = ϕ \ {(v0, i)} has a snapshot
(cent,part′) in t and witnesses that Rt′(cent,part′) ≤
pwd(Bt′ , t

′) = τ − ∆0. Therefore in our algorithm
R0

t ≤ Rt′(cent,part′) + ∆0 ≤ τ . Hence, we can cor-
rectly setRt = R0

t .

t is an introduce node (introducing a coordinate). Let
t′ be the child of t in T and let χ(t) = χ(t′) ∪ {c0} for
some coordinate c0. Fix a snapshot (cent,part) in S(t),
we wil denote by ∆0 the sum of distances from v ∈ V ↓t
to the corresponding cluster center along the coordinate c0,
i.e., ∆0 =

∑
v∈Vt

W [v, c0] ·(A[v, c0]−cent[part(v), c0])2.
Let cent′ be the restriction of cent to all the coordinates ex-
cept c0. We set R0

t (cent,part) = Rt′(cent′,part) + ∆0.
For correctness, assume that R0

t (cent,part) = τ =
Rt′(cent′,part) + ∆0. We construct a matrix Bt from
a witness Bt′ of Rt′(cent′,part) with cluster-assignment
ϕ′ by adding a column c0. For every v ∈ V ↓t , we set
Bt[v, c] = Bt′ [v, c] for all c ∈ C↓t′ and Bt[v, c0] =
cent[ϕ′(v), c0]. Then Bt with the same cluster-assignment
ϕ′ has a snapshot (cent,part) in t and pwd(Bt, t) =
pwd(Bt′ , t

′) + ∆0 = Rt′(cent′,part) + ∆0 = τ . There-
fore Bt witnesses that Rt(cent,part) ≤ τ . On the other
hand, assume that Rt(cent,part) = τ . Then there exists
a matrix Bt in Bt with the snapshot (cent,part) in t such
that pwd(Bt, t) = τ . Let Bt′ be obtained from Bt by
deletion of the column with the label c0. Then Bt′ wit-
nesses Rt′(cent′,part) ≤ τ − ∆0, so in our algorithm
R0

t (cent,part) = Rt′(cent′,part) + ∆0 ≤ τ . Hence, we
can correctly setRt = R0

t .

t is a join node. Let t1, t2 be the two children of t in T ,
recall that χ(t1) = χ(t2) = χ(t) and χ↓t1 ∩ χ

↓
t2 = χ(t).

For every (cent,part) in S(t) we set R0
t (cent,part) =

Rt1(cent,part) +Rt2(cent,part)− doublecount, where
doublecount =

∑
v∈Vt

∑
c∈Ct

W [v, c] · (A[v, c] −
cent[part(v), c])2.

For correctness, assume that R0
t (cent,part) = τ =

τ1 + τ2 − doublecount, where τ1 = Rt1(cent,part),
τ2 = Rt2(cent,part). Let Bi with the cluster-assignment

ϕi be the witness ofRti(cent,part) = τi, i = 1, 2. We ob-
tain a matrix Bt with cluster-assignment ϕ = ϕ1 ∪ ϕ2 as a
composition of (B1, ϕ1) and (B2, ϕ2). To check the consis-
tency conditions, observe that the sets of common row and
column labels of B1 and B2 are Vt and Ct correspondingly.
Recall that ϕ1|Vt

= part = ϕ2|Vt
. Moreover, if v1 ∈ V1

and v2 ∈ V2 are such that ϕ1(v1) = ϕ2(v2), then we have
B1[v1, c] = cent[ϕ1(v1), c] = cent[ϕ2(v2), c] = B2[v2, c]
for every c ∈ Ct.

Note that for every v ∈ Vt, ϕ(v) = ϕ1(v) = part. Pick
c ∈ Ct and v ∈ V ↓t , then v ∈ V ↓ti for some i ∈ {1, 2} and
so Bt[v, c] = Bi[v, c] = cent[ϕi(v), c] = cent[ϕ(v), c].
Therefore (cent,part) is a snapshot of Bt in t. Recall
that pwd(Bt, t) =

∑
v∈V ↓

t

∑
c∈C↓

t
W [v, c] · (A[v, c] −

Bt[v, c])
2. Here W [v, c] = 0 for every v ∈ V ↓ti and c 6∈ C↓ti ,

i = 1, 2. So pwd(Bt, t) =
∑

v∈V ↓
t1

∑
c∈C↓

t1

W [v, c] ·
(A[v, c]−Bt[v, c])

2 +
∑

v∈V ↓
t2

∑
c∈C↓

t2

W [v, c] · (A[v, c]−
Bt[v, c])

2−
∑

v∈Vt

∑
c∈Ct

W [v, c] ·(A[v, c]−Bt[v, c])
2 =

pwd(B1, t1) + pwd(B2, t2) − doublecount = τ1 + τ2 −
doublecount = τ . Hence Bt witnesses Rt(cent,part) ≤
τ .

For the converse, assume that Rt(cent,part) = τ and
Bt is a matrix witnessing this. Let Bi be the restriction
of Bt to rows V ↓ti and columns C↓ti , i = 1, 2. Then B1

and B2 have a snapshot (cent,part) and in our algorithm
R0

t (cent,part) = Rt1(cent,part) + Rt2(cent,part) −
doublecount ≤ pwd(B1) + pwd(B2) − doublecount =
pwd(B) = τ . Hence the resulting record Rt = R0

t is cor-
rect, which concludes the correctness proof of the algorithm.

To bound the runtime of the algorithm, observe that at
each node t we compute the record Rt for |S(t)| ≤
|D|kqkq = |D|O(k·tw(GI)) entries, where each entry is
computed in time at most quadratic in tw(GI). Since
the tree-decomposition is nice and has at most O(n + d)
nodes, the runtime of the algorithm is upper-bounded by
(n+ d) · |D|O(k·tw(GI)).

Towards proving fixed-parameter tractability without involv-
ing k, we consider the case where k is significantly larger
than tw(GI). We prove that this case always admits a “per-
fect” solution, which can also be computed efficiently.

Lemma 2 (?). If k ≥ (tw(GI) + 1) · |D|tw(GI)+1 then
there exists a matrix B over domain D containing at most
k distinct rows such that ‖W ◦ (A−B)‖2F = 0. Moreover,
given a nice tree-decomposition of width q − 1 such that
k ≥ q · |D|q, such a matrix B can be computed in time
(n+ d) · |D|O(q).

Proof Sketch. We will prove the second claim of the lemma,
from which the first one follows. To this end, let us assume
that we are given a nice tree-decomposition T = (T, χ) of

The Complexity of k-Means Clustering when Little is Known

GI of width q − 1 and k ≥ q · |D|q. We denote the root
of T by r and define Ct, Vt, C

↓
t and V ↓t analogously to the

proof of Theorem 1. We will explicitly construct q · |D|q
cluster centers yielding a zero sum of squares, so that after
processing the node t, each of the centers is defined on
coordinates c ∈ C↓t . The remaining clusters will be empty,
thus for the rest of the proof we assume k = q · |D|q .

Formally, we will attach to every node t the pair (Rt, αt)
where Rt is the matrix with the row labels [k] and the col-
umn labels C↓t , and αt is a mapping from V ↓t to [k]. Intu-
itively, Rt stores the restrictions of cluster centers to pro-
cessed coordinates, while αt assigns a cluster index to every
row label v ∈ V ↓t . Throughout the dynamic programming
procedure, we will maintain the following invariants:

1. αt(u) 6= αt(v) for any two distinct u and v from Vt,

2. for every ω ∈ DCt , there are precisely k
|D||Ct| indices

i ∈ [k] such that Rt[i][Ct] = ω, where Rt[i][Ct] is the
restriction of Rt[i] to the coordinate set Ct,

3.
∑

v∈V ↓
t

∑
c∈C↓

t
W [v, c]·(A[v, c]−Rt[αt(v), c])2 = 0.

To complete the proof, it remains to show that the
records (Rt, αt) can be computed in a leaf-to-root fash-
ion via dynamic programming along the nodes of the
tree-decomposition. Indeed, once we obtain the record
(Rr, αr) for the root node r, we can define the solution
matrix B by setting B[v] = Rr[αr(v)]; this matrix has
at most k distinct rows and the third invariant yields that∑

v∈VA

∑
c∈CA

W [v, c] · (A[v, c]−B[v, c])2 = 0.

At this point, we can prove the main result of this section.

Theorem 3. BOUNDED-DOMAIN MCME is fixed-
parameter tractable when parameterized by tw(GI).

Proof. Given an instance of BOUNDED-DOMAIN MCME,
we begin by constructing the incidence graph GI and then
applying the known 5-approximation algorithm to compute
a tree-decomposition of GI of width q − 1 ≤ 5 tw(GI)
in time 2O(tw(GI)) · (n + d). At this point we proceed by
comparing q and k, as follows:

• if k ≥ q · |D|q, then we can correctly output “Yes”
(along with a suitable witness) by using Lemma 2;

• on the other hand, if k ≤ q · |D|q then we instead
invoke Theorem 1 to solve the instance.

The running time in the former case is upper-bounded by
(n+ d) · |D|O(tw(GI)), while in the latter case the bound is
(n+ d) · |D|O(k·tw(GI)) ≤ (n+ d) · |D||D|O(tw(GI))

.

W =


1 1 1 0
1 1 1 0
0 0 0 1
0 1 0 0
1 0 1 0


GI

VW CW

GP

Figure 2. Example of a mask W (left) together with its incidence
graph (middle) and its primal graph (right). Vertices from top to
bottom correspond to rows from top to bottom and in the case of
CW columns from left to right. In this example tw(GI) = 3 and
tw(GP) = 2.

4. Handling Real-Valued Matrices with
Treewidth

We now turn our attention to REAL-VALUED MCME. As
was mentioned in the Introduction, a fixed-parameter al-
gorithm for the problem parameterized by the incidence
treewidth ofW would resolve a long-standing open problem
as a special case, and so far remains beyond reach. How-
ever, we can still make tangible progress on the problem
by considering the treewidth of a different representation
of W . In particular, the primal graph GP of W is a graph
containing one vertex for each row of W , where two rows
a, b are adjacent if and only if there is a column e such that
W [a, e] = W [b, e] = 1. An example comparing primal and
incidence graphs is provided in Figure 2.

Our aim in this section is to prove the next theorem.

Theorem 4 (?). REAL-VALUED MCME is fixed-parameter
tractable when parameterized by tw(GP).

Before we proceed to the proof, we will first introduce
some additional notation that will be useful in the context
of real-valued matrices. For every V ′ ⊆ VA, let µ(V ′, c) =
argminxf(x) for f(x) =

∑
v∈V ′ W [v, c] · (A[v, c] − x)2

and let ∆c(V
′) = f(µ(V ′, c)). Intuitively, if vectors from

V ′ form a cluster then ∆c(V
′) is a minimal sum of distances

to the cluster center along the coordinate c.

Observation 5 (?). For each coordinate c, if V ′′ = {z ∈
V ′ |W [z, c] = 1} 6= ∅ then

µ(V ′, c) =

∑
v∈V ′′ A[v, c]

|V ′′|
, and

∆c(V
′) =

∑
v∈V ′′

(A[v, c])2 −
(
∑

v∈V ′′ A[v, c])2

|V ′′|
.

Now we are ready to present the proof of Theorem 4.

Proof Sketch for Theorem 4. As our initial step, we once
again apply the known approximation algorithm (Bodlaen-
der et al., 2016) to compute a nice tree-decomposition (T, χ)

The Complexity of k-Means Clustering when Little is Known

of GP of width q ≤ 5 tw(GP). We keep the notations r, Vt,
and V ↓t from the previous section. Note that now the bags in
the tree-decomposition contain only vectors, so Vt = χ(t).
In contrast to the previous section, for every node t we de-
note by C↓t the set of all processed in t coordinates, i.e.,
coordinates c such that W [vc, c] 6= 0 for some vc ∈ V ↓t \Vt.
A crucial observation is the following: if c ∈ C↓t , then for
all vectors v 6∈ V ↓t it holds that W [v, c] = 0, otherwise v
and vc would appear in the same bag. In other words, values
of the cluster centers on c ∈ C↓t are not meaningful for
vectors introduced outside of Tt.

We will design a leaf-to-root dynamic programming algo-
rithm which computes a set of recordsRt at each node t of
T . For each way p of partioning the vectors in the bag Vt
into at most k clusters, the record Rt stores the minimum
cost of clustering the vectors of V ↓t in the coordinates of
C↓t , considering only the partitions of V ↓t that extend p.

For the root r of T , Rr(∅) is equal to the desired value
minB ||W ◦ (A−B)||2F , so it suffices to show how to com-
pute the records at each node in T from the records of its
children. Let t be an introduce node with a child t′ such
that Vt = Vt′ ∪ {v}, denote by p′ the restriction of p to Vt′ .
We set Rt(p) = Rt′(p

′) since C↓t = C↓t′ and W [v, c] = 0

for each c ∈ C↓t′ . If t is a join node with children t1 and t2,
observe that W [v, c] = 0 for each v ∈ V ↓t1 \ Vt, c ∈ C

↓
t2 ,

and for each v ∈ V ↓t2 \ Vt, c ∈ C↓t1 . Furthermore, C↓t1
is necessarily disjoint from C↓t2 , C↓t = C↓t1 ∪ C

↓
t2 , and

Rt(p) = Rt1(p) +Rt2(p).

Finally, for a forget node t with a child t′ such that Vt ∪
{v} = Vt′ , branch on all admissible partitions p′ of Vt′ that
extend p. Start with ∆(p′) = 0, for each coordinate c /∈
C↓t′ such that W [v, c] = 1, and for each equivalence class
[x]p′ ∈ [p′] add ∆c([x]p′), the cost of clustering of the rows
[x]p′ in the column c, to ∆(p′). Since C↓t \C

↓
t′ are precisely

the coordinates above, and no row outside of the bag Vt′
contributes to these coordinates, the new partial weighted
distance is Rt′(p

′) + ∆(p′), assuming that p′ is the right
choice. Therefore, we setRt(p) = minp′(Rt′(p

′)+∆(p′)).

As for the running time, in each step there are at most
tw(GP)O(tw(GP)) partitions of the bag and hence the total
running time required to process all forget nodes can in
total be upper-bounded by d · tw(GP)O(tw(GP)) ≤ (n +
d) · tw(GP)O(tw(GP)). The latter bound can then easily be
shown to hold for all other kinds of nodes.

5. An Incidence-Graph Based Algorithm for
Real-Valued MCME

While Theorem 4 significantly expands the previously
known boundaries of tractability for MCME, the algo-

rithm’s performance strongly depends on the structural prop-
erties of the primal graph. In general, primal graph repre-
sentations are known to be denser than incidence graph
representations, and this may make them unsuitable for
the application of structure-based algorithms on certain in-
stances (see, e.g., the example below Theorem 6).

As our final result, we show that although a fixed-parameter
algorithm for REAL-VALUED MCME parameterized by
tw(GI) remains beyond our reach, we can exploit a different
parameter of the incidence graph to achieve fixed-parameter
tractability—namely, the local feedback edge number.

Theorem 6 (?). REAL-VALUED MCME is fixed-parameter
tractable when parameterized by lfen(GI).

We note that it is not difficult to show that lfen(GI) and
tw(GP) are pairwise incomparable parameterizations. In-
deed, an n × 1 mask consisting only of “1” entries has
lfen(GI) = 0 but tw(GP) = n − 1. On the other hand,
consider, for some integer m, an (m + 1) × 2m mask W
such that the first row v0 of W consists only of “1” entries,
while for each i ∈ [m] the (i + 1)-th row has “1” entries
on precisely two positions: i and i+m. Then GP is a star
with center in v0, so tw(GP) = 1. However, GI consists
of m edge-disjoint cycles intersecting in v0. It is then easy
to observe that the local feedback edge number of v0 with
respect to any spanning tree of GI is m.

We proceed by introducing some additional terminology that
will be useful in the coming arguments. Let T be a fixed
rooted spanning tree of G such that lfen(G,T) = lfen(G),
denote the root by r. For t ∈ V (T), let Tt be the subtree of
T rooted at t. We define the boundary δ(t) of t to be the set
of endpoints of all edges in G with precisely one endpoint
in V (Tt) (observe that the boundary can never have a size
of 1). t is called closed if |δ(t)| ≤ 2 and open otherwise.

Proposition 7 (Ganian and Korchemna (2021)).

1. For every closed child t′ of t in T , it holds that δ(t′) =
{t, t′} and tt′ is the only edge between V (Tt′) and
V (G) \ V (Tt′) in G.

2. |δ(t)| ≤ 2 lfen(G) + 2.

3. Let {ti|i ∈ [j]} be the set of all open children of t in T .
Then j ≤ 2 lfen(G) and
δ(t) ⊆

⋃j
i=1 δ(ti) ∪ {t} ∪NG(t).

To prove Theorem 6, we will provide a leaf-to-root dynamic
programming algorithm which stores information about op-
timal partitionings of δ(t) into clusters. On a very intuitive
level, Point 1. of Proposition 7 allows the algorithm to han-
dle the closed children in a greedy manner, Point 2. ensures
that the size of the records is bounded, and Point 3. is used
in the dynamic programming step to compute records for
a parent based on the records of its children. Furthermore,
one can observe that |

⋃j
i=1 δ(ti)| is upper-bounded by a

The Complexity of k-Means Clustering when Little is Known

linear function of lfen(t), which will be useful to ascertain
the runtime bound for the algorithm.

Observation 8. For each node t in T , |
⋃j

i=1 δ(ti)| ≤
4 lfen(t) + 2.

Proof. By Point 2. of Proposition 7, the number of ver-
tices in

⋃j
i=1 δ(ti) that belong to δ(t) is at most |δ(t)| ≤

2 lfen(G) + 2. If v ∈ δ(ti) \ (δ(t)) for some i ∈ [j], then
v = ti. So the number of such v is at most j ≤ 2 lfen(G)

by Point 3. of Proposition 7. In total, |
⋃j

i=1 δ(ti)| ≤
4 lfen(t) + 2.

We are now ready to establish the claimed result by provid-
ing an algorithm for REAL-VALUED MCME with running
time (kn2 + d) · lfen(GI)O(lfen(GI)), assuming a spanning
tree T of minimum local feedback edge number is provided.
We note that such a spanning tree can be computed by a
fixed-parameter algorithm (Ganian & Korchemna, 2021).

Proof Sketch for Theorem 6. We will design a leaf-to-root
dynamic procedure computing the set of records for every
node of T . Let V ↓t and C↓t be the sets of vectors and coor-
dinates of Tt correspondingly, we denote by Vt and Ct the
restrictions of δ(t) to vectors and coordinates respectively,
then δ(t) = Vt tCt. Analogously to the previous theorems,
we define the record Rt of t as a mapping that associates
each partition p of Vt with the optimal partial cost of cluster-
ing that agrees with p on δ(t). The partial cost is computed
only on the rows of Vt ∪ V ↓t and the columns of C↓t .

Recall that for the root r of T , the boundary is empty, in
particular Vr = ∅, andRr(∅) is equal to the minimum value
of ‖W ◦ (A−B)‖2F that can be achieved by any real matrix
B containing at most k distinct rows. Hence the instance
is a YES-instance if and only if Rr(∅) ≤ `. Thus, it only
remains to carry out the computation of the records in each
node from the records of its children, and this is the most
technical part of the proof.

Intuitively, for a node t we consider separately its open and
closed children, denote the former by t1, . . . , tj , and the lat-
ter by tj+1, . . . , tm. For each partition p of Vt, we enumerate
all possible extensions of p to a partition p∗ of Vt

⋃
i∈[j] Vti ;

the crucial observation here is that the number of different
p’s and p∗’s is upper-bounded by lfen(GI)O(lfen(GI)). Now,
if t is a vertex node, every coordinate in C↓t is contained in
the subtree of one of the children of t, and the cost of this
coordinate is accounted-for in the record of the child. It thus
only remains to sum up the records of the children, taking
each time the respective partition on Vti for a child ti. For
an open child the partition is explicitly a restriction of p∗

on Vti , and for a closed child, as δ(ti) = {t, ti}, Vti = {t}
and the partition of Vti is always trivial.

More work has to be done if t is a coordinate node: we
have to account for the distances in the new coordinate t.
For a closed child ti there is only interaction between the
coordinate t and the row ti, the rest of the subtree is inde-
pendent. Therefore, the rows tj+1,. . . , tm can be clustered
in any way, to minimize the cost in the coordinate t. This
one-dimensional subproblem can be solved by a separate
dynamic programming in time O(km2). For the open chil-
dren, the exact partioning on the boundary vectors is again
fixed, and the dynamic programming can be enhanced to
respect the given paritioning on these additional vectors, at
the cost of an extra 2O(lfen(GI)) time factor.

6. Concluding Remarks
While our algorithmic results are specifically designed to
deal with MEANS CLUSTERING WITH MISSING ENTRIES,
it would be interesting to see whether the approaches and
techniques developed here can be applied to other clustering
variants or, e.g., the related task of low-rank matrix comple-
tion. Still, on the theoretical side the by far most prominent
problem that is relevant to this research direction is the
complexity of k-MEANS CLUSTERING for real-valued ma-
trices when parameterized by the number of columns. A
W[1]-hardness result for this problem would immediately
exclude the existence of a fixed-parameter algorithm for
REAL-VALUED MCME parameterized by the incidence
treewidth of the mask, while a fixed-parameter algorithm
could potentially open up the way towards tractability.

It would also be interesting to see how the considered spar-
sity parameters behave in practical settings. In particular,
even though direct implementations of our exact algorithms
with runtime guarantees are unlikely to outperform state-
of-the-art heuristics, it may be possible to exploit these
parameters to guide or otherwise improve existing methods.

Acknowledgements
Robert Ganian, Thekla Hamm, Viktoriia Korchemna, and
Kirill Simonov acknowledge support by the Austrian Sci-
ence Fund (FWF, projects Y1329 and P31336). Karolina
Okrasa acknowledges support by the European Research
Council, grant agreement No 714704; parts of this work
were performed while visiting TU Wien, Vienna, Austria.

References
Aloise, D., Deshpande, A., Hansen, P., and Popat, P. Np-

hardness of euclidean sum-of-squares clustering. Mach.
Learn., 75(2):245–248, 2009.

Bodlaender, H. L. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Discret.
Math., 25(6):1305–1317, 1996.

The Complexity of k-Means Clustering when Little is Known

Bodlaender, H. L., Jansen, B. M. P., and Kratsch, S. Prepro-
cessing for treewidth: A combinatorial analysis through
kernelization. SIAM J. Discret. Math., 27(4):2108–2142,
2013.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin,
F. V., Lokshtanov, D., and Pilipczuk, M. A ckn 5-
approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

Cohen-Addad, V., de Mesmay, A., Rotenberg, E., and
Roytman, A. The bane of low-dimensionality clus-
tering. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pp. 441–456. SIAM, 2018. ISBN 978-1-6119-7503-
1. URL http://dl.acm.org/citation.cfm?
id=3174304.3175300.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov,
D., Marx, D., Pilipczuk, M., Pilipczuk, M., and
Saurabh, S. Parameterized Algorithms. Springer,
2015. ISBN 978-3-319-21274-6. doi: 10.1007/
978-3-319-21275-3. URL https://doi.org/10.
1007/978-3-319-21275-3.

Dahiya, Y., Fomin, F. V., Panolan, F., and Simonov, K.
Fixed-parameter and approximation algorithms for PCA
with outliers. In Meila, M. and Zhang, T. (eds.), Proceed-
ings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Re-
search, pp. 2341–2351. PMLR, 2021.

Downey, R. G. and Fellows, M. R. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer,
2013.

Drineas, P., Frieze, A. M., Kannan, R., Vempala, S. S., and
Vinay, V. Clustering large graphs via the singular value
decomposition. Mach. Learn., 56(1-3):9–33, 2004.

Dvorák, P., Eiben, E., Ganian, R., Knop, D., and Ordyniak,
S. The complexity landscape of decompositional param-
eters for ILP: programs with few global variables and
constraints. Artif. Intell., 300:103561, 2021.

Eiben, E., Fomin, F. V., Golovach, P. A., Lochet, W.,
Panolan, F., and Simonov, K. EPTAS for k-means
clustering of affine subspaces. In Marx, D. (ed.), Pro-
ceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2021, Virtual Conference, Jan-
uary 10 - 13, 2021, pp. 2649–2659. SIAM, 2021a. doi:
10.1137/1.9781611976465.157. URL https://doi.
org/10.1137/1.9781611976465.157.

Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., and Szei-
der, S. The parameterized complexity of clustering

incomplete data. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 7296–7304. AAAI Press,
2021b. URL https://ojs.aaai.org/index.
php/AAAI/article/view/16896.

Fellows, M. R., Protti, F., Rosamond, F. A., da Silva, M. D.,
and Souza, U. S. Algorithms, kernels and lower bounds
for the flood-it game parameterized by the vertex cover
number. Discret. Appl. Math., 245:94–100, 2018.

Fomin, F. V., Golovach, P. A., and Panolan, F. Parameter-
ized low-rank binary matrix approximation. In Chatzi-
giannakis, I., Kaklamanis, C., Marx, D., and Sannella,
D. (eds.), 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs,
pp. 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

Fomin, F. V., Golovach, P. A., and Simonov, K. Parame-
terized k-clustering: Tractability island. J. Comput. Syst.
Sci., 117:50–74, 2021.

Ganian, R. and Korchemna, V. The complexity of bayesian
network learning: Revisiting the superstructure. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 430–442. Curran
Associates, Inc., 2021.

Ganian, R. and Ordyniak, S. The complexity landscape of
decompositional parameters for ILP. Artif. Intell., 257:
61–71, 2018.

Ganian, R. and Ordyniak, S. Solving integer linear programs
by exploiting variable-constraint interactions: A survey.
Algorithms, 12(12):248, 2019. URL https://doi.
org/10.3390/a12120248.

Ganian, R., Kanj, I. A., Ordyniak, S., and Szeider, S. Pa-
rameterized algorithms for the matrix completion prob-
lem. In Dy, J. G. and Krause, A. (eds.), Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 1642–1651. PMLR,
2018. URL http://proceedings.mlr.press/
v80/ganian18a.html.

Gaspers, S. and Najeebullah, K. Optimal surveillance of
covert networks by minimizing inverse geodesic length.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, pp. 533–540. AAAI Press, 2019.

http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611976465.157
https://doi.org/10.1137/1.9781611976465.157
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://doi.org/10.3390/a12120248
https://doi.org/10.3390/a12120248
http://proceedings.mlr.press/v80/ganian18a.html
http://proceedings.mlr.press/v80/ganian18a.html

The Complexity of k-Means Clustering when Little is Known

Grüttemeier, N., Komusiewicz, C., and Morawietz, N. Effi-
cient bayesian network structure learning via parameter-
ized local search on topological orderings. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pp. 12328–
12335. AAAI Press, 2021.

Inaba, M., Katoh, N., and Imai, H. Applications of weighted
Voronoi diagrams and randomization to variance-based k-
clustering. In Proceedings of the 10th annual Symposium
on Computational Geometry (SoCG), pp. 332–339. ACM,
1994.

Kloks, T. Treewidth: Computations and Approximations.
Springer, Berlin, 1994.

Koana, T., Froese, V., and Niedermeier, R. Parameterized
algorithms for matrix completion with radius constraints.
In Gørtz, I. L. and Weimann, O. (eds.), 31st Annual Sym-
posium on Combinatorial Pattern Matching, CPM 2020,
June 17-19, 2020, Copenhagen, Denmark, volume 161
of LIPIcs, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

Koana, T., Froese, V., and Niedermeier, R. Binary matrix
completion under diameter constraints. In Bläser, M. and
Monmege, B. (eds.), 38th International Symposium on
Theoretical Aspects of Computer Science, STACS 2021,
March 16-19, 2021, Saarbrücken, Germany (Virtual Con-
ference), volume 187 of LIPIcs, pp. 47:1–47:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

Lloyd, S. P. Least squares quantization in PCM. IEEE Trans.
Inf. Theory, 28(2):129–136, 1982.

Mertzios, G. B., Nichterlein, A., and Niedermeier, R. The
power of linear-time data reduction for maximum match-
ing. Algorithmica, 82(12):3521–3565, 2020.

Moshkovitz, M., Dasgupta, S., Rashtchian, C., and Frost,
N. Explainable k-means and k-medians clustering. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pp. 7055–7065. PMLR, 2020.

Nesetril, J. and de Mendez, P. O. Sparsity - Graphs, Struc-
tures, and Algorithms, volume 28 of Algorithms and Com-
binatorics. Springer, 2012.

Ordyniak, S. and Szeider, S. Parameterized complexity
results for exact bayesian network structure learning. J.
Artif. Intell. Res., 46:263–302, 2013.

Robertson, N. and Seymour, P. D. Graph minors. i. ex-
cluding a forest. J. Comb. Theory, Ser. B, 35(1):39–61,
1983.

Robertson, N. and Seymour, P. D. Graph minors. III. planar
tree-width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

Samer, M. and Szeider, S. Fixed-parameter tractability.
In Biere, A., Heule, M., van Maaren, H., and Walsh, T.
(eds.), Handbook of Satisfiability, volume 185 of Fron-
tiers in Artificial Intelligence and Applications, pp. 425–
454. IOS Press, 2009.

Samer, M. and Szeider, S. Constraint satisfaction with
bounded treewidth revisited. J. Comput. Syst. Sci., 76(2):
103–114, 2010.

Simonov, K., Fomin, F. V., Golovach, P. A., and Panolan, F.
Refined complexity of PCA with outliers. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 5818–5826. PMLR, 2019.

Wang, S., Li, M., Hu, N., Zhu, E., Hu, J., Liu, X., and
Yin, J. K-means clustering with incomplete data. IEEE
Access, 7:69162–69171, 2019. doi: 10.1109/ACCESS.
2019.2910287.

The Complexity of k-Means Clustering when Little is Known
(Appendix: Full Version)

Robert Ganian * 1 Thekla Hamm * 1 Viktoriia Korchemna * 1 Karolina Okrasa * 2 Kirill Simonov * 1

Abstract
In the area of data analysis and arguably even in
machine learning as a whole, few approaches have
been as impactful as the classical k-means clus-
tering. Here, we study the complexity of k-means
clustering in settings where most of the data is
not known or simply irrelevant. To obtain a more
fine-grained understanding of the tractability of
this clustering problem, we apply the parameter-
ized complexity paradigm and obtain three new
algorithms for k-means clustering of incomplete
data: one for the clustering of bounded-domain
(i.e., integer) data, and two incomparable algo-
rithms that target real-valued data. Our approach
is based on exploiting structural properties of a
graphical encoding of the missing entries, and we
show that tractability can be achieved using sig-
nificantly less restrictive parameterizations than
in the complementary case of few missing entries.

1. Introduction
k-means clustering is a fundamental task in machine learn-
ing and data analysis, one that has been the focus of exten-
sive empirical as well as theoretical research. In general, the
aim in k-means clustering is to partition the rows in an input
matrix A into k clusters and compute one center per clus-
ter so as to minimize the within-cluster sum of squares—or,
when viewed as a decision problem, achieve a within-cluster
sum of squares of at most a specified target value `. De-
pending on the setting, A could be real-valued (Lloyd, 1982;
Moshkovitz et al., 2020; Fomin et al., 2021) or contain
integers from a bounded domain; for instance, Fomin et

*Equal contribution 1Algorithms and Complexity Group,
TU Wien, Austria 2Institute of Informatics, University of
Warsaw, Poland. Correspondence to: Robert Ganian <rga-
nian@gmail.com>, Thekla Hamm <thamm@ac.tuwien.ac.at>,
Viktoriia Korchemna <vkorchemna@ac.tuwien.ac.at>, Kir-
ill Simonov <ksimonov@ac.tuwien.ac.at>, Karolina Okrasa
<k.okrasa@mini.pw.edu.pl>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

al. (Fomin et al., 2018) studied the case where A was binary,
and Ganian et al. (Ganian et al., 2018) the bounded-domain
case where ` = 0.

It is well known that k-means clustering is NP-complete,
even when restricted to k = 2 clusters (Drineas et al., 2004;
Aloise et al., 2009). On the theoretical side, a prominent
approach used to circumvent such lower bounds is the use
of the parameterized complexity2 paradigm, which provides
a more fine-grained look into the complexity of problems.
Since its inception, parameterized complexity has been suc-
cessfully applied to a multitude of problems relevant to
machine learning and artificial intelligence such as, e.g.,
Bayesian network learning (Ordyniak & Szeider, 2013;
Grüttemeier et al., 2021; Ganian & Korchemna, 2021), inte-
ger linear programming (Ganian & Ordyniak, 2018; 2019;
Dvorák et al., 2021), principal component analysis (Si-
monov et al., 2019; Dahiya et al., 2021), and of course
clustering (Cohen-Addad et al., 2018; Fomin et al., 2018).

Apart from classical clustering problems, one direction that
has been gaining traction in recent years is the study of
clustering in settings where some of the data is not known
or simply irrelevant—a task that essentially combines data
completion with clustering (Wang et al., 2019). Indeed,
several authors have studied the parameterized complexity
of various clustering problems for data with missing en-
tries (Ganian et al., 2018; Koana et al., 2020; 2021; Eiben
et al., 2021b), and Eiben et al. (Eiben et al., 2021a) ob-
tained a fixed-parameter approximation algorithm specif-
ically for (k-)MEANS CLUSTERING WITH MISSING EN-
TRIES (MCME).

While their approaches and techniques differ, all of these
works target the case where nearly all entries are known, i.e.,
where the unknown entries only occur in a precisely defined
“sparse” way. On the other hand, very little is known about
the complexity of MCME when the number of unknown
entries is large; such situations are of practical relevance
in, e.g., recommender systems and predictive analytics. For
example, in the classical Netflix Prize challenge where the
task was to predict user ratings for movies based on previous
ratings, only about 1% of the user-movie pairs were orig-

2See Preliminaries for a brief introduction.

The Complexity of k-Means Clustering when Little is Known

inally supplied with a rating.3 The central mission of this
article is to push the boundaries of tractability for MCME
to instances where known entries are sparse.

Contribution. A natural approach for handling instances
of MCME with many missing entries would be to invert
the parameterizations that have been developed for tackling
instances where almost all entries are known. For instance,
Eiben et al. (Eiben et al., 2021b) and Ganian et al. (Ganian
et al., 2018) obtained several fixed-parameter clustering
algorithms by using a parameter called the covering number,
which is the minimum number of rows and columns needed
to cover all the unknown entries. Equivalently, if we use
an auxiliary binary matrix W (the mask) to specify which
entries of A are relevant/known, the covering number is
simply the minimum number of rows and columns needed
to cover all the 0’s in W . It would be tempting to instead
parameterize by the number of rows and columns needed to
cover all the 1’s in W ; such an “inverse covering number”
would lead to fixed-parameter algorithms targeting instances
where all known entries occur in a few columns and rows.

However, we show that in our setting it is in fact possible to
do much better than that. Our approach is based on using
the incidence graph representation of W , which is the graph
containing one vertex for each column and for each row
of W and where an edge connects row a with column b if
and only if W [a, b] = 1. Observe that the inverse covering
number considered in the previous paragraph would simply
be the size of a minimum vertex cover in W , while the cov-
ering number is the size of a minimum vertex cover in the
complement of W . It is worth noting that in graph-theoretic
settings, the size of a minimum vertex cover is considered a
highly restrictive parameterization, one that is used primar-
ily when more desirable parameterizations fail. On the other
hand, the by far most prominent parameter used for graphs
is treewidth (Robertson & Seymour, 1984), which has found
ubiquitous applications throughout computer science and
which is smaller (i.e., less restrictive as a parameter) than
the size of a minimum vertex cover. As our first result, we
use the treewidth of the incidence graph of the mask W (the
incidence treewidth) to prove:

Result 1: Bounded-domain MCME is fixed-parameter
tractable when parameterized by the incidence treewidth
of the mask.

Result 1 is noteworthy not only due to the use of treewidth
instead of the inverse covering number, but also because
incidence treewidth is the only parameter required to achieve
tractability. In particular, unlike previous algorithms for
clustering incomplete (bounded-domain or real-valued) data
by Eiben et al. (Eiben et al., 2021a;b), Ganian et al. (Ganian

3The dataset is available at https://www.kaggle.com/
netflix-inc/netflix-prize-data.

et al., 2018), and Koana et al. (Koana et al., 2020; 2021),
Result 1 can also be applied to instances where the number
k of clusters is large. As we will see later, we will be able
to retain this benefit in all our algorithms.

Unfortunately, an extension of Result 1 towards real-valued
instances seems difficult at this point. Indeed, a fixed-
parameter algorithm for real-valued MCME parameterized
by the incidence treewidth of the mask would imply, as a
special case, fixed-parameter tractability parameterized by
the number d of columns. However, the existence of a fixed-
parameter algorithm even for k-MEANS (corresponding to
the restriction of MCME where all entries are known) when
parameterized by d is a long-standing open problem dating
back to Inaba et al.’s celebrated XP algorithm parameterized
by k + d (Inaba et al., 1994).

Instead, we show that one can obtain fixed-parameter al-
gorithms for real-valued MCME by using the treewidth of
a different graph representation of W . In particular, we
use the primal graph—a well-established counterpart to the
incidence graph representation in settings such as Boolean
satisfiability (Samer & Szeider, 2009), constraint satisfac-
tion (Samer & Szeider, 2010) or integer programming (Ga-
nian & Ordyniak, 2019). In our context, the primal graph of
W contains a vertex for each row of W , with edges connect-
ing pairs of rows that share at least one coordinate which
is known/relevant according to the mask, and the primal
treewidth is simply the treewidth of this graph.

Result 2: Real-valued MCME is fixed-parameter tractable
when parameterized by the primal treewidth of the mask.

Note that, due to the nature of the primal graph represen-
tation, the primal treewidth is a more restrictive parameter
than the incidence treewidth (in the sense of being bounded
on fewer classes of instances). In fact, the primal treewidth
of a mask may in certain cases be unboundedly large even
when its incidence graph is just a tree. It would hence be
useful to also have an algorithm for real-valued MCME
that can exploit properties of the incidence graph, even for
properties that are more restrictive than incidence treewidth.

However, the same obstacle towards extending Result 1 to
the real-valued setting also applies to all traditional struc-
tural parameters that are, intuitively, based on small vertex
separators in the graph—including pathwidth (Robertson &
Seymour, 1983), treedepth (Nesetril & de Mendez, 2012),
the feedback vertex number e.g., (Mertzios et al., 2020) and
even the vertex cover number e.g., (Gaspers & Najeebullah,
2019; Fellows et al., 2018), which is the most restrictive ver-
tex separator based parameter. In spite of this, as our third
and final result we identify a parameter of the incidence
graph that yields fixed-parameter tractability of real-valued
MCME: the recently introduced local feedback edge num-
ber (lfen) (Ganian & Korchemna, 2021). On a high level,

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data

The Complexity of k-Means Clustering when Little is Known

lfen can be seen as an edge-based restriction of treewidth,
and as a less restrictive parameter than the edge deletion
distance to acyclicity (i.e., the feedback edge number).

Result 3: Real-valued MCME is fixed-parameter tractable
when parameterized by the local feedback edge number of
the incidence graph of the mask.

We note that the parameters used in Results 2 and 3 are
orthogonal and the gap between them may be arbitrarily
large. Because of this, both results are incomparable and
give rise to different tractable classes for the problem.

2. Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪
{0}. On the other hand, if p is an equivalence relation on
domain X , we denote by [p] the set of equivalence classes
of p and by |[p]| the cardinality of [p], i.e., the number of
equivalence classes of p. For every x ∈ X , [x]p ∈ [p] is the
equivalence class containing x.

Notation and Problem Formulation. Let A be a matrix
with n rows and d columns. We use VA andCA to denote the
set of row and column indices ofA, i.e., VA = [n] andCA =
[d]. Let MA = maxv∈VA

maxc∈CA
|A[v, c]|. For two ma-

trices A,B, we denote by A−B the entry-wise subtraction
of the two matrices, i.e., (A− B)[i, j] = A[i, j]− B[i, j],
and similarly by A ◦ B the entry-wise product of the two
matrices, i.e., (A ◦ B)[i, j] = A[i, j] · B[i, j]. For a ma-
trix A ∈ Rn×d we denote its squared Frobenius norm by
||A||2F =

∑n
i=1

∑d
j=1A[i, j]2. We can now formalize our

problems of interest (abbreviated as MCME):

MEANS CLUSTERING WITH MISSING ENTRIES

Input: Matrix A ∈ Dn×d over a domain D ⊆ R,
binary matrix W (the mask), integers k and `.

Task: Determine if there exists a matrix B over D
containing at most k distinct rows such that
‖W ◦ (A−B)‖2F ≤ `.

We distinguish between BOUNDED-DOMAIN MCME and
REAL-VALUED MCME depending on whether D = [z]0
for some fixed integer z, or D is the set of reals. In par-
ticular, for z = 1 this coincides with BINARY k-MEANS
CLUSTERING (Fomin et al., 2018). In this case, minimizing
the Frobenius norm also minimizes the sum of Hamming
distances for each row to its cluster center. Using the Frobe-
nius norm also for z > 1 is not only consistent with the
continuous case, but also allows us to capture further appli-
cations, e.g., when the data matrix to cluster is composed of
user ratings each taking a small numeric value. While we
state MCME as a decision problem for complexity-theoretic
reasons, every algorithm presented here is constructive and
can output a solution matrix B if one exists.

In this formulation, the distinct rows of B are the centers of
the sought-after clusters while ` is the target upper-bound
on the sum of squares. For V ′ ⊆ VA, we call a mapping
ϕ : V ′ → [k] a cluster-assignment w.r.t. B if for every
v1, v2 ∈ V ′ such that ϕ(v1) = ϕ(v2), it holds that B[v1] =
B[v2]. Notice that the existence of a cluster assignment
w.r.t. a matrix B′ implies that B′ has at most k distinct rows.
The clusters associated with ϕ are then sets of the form
{v ∈ V | ϕ(v) = i} for some i ∈ [k].

In our algorithms, we often construct the solution matrix
dynamically by “merging” smaller matrices; we formalize
this procedure below. Let {Bi | i ∈ [m]} be a set of matrices,
where each Bi has row labels Vi, column labels Ci and is
associated with a cluster-assignment ϕi : Vi → [k] and the
following two consistency conditions hold:

• ϕi(v) = ϕj(v) for every v ∈ Vi ∩ Vj , i, j ∈ [m],

• if ϕi(vi) = ϕj(vj) for some vi ∈ Vi and vj ∈ Vj , then
Bi[vi, c] = Bj [vj , c] for every c ∈ Ci ∩ Cj .

Let ϕ =
⋃
i∈[m] ϕi. We define the composition of (Bi, ϕi),

i ∈ [m], to be the matrixB∗ with row labels V =
⋃
i∈[m] Vi,

column labels C =
⋃
i∈[m] Ci and entries as follows. For

every v ∈ V and c ∈ C, pick any i ∈ [m] such that c ∈
Ci and there exists vi ∈ Vi with ϕ(vi) = ϕ(v). We set
B∗[v, ci] = Bi[vi, ci]. If there is no such i ∈ [m], we
simply set B∗[v, c] to some arbitrary but uniform default
value—in our case, we will always use 0. Observe that if
both consistency conditions hold, then both B∗ and ϕ are
well-defined and that ϕ is a cluster-assignment w.r.t. B∗.

Claim 1. B∗ is well-defined and admits the cluster-
assignment ϕ.

Proof. To see that B∗ is well-defined, pick v ∈ V and
c ∈ Ci ∩ Cj . If there exist vi ∈ Vi and vj ∈ Vj such that
ϕ(vi) = ϕ(v) and ϕ(vj) = ϕ(v), then ϕ(vi) = ϕ(vj), so
Bi[vi, c] = Bj [vj , c] by the consistency conditions. More-
over, ϕ is the cluster-assignment w.r.t. B∗. Indeed, consider
u, v ∈ V with ϕ(u) = ϕ(v) and c ∈ C. If c ∈ Ci for some
i ∈ [m] such that there exists vi ∈ Vi with ϕ(vi) = ϕ(v) =
ϕ(u), then B∗[v, c] = Bi[vi, c] = B∗[u, c]. If there is no
such i ∈ [m], we have B∗[v, c] = 0 = B∗[u, c].

Observe that if Ci∩Cj = ∅ for every i 6= j, we can skip the
second consistency condition: in this case it just requires
Bi[v] = Bi[u] whenewer ϕi(v) = ϕi(u), which holds as
ϕi is the cluster-assignment w.r.t. Bi.

Parameterized Complexity. In parameterized algorith-
mics (Downey & Fellows, 2013; Cygan et al., 2015), the
running-time of an algorithm is studied with respect to a
parameter k ∈ N0 and input size n. The basic idea is to
find a parameter that describes the structure of the instance

The Complexity of k-Means Clustering when Little is Known

such that the combinatorial explosion can be confined to this
parameter. In this respect, the most favorable complexity
class is FPT (fixed-parameter tractable), which contains all
problems that can be solved in time f(k) ·nO(1), where f is
a computable function. Algorithms with this running-time
are called fixed-parameter algorithms.

Sparse Matrices. It follows from definition of MCME
that entries of the input matrix A and the target matrix B
are only relevant when the respective entry of the mask
W is set to “1”. We thus assume that only those entries
are stored explicitly; in particular, the size of the input is
therefore linear in the number of non-zero entries of W . All
the structural parameters in our considerations automatically
imply that the mask W is sparse, in the sense that it has at
most Ok(n+ d) non-zero entries, where the constant under
Ok(·) depends on the respective parameter k. All algorithms
in this paper except one are linear-time in the number of
non-zero entries of the mask, and the above allows us to
state their running times in the form (n+ d) · f(k), where
f is a certain function of the respective parameter k.

Treewidth. A nice tree-decomposition T of a graph G =
(V,E) is a pair (T, χ), where T is a tree (whose vertices
we call nodes) rooted at a node r and χ is a function that
assigns each node t a set χ(t) ⊆ V such that:

• For every uv ∈ E there is a node t where u, v ∈ χ(t).

• For every vertex v ∈ V , the set of nodes t satisfying
v ∈ χ(t) forms a subtree of T .

• |χ(`)| = 1 for every leaf ` of T and |χ(r)| = 0.

• There are only three kinds of non-leaf nodes in T :

– Introduce node: a node t with exactly one child
t′ such that χ(t) = χ(t′) ∪ {v} for some vertex
v 6∈ χ(t′).

– Forget node: a node t with exactly one child
t′ such that χ(t) = χ(t′) \ {v} for some vertex
v ∈ χ(t′).

– Join node: a node t with two children t1, t2 such
that χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is
maxt∈V (T)(|χ(t)| − 1), and the treewidth of the graph
G, denoted tw(G), is the minimum width of a nice tree-
decomposition of G. We let Tt denote the subtree of
T rooted at a node t, and we use χ↓t to denote the set⋃
t′∈V (Tt)

χ(t′). The sets χ(t) are commonly called bags.

Fixed-parameter algorithms are known for computing nice
tree-decompositions of optimal width and linearly many
nodes (Bodlaender, 1996; Kloks, 1994), albeit more efficient
fixed-parameter approximation algorithms are often used to
achieve better running times (Bodlaender et al., 2016).

Figure 1. Example of a graph G with the spanning tree T (marked
in thick red) such that lfen(G) = lfen(G,T) = 2. The feedback
edge number of G, i.e., its edge deletion distance to acyclicity,
is exactly the number of black edges and can be made arbitrarily
large in this fashion while preserving lfen(G) = 2.

Local Feedback Edge Number. The local feedback
edge number was recently introduced by Ganian and Ko-
rchemna (2021) as an edge-cut based restriction of treewidth
that acts as a “local” measure of the size of a feedback edge
set; they used the parameter to obtain fixed-parameter algo-
rithms for learning Bayesian networks and polytrees.

For a connected graph G = (V,E) and a spanning
tree T of G, the local feedback edge set at x ∈
V is defined as ETloc(x) = {yz ∈ E \ E(T) |
the unique path between y and z in T contains x}. The lo-
cal feedback edge number of (G,T) (denoted lfen(G,T))
is then equal to maxx∈V |ETloc(x)|, and the local feedback
edge number of G is simply the smallest local feedback
edge number among all possible spanning trees of G, i.e.,
lfen(G) = minT is a spanning tree ofG lfen(G,T). An example
of a graph G with lfen(G) = 2 is provided in Figure 1.

3. Solving Bounded-Domain MCME by
Exploiting the Mask

Since BOUNDED-DOMAIN MCME is NP-
complete (Drineas et al., 2004; Aloise et al., 2009),
it is natural to attempt and circumvent this lower bound
by exploiting structural measures of the inputs to obtain
fixed-parameter tractability. Eiben et al. (Eiben et al.,
2021a) recently obtained a fixed-parameter approximation
algorithm for BOUNDED-DOMAIN requiring the simulta-
neous parameterization by three measures: the number of
clusters, the desired approximation ratio, and a technical
measure that captures the sparsity of the missing data (i.e.,
the “0” entries in W).

In this section, we will present a fixed-parameter algorithm
for BOUNDED-DOMAIN MCME which is aimed at the com-
plementary case where the relevant data is sparse. To formal-
ize this, we consider the incidence graph representation GI
ofW which is defined as follows: V (GI) = VW ∪CW , and
E(GI) = {ab | a ∈ VW , b ∈ CW ,W [a, b] = 1}. Figure 2
later on can also be used as an example of the representation.

Intuitively, each “1” entry in W will correspond to an edge
in GI , and hence “structurally sparse” incidence graphs
correspond to settings where most data is unknown. There
is a well-studied hierarchy of structural graph parameters

The Complexity of k-Means Clustering when Little is Known

which measure, in a certain sense, the sparsity of graphs
(see, e.g., Figure 1 in (Bodlaender et al., 2013)). Treewidth
will be our parameter of choice here, as the best known
and also most general parameter in this hierarchy. How-
ever, it is worth noting that the use of the incidence graph
may provide a new perspective on previous algorithms for
clustering problems—for instance, the so-called covering
number parameter (Ganian et al., 2018; Eiben et al., 2021b)
is simply the vertex cover number of the complement of GI .

The main goal of this section is to establish the fixed-
parameter tractability of MCME parameterized by tw(GI).
As a first step towards this goal, we obtain a dynamic pro-
gramming algorithm that handles the simpler case where k
is also part of the parameterization.

Theorem 1. BOUNDED-DOMAIN MCME is fixed-
parameter tractable when parameterized by k + tw(GI).

Proof. We begin by applying the well-established 5-
approximation algorithm for treewidth (Bodlaender et al.,
2016) to compute a nice tree-decomposition of GI of width
q ≤ 5 tw(GI) in time 2O(tw(GI))(n+ d). Let r be the root
of T . Given a node t of T , let Vt and Ct be the sets of
vectors and coordinates in χ(t), respectively. Moreover, let
C↓t and V ↓t be the restrictions of χ↓t to sets of coordinates
and vectors correspondingly.

To prove the theorem, we will design a leaf-to-root dynamic
programming algorithm which will compute and store a set
of records at each node t of T , whereas once we ascertain
the records for r we will have the information required to
output a correct answer. Intuitively, the records will store
the cluster centers restricted to the coordinates that appear
in the bag, the partition of the vectors in the bag into clusters
and the sum of minimum distances from vectors in V ↓t to
the cluster centers along the coordinates in C↓t .

Formally, the records will have the following structure. We
call a pair (cent,part) a snapshot in t if the following holds:

• cent : [k]× Ct → D,

• part : Vt → [k].

Let S(t) be the set of all snapshots of t. The recordRt of t
is then a mapping from S(t) to the set R+ of non-negative
reals. Observe that |S(t)| ≤ |D|k(q+1)kq+1.

To introduce the semantics of our records, let Bt be the set
of all matrices with row labels V ↓t , column labels C↓t and
entries of domain D. Let Bt be a matrix in Bt. We define
the partial weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c]−Bt[v, c])2.

For Bt ∈ Bt, we say that (cent,part) ∈ S(t) is the snap-
shot of Bt in t if there is a cluster-assignment ϕ w.r.t. Bt

such that the following conditions hold:

• part = ϕ|Vt
,

• for every c ∈ Ct and v ∈ V ↓t , Bt[v, c] =
cent[ϕ(v), c].

Recall that the existence of a cluster-assignment implies, in
particular, that Bt has at most k distinct rows. We are
now ready to define the record Rt. For each snapshot
(cent,part) ∈ S(t), we set Rt(cent,part) = τ if there
exists Bt ∈ Bt such that:

• (cent,part) is the snapshot of Bt in t,

• pwd(Bt, t) = τ , and

• ∀B′t ∈ Bt such that (cent,part) is the snapshot of B′t,
pwd(B′t, t) ≥ τ .

In this case we say that Bt witnessesRt(cent,part) = τ .

Recall that for the root r, we assume χ(r) = ∅. Hence S(r)
contains only one element (∅, ∅), and Rr(∅, ∅) is equal to
the minimum value of ‖W ◦(A−B)‖2F that can be achieved
by any matrix B with entries of domain D containing at
most k distinct rows. In other words, the instance is a YES-
instance if and only ifRr(∅, ∅) ≤ `. To prove the theorem,
it now suffices to show that the records can be computed in
a leaf-to-root fashion by proceeding along the nodes of T .

We distinguish the following cases:

t is a leaf node. Let χ(t) = {v} where v is a vector.
By definition, S(t) = {(∅,part)|part : [1] → [k]} and
Rt(∅,part) = 0 for every (∅,part) ∈ S(t) as there are no
coordinates to sum over. Let χ(t) = {c} for some coordi-
nate c. Then S(t) = {(cent, ∅)| cent : [k]× [1]→ D} and
Rt(cent, ∅) = 0 for each (cent, ∅) ∈ S(t).

t is a forget node. Let t′ be the child of t in T and χ(t) =
χ(t′) \ {v} for some vector v. We set R0

t (cent,part) :=
mini∈[k]Rt′(cent,part∪(v, i)) for each (cent,part) ∈
S(t). For correctness, it will be useful to observe that
Bt = Bt′ . If Rt(cent,part) = τ , then there exists a ma-
trix Bt which witnesses this. But then Bt also admits a
snapshot (cent,part∪(v, i)) at t′ for some i ∈ [k] and wit-
nesses Rt′(cent,part∪(v, i)) ≤ τ . So in our algorithm
R0
t (cent,part) ≤ Rt′(cent,part∪(v, i)) ≤ τ . If on the

other hand R0
t (cent,part) = τ , then there exists a snap-

shot (cent,part∪(v, i)) at t′ for some i ∈ [k] such that
Rt′(cent,part∪(v, i)) = τ . Rt(cent,part) ≤ τ now fol-
lows from the existence of a matrix witnessing the value
of Rt′(cent,part∪(v, i)). Hence, we can correctly set
Rt = R0

t .
If χ(t) = χ(t′) \ {c} for some coordinate c, we set
Rt(cent,part) equal to min{Rt′(cent′,part)| cent is a re-
striction of cent′ to all coordinates except c}. Correctness
can be argued similarly to the case of a forgotten vector.

t is an introduce node (introducing a vector). Let t′ be

The Complexity of k-Means Clustering when Little is Known

the child of t in T and let χ(t) = χ(t′)∪{v0} for some vec-
tor v0. Fix a snapshot (cent,part) in S(t), let i = part(v0)
and part′ = part \(v0, i). We will denote by ∆0 the sum
of distances from v0 to the i-th cluster center along the co-
ordinates in Ct, i.e., ∆0 =

∑
c∈Ct

W [v0, c] · (A[v0, c] −
cent[i, c])2. We set R0

t (cent,part) = Rt′(cent,part′) +
∆0. For correctness, assume that R0

t (cent,part) = τ =
Rt′(cent,part′) + ∆0. Construct a matrix Bt from the
witness Bt′ of Rt′(cent,part′) with a cluster-assignment
ϕ′ by adding a new row with a label v0 as follows. If
i = ϕ′(v) for some v ∈ V ↓t′ , we set Bt[v0] := Bt[v].
Otherwise we define Bt[v0, c] := cent[i, c] for c ∈ Ct
and Bt[v0, c] := 0 in the rest of coordinates c. Note that
in both cases Bt[v0, c] = cent[i, c] for every c ∈ Ct: in
the second case it follows from the definition, while in
the first one we have Bt[v0, c] := Bt[v, c] = Bt′ [v, c] =
cent[ϕ′(v), c] = cent[i, c]. The matrix Bt with a cluster-
assignment ϕ = ϕ′ ∪ (v0, i) has a snapshot (cent,part)
in t and pwd(Bt, t) =

∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c]−
Bt[v, c])

2 = pwd(Bt′ , t
′) +

∑
c∈C↓t

W [v0, c] · (A[v0, c]−
Bt[v0, c])

2. As pwd(Bt′ , t
′) = Rt′(cent,part′),

W [v0, c] = 0 for every forgotten coordinate c and
Bt[v0, c] := cent[i, c] for every c ∈ Ct, we have
pwd(Bt, t) = Rt′(cent,part′) + ∆0 = τ. So Bt witnesses
thatRt(cent,part) ≤ τ .

On the other hand, assume thatRt(cent,part) = τ . Then
there exists a matrix Bt in Bt admitting the snapshot
(cent,part) in t such that pwd(Bt, t) = τ . Let ϕ be
the corresponding cluster-assignment w.r.t. Bt. We con-
struct Bt′ from Bt by deletion of the row v0. Then Bt′
with cluster-assignment ϕ′ = ϕ \ {(v0, i)} has a snapshot
(cent,part′) in t and witnesses that Rt′(cent,part′) ≤
pwd(Bt′ , t

′) = τ − ∆0. Therefore in our algorithm
R0
t ≤ Rt′(cent,part′) + ∆0 ≤ τ . Hence, we can cor-

rectly setRt = R0
t .

t is an introduce node (introducing a coordinate). Let
t′ be the child of t in T and let χ(t) = χ(t′) ∪ {c0} for
some coordinate c0. Fix a snapshot (cent,part) in S(t),
we wil denote by ∆0 the sum of distances from v ∈ V ↓t
to the corresponding cluster center along the coordinate c0,
i.e., ∆0 =

∑
v∈Vt

W [v, c0] ·(A[v, c0]−cent[part(v), c0])2.
Let cent′ be the restriction of cent to all the coordinates ex-
cept c0. We set R0

t (cent,part) = Rt′(cent′,part) + ∆0.
For correctness, assume that R0

t (cent,part) = τ =
Rt′(cent′,part) + ∆0. We construct a matrix Bt from
a witness Bt′ of Rt′(cent′,part) with cluster-assignment
ϕ′ by adding a column c0. For every v ∈ V ↓t , we set
Bt[v, c] = Bt′ [v, c] for all c ∈ C↓t′ and Bt[v, c0] =
cent[ϕ′(v), c0]. Then Bt with the same cluster-assignment
ϕ′ has a snapshot (cent,part) in t and pwd(Bt, t) =
pwd(Bt′ , t

′) + ∆0 = Rt′(cent′,part) + ∆0 = τ . There-
fore Bt witnesses that Rt(cent,part) ≤ τ . On the other

hand, assume that Rt(cent,part) = τ . Then there exists
a matrix Bt in Bt with the snapshot (cent,part) in t such
that pwd(Bt, t) = τ . Let Bt′ be obtained from Bt by
deletion of the column with the label c0. Then Bt′ wit-
nesses Rt′(cent′,part) ≤ τ − ∆0, so in our algorithm
R0
t (cent,part) = Rt′(cent′,part) + ∆0 ≤ τ . Hence, we

can correctly setRt = R0
t .

t is a join node. Let t1, t2 be the two children of t in T ,
recall that χ(t1) = χ(t2) = χ(t) and χ↓t1 ∩ χ

↓
t2 = χ(t).

For every (cent,part) in S(t) we set R0
t (cent,part) =

Rt1(cent,part) +Rt2(cent,part)− doublecount, where
doublecount =

∑
v∈Vt

∑
c∈Ct

W [v, c] · (A[v, c] −
cent[part(v), c])2.

For correctness, assume that R0
t (cent,part) = τ =

τ1 + τ2 − doublecount, where τ1 = Rt1(cent,part),
τ2 = Rt2(cent,part). Let Bi with the cluster-assignment
ϕi be the witness ofRti(cent,part) = τi, i = 1, 2. We ob-
tain a matrix Bt with cluster-assignment ϕ = ϕ1 ∪ ϕ2 as a
composition of (B1, ϕ1) and (B2, ϕ2). To check the consis-
tency conditions, observe that the sets of common row and
column labels of B1 and B2 are Vt and Ct correspondingly.
Recall that ϕ1|Vt

= part = ϕ2|Vt
. Moreover, if v1 ∈ V1

and v2 ∈ V2 are such that ϕ1(v1) = ϕ2(v2), then we have
B1[v1, c] = cent[ϕ1(v1), c] = cent[ϕ2(v2), c] = B2[v2, c]
for every c ∈ Ct.

Note that for every v ∈ Vt, ϕ(v) = ϕ1(v) = part. Pick
c ∈ Ct and v ∈ V ↓t , then v ∈ V ↓ti for some i ∈ {1, 2} and
so Bt[v, c] = Bi[v, c] = cent[ϕi(v), c] = cent[ϕ(v), c].
Therefore (cent,part) is a snapshot of Bt in t. Recall
that pwd(Bt, t) =

∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c] −
Bt[v, c])

2. Here W [v, c] = 0 for every v ∈ V ↓ti and c 6∈ C↓ti ,
i = 1, 2. So pwd(Bt, t) =

∑
v∈V ↓t1

∑
c∈C↓t1

W [v, c] ·
(A[v, c]−Bt[v, c])2 +

∑
v∈V ↓t2

∑
c∈C↓t2

W [v, c] · (A[v, c]−
Bt[v, c])

2−
∑
v∈Vt

∑
c∈Ct

W [v, c] ·(A[v, c]−Bt[v, c])2 =
pwd(B1, t1) + pwd(B2, t2) − doublecount = τ1 + τ2 −
doublecount = τ . Hence Bt witnesses Rt(cent,part) ≤
τ .

For the converse, assume that Rt(cent,part) = τ and
Bt is a matrix witnessing this. Let Bi be the restriction
of Bt to rows V ↓ti and columns C↓ti , i = 1, 2. Then B1

and B2 have a snapshot (cent,part) and in our algorithm
R0
t (cent,part) = Rt1(cent,part) + Rt2(cent,part) −

doublecount ≤ pwd(B1) + pwd(B2) − doublecount =
pwd(B) = τ . Hence the resulting record Rt = R0

t is cor-
rect, which concludes the correctness proof of the algorithm.

To bound the runtime of the algorithm, observe that at
each node t we compute the record Rt for |S(t)| ≤
|D|kqkq = |D|O(k·tw(GI)) entries, where each entry is
computed in time at most quadratic in tw(GI). Since
the tree-decomposition is nice and has at most O(n + d)

The Complexity of k-Means Clustering when Little is Known

nodes, the runtime of the algorithm is upper-bounded by
(n+ d) · |D|O(k·tw(GI)).

Towards proving fixed-parameter tractability without involv-
ing k, we consider the case where k is significantly larger
than tw(GI). We prove that this case always admits a “per-
fect” solution, which can also be computed efficiently.

Lemma 2. If k ≥ (tw(GI) + 1) · |D|tw(GI)+1 then there
exists a matrix B over domain D containing at most k
distinct rows such that ‖W ◦ (A − B)‖2F = 0. Moreover,
given a nice tree-decomposition of width q − 1 such that
k ≥ q · |D|q, such a matrix B can be computed in time
(n+ d) · |D|O(q).

Proof. We will prove the second claim of the lemma, from
which the first one follows. To this end, let us assume that
we are given a nice tree-decomposition T = (T, χ) of GI
of width q − 1 and k ≥ q · |D|q. We denote the root of
T by r and define Ct, Vt, C

↓
t and V ↓t analogously to the

proof of Theorem 1. We will explicitly construct q · |D|q
cluster centers yielding a zero sum of squares, so that after
processing the node t, each of the centers is defined on
coordinates c ∈ C↓t . The remaining clusters will be empty,
thus for the rest of the proof we assume k = q · |D|q .

Formally, we will attach to every node t the pair (Rt, αt)
where Rt is the matrix with the row labels [k] and the col-
umn labels C↓t , and αt is a mapping from V ↓t to [k]. Intu-
itively, Rt stores the restrictions of cluster centers to pro-
cessed coordinates, while αt assigns a cluster index to every
row label v ∈ V ↓t . Throughout the dynamic programming
procedure, we will maintain the following invariants:

1. αt(u) 6= αt(v) for any two distinct u and v from Vt,

2. for every ω ∈ DCt , there are precisely k
|D||Ct| indices

i ∈ [k] such that Rt[i][Ct] = ω, where Rt[i][Ct] is the
restriction of Rt[i] to the coordinate set Ct,

3.
∑
v∈V ↓t

∑
c∈C↓t

W [v, c]·(A[v, c]−Rt[αt(v), c])2 = 0.

Assume that the invariants hold in the root r, let us define
the matrix B by setting B[v] = Rr[αr(v)]. Then B has
at most k distinct rows and the third invariant yields that∑
v∈VA

∑
c∈CA

W [v, c]·(A[v, c]−B[v, c])2 = 0. In partic-
ular, for q = tw(GI) + 1 we get the statement of the lemma.
Hence it is sufficient to construct (Rt, αt) in a leaf-to-root
fashion, for each of the following cases.

t is a leaf node. If χ(t) = {v0} for some row label v0, we
set αt(v0) = 1 and Rt[i] = ∅ for every i ∈ [k]. Otherwise,
χ(t) = {c} for a coordinate c. Then αt should be the
empty mapping, for every i ∈ [k] we set Rt[i, c] equal to
some γ ∈ D so that every γ ∈ D appears in Rt precisely
k
|D| times. It is easy to see that all the invariants are satisfied.

t is a forget node. Let t′ be the child of t in T , we keep
Rt = Rt′ and αt = αt′ . The first and third invariants are
obviously preserved. In case χ(t) = χ(t′) \ {c0} for a
coordinate c0, we have Ct′ = Ct ∪ {c0}. By the second
invariant for t′, for every γ ∈ D and ω ∈ DCt the number
of i ∈ [k] with Rt′ [i][Ct] = ω and Rt′ [i][c0] = γ is k

|D||Ct′ |
.

Therefore the number of i ∈ [k] with Rt[i][Ct] = ω is
precisely |D| · k

|D||Ct′ |
= k
|D||Ct| .

t is an introduce node (introducing a vector). Let t′ be
the child of t in T and χ(t) = χ(t′) ∪ {v0} for some row
label v0. We then set Rt = Rt′ and αt = αt′ ∪ (v0, i0)
where i0 ∈ [k] is such that Rt′ [i0][Ct] = A[v0][Ct] and
αt′(v) 6= i0 for any v ∈ Vt′ . Such an index always exists:
by the second invariant for t′ there are k

|D||Ct| ≥
k
|D|q =

q > |Vt′ | indices i such that Rt′ [i][Ct] = A[v0][Ct], so at
least one of them is not equal to any αt′(v), v ∈ Vt′ . As the
third invariant holds in t′, we have

∑
v∈V ↓t

∑
c∈C↓t

W [v, c] ·
(A[v, c] − Rt[αt(v), c])2 =

∑
c∈C↓t

W [v0, c] · (A[v0, c] −
Rt[αt(v0), c])2. Here W [v0, c] = 0 for every c ∈ C↓t \
Ct because such c never appears in the same bag with v0.
Moreover, for c ∈ Ct, Rt[αt(v0), c] = Rt[i0, c] = A[v0, c],
so every summand is equal to zero.

t is an introduce node (introducing a coordi-
nate). In case if t′ is the child of t in T and
χ(t) = χ(t′) ∪ {c0} for some coordinate c0, we set
αt = αt′ , Rt[i][Ct′] = Rt′ [i][Ct′] for every i ∈ [k]
and define Rt in the column c0 as follows. For every
vector ω ∈ DCt′ , let gω be the set of indices i ∈ [k]
such that Rt′ [i][Ct′] = ω. Recall that by the second
invariant for t′, |gω| = k

|D||Ct−1| . We subdivide gω into

|D| groups {gωγ | γ ∈ D} of the same size k
|D||Ct| so that

if αt(v) ∈ gω for some v ∈ Vt then αt(v) ∈ gωγ with
γ = A[v, c0]. It is always possible as αt is injective on Vt
(so the index γ is determined uniquely for αt(v) ∈ gω)
and k

|D||Ct| ≥
k
|D|q = q ≥ |Vt| (so potentially one of the

groups can contain αt(v) for all v ∈ Vt). For every γ ∈ D
and i ∈ gωγ we then set Rt[i, c0] = γ and by this satisfy the
second invariant in t. The following validates the third one:∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c] − Rt[αt(v), c])2 =∑
v∈V ↓t

W [v, c0] · (A[v, c0] − Rt[αt(v), c0])2 =∑
v∈Vt

W [v, c0] · (A[v, c0] − Rt[αt(v), c0])2. Fix v ∈ Vt,
let γ = A[v][Ct′]. Then αt(v) ∈ gω, so αt(v) ∈ gωγ with
γ = A[v, c0]. Therefore Rt[αt(v), c0] = γ = A[v, c0], i.e.,
every summand is equal to zero.

t is a join node. Let t1, t2 be the two children of t in T ,
recall that χ(t1) = χ(t2) = χ(t). By the well-known
separation property of tree-decompositions, χ↓t1 ∩ χ

↓
t2 =

χ(t) (Downey & Fellows, 2013; Cygan et al., 2015). With-
out loss of generality we may assume that αt1 and αt2 co-
incide on Vt and Rt1 [i, c] = Rt2 [i, c] for every i ∈ [k] and

The Complexity of k-Means Clustering when Little is Known

c ∈ Ct. In the case it does not hold, we achieve it by per-
muting the rows of Rt2 : by the second invariant, the sets of
rows Rt1 and Rt2 are the same when restricted to Ct, thus
there is a permutation that achieves Rt1 [i, c] = Rt2 [i, c]
for every i ∈ [k] and c ∈ Ct. Furthermore, by the third
invariant, for each v ∈ Vt, αt2 maps v to a row that co-
incides with v on Ct. Together with the first invariant it
means that for each ω ∈ DCt , αt2 acts injectively from
V ωt = {v ∈ Vt : A[v][Ct] = ω} to the set of rows of Rt2
that coincide with ω onCt. Since the same holds for αt1 and
Rt1 , for each ω ∈ DCt there is a permutation on the rows of
Rt2 equal to ω on Ct that makes αt1 and αt2 agree on V ωt .
Combinining the above permutations, applying the resulting
permutation πt of [k] on the rows of Rt2 , and replacing αt2
with πt ◦ αt2 leads to the desired property.

Then, we can correctly define αt = αt1 ∪ αt2 and construct
Rt as follows:

• for every i ∈ [k] and c ∈ C↓t1 , Rt[i, c] = Rt1 [i, c],

• for every i ∈ [k] and c ∈ C↓t2 , Rt[i, c] = Rt2 [i, c].

(Rt, αt) obviously satisfies the first and second invari-
ants, let us verify the third one. Note that W [v, c] = 0

for every v ∈ V ↓tj and c 6∈ C↓tj , j = 1, 2. There-
fore

∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c] − Rt[αt(v), c])2 ≤∑
v∈V ↓t1

∑
c∈C↓t1

W [v, c] · (A[v, c] − Rt1 [αt1(v), c])2 +∑
v∈V ↓t2

∑
c∈C↓t2

W [v, c] · (A[v, c] − Rt2 [αt2(v), c])2 =

0 + 0 = 0 as desired.

We now estimate the running time of our procedure. To
show the desired time bound that is linear in terms of n+ d,
we further specify how the entries (Rt, αt) are stored. For a
node t, we store separately the mapping αt on the forgotten
row indices V ↓t \Vt as a linked list of pairs (v, αt(v)) where
v ∈ V ↓t \ Vt, and separately the values of α on the row
indices of Vt; for the Vt part, the precise method of storage is
not relevant for our desired running time bound as there are
at most q such entries in each node. Analogously, for each
i ∈ [k], the row Rt[i] is stored separately on the columns of
Ct and C↓t \ Ct, where the latter is stored as a linked list of
pairs (c,Rt[i, c]), c ∈ C↓t \ Ct.

With the storage method above in mind, observe first that
for all nodes except join nodes the manipulations on the
entries in the bag take time at most O(kq), while the entries
for the forgotten row and column indices are simply copied
from the child node. Since the entry at a child node is never
reused further in the algorithm, the corresponding linked
lists can be copied by reference in constant time each.

For a join node, finding a suitable permutation of Rt2 that
matches with Rt1 on Ct takes time O(k2q) by comparing
the values in the columns of Ct for each pair of rows from
Rt1 and Rt2 , and the same time bound covers tweaking

this permutation to obtain πt that also makes αt1 and αt2
agree on Vt. Applying πt to rearrange the rows of Rt2 takes
timeO(kq) since we pass the representations ofRt2 [i][C↓t \
Ct] by reference. Now, to compose πt with αt2 , instead
of computing the image value-by-value which would take
linear time, we do the following constant-time deferred
application. For the linked list that stores the values of αt2
on V ↓t \ Vt, we consider another type of node that contains
a single permutation πt of [k]. This node in interpreted as
follows: any pair (v, i) that comes after this node is deemed
to represent the pair (v, πt(i)) instead. Using permutation
nodes, πt can by applied to αt2 in O(k + q) by computing
the values on Vt explicitly and putting a permutation node
πt at the beginning of the linked list for V ↓t \Vt, and another
permutation node π−1t at the end of this list. Finally, the
union of αt1and αt2 is computed in timeO(q) by appending
the linked list that stores the images of αt2 on V ↓t2 \ Vt2 to
the linked list of αt1 on V ↓t1 \ Vt1 , and storing the values
on Vt separately. In the same fashion, for each i ∈ [k]
we construct the row Rt[i] by concatenating the respective
linked lists of Rt1 [i] and Rt2 [i].

After processing the root node r, the entries of B can be
restored efficiently in the following way. Recall that at
most O((n+ d) · q) entries of W are “1”, as the graph GI
has a tree-decomposition of width q − 1; only the corre-
sponding O((n + d) · q) entries of B are relevant, others
need not to be restored. First, in time O(kd) we retrieve
the rows of Rr from the computed representation and store
each row as an array indexed by the column indices. The
cluster assignment can be retrieved from the representation
of αr in time O((n+ d) · k) by traversing through the cor-
responding linked list while maintaining the composition of
all occured permutation nodes (observe that at most 2(n+d)
permutation nodes were created throughout the execution).
Afterwards each relevant entry B[v, c] can be computed in
constant time, by retrieving the cluster assignment αr(v)
of v and the value Rr[αr(v), c] from the respective row ar-
ray. Since the number of nodes in the tree-decomposition
is bounded by O(n+ d) and processing of each node takes
time O(k2q), the total running time is thus bounded by

O((n+ d) · k2q) = (n+ d) · |D|O(q),

as desired.

At this point, we can prove the main result of this section.

Theorem 3. BOUNDED-DOMAIN MCME is fixed-
parameter tractable when parameterized by tw(GI).

Proof. Given an instance of BOUNDED-DOMAIN MCME,
we begin by constructing the incidence graph GI and then
applying the known 5-approximation algorithm to compute
a tree-decomposition of GI of width q − 1 ≤ 5 tw(GI)

The Complexity of k-Means Clustering when Little is Known

W =


1 1 1 0
1 1 1 0
0 0 0 1
0 1 0 0
1 0 1 0


GI

VW CW

GP

Figure 2. Example of a mask W (left) together with its incidence
graph (middle) and its primal graph (right). Vertices from top to
bottom correspond to rows from top to bottom and in the case of
CW columns from left to right. In this example tw(GI) = 3 and
tw(GP) = 2.

in time 2O(tw(GI)) · (n + d). At this point we proceed by
comparing q and k, as follows:

• if k ≥ q · |D|q, then we can correctly output “Yes”
(along with a suitable witness) by using Lemma 2;

• on the other hand, if k ≤ q · |D|q then we instead
invoke Theorem 1 to solve the instance.

The running time in the former case is upper-bounded by
(n+ d) · |D|O(tw(GI)), while in the latter case the bound is
(n+ d) · |D|O(k·tw(GI)) ≤ (n+ d) · |D||D|O(tw(GI))

.

4. Handling Real-Valued Matrices with
Treewidth

We now turn our attention to REAL-VALUED MCME. As
was mentioned in the Introduction, a fixed-parameter al-
gorithm for the problem parameterized by the incidence
treewidth ofW would resolve a long-standing open problem
as a special case, and so far remains beyond reach. How-
ever, we can still make tangible progress on the problem
by considering the treewidth of a different representation
of W . In particular, the primal graph GP of W is a graph
containing one vertex for each row of W , where two rows
a, b are adjacent if and only if there is a column e such that
W [a, e] = W [b, e] = 1. An example comparing primal and
incidence graphs is provided in Figure 2.

Our aim in this section is to prove the next theorem.

Theorem 4. REAL-VALUED MCME is fixed-parameter
tractable when parameterized by tw(GP).

Before we proceed to the proof, we will first introduce
some additional notation that will be useful in the context
of real-valued matrices. For every V ′ ⊆ VA, let µ(V ′, c) =
argminxf(x) for f(x) =

∑
v∈V ′W [v, c] · (A[v, c] − x)2

and let ∆c(V
′) = f(µ(V ′, c)). Intuitively, if vectors from

V ′ form a cluster then ∆c(V
′) is a minimal sum of distances

to the cluster center along the coordinate c.

Observation 5. For each coordinate c, if V ′′ = {z ∈

V ′ |W [z, c] = 1} 6= ∅ then

µ(V ′, c) =

∑
v∈V ′′ A[v, c]

|V ′′|
, and

∆c(V
′) =

∑
v∈V ′′

(A[v, c])2 −
(
∑
v∈V ′′ A[v, c])2

|V ′′|
.

Proof. As W is a binary matrix, we can rewrite f(x) =∑
v∈V ′′(A[v, c] − x)2 = |V ′′|x2 − 2

∑
v∈V ′′ A[v, c] · x +∑

v∈V ′′(A[v, c])2. By assumption, |V ′′| 6= 0, so f(x) is
a quadratic function and attains a minimum at an extreme
point, i.e., at x =

∑
v∈V ′′ A[v,c]

|V ′′| . The minimal value of f can

be computed as
∑
v∈V ′′(A[v, c])2 − (

∑
v∈V ′′ A[v,c])2

|V ′′| .

Now we are ready to present the proof of Theorem 4.

Proof of Theorem 4. As our initial step, we once again ap-
ply the known approximation algorithm (Bodlaender et al.,
2016) to compute a nice tree-decomposition (T, χ) of GP
of width q ≤ 5 tw(GP). We keep the notations r, Vt, and
V ↓t from the previous section. Note that now the bags in the
tree-decomposition contain only vectors, so Vt = χ(t). In
contrast to the previous section, for every node t we denote
by C↓t the set of all processed in t coordinates, i.e., coordi-
nates c such that W [vc, c] 6= 0 for some vc ∈ V ↓t \ Vt. A
crucial observation is the following: if c ∈ C↓t , then for all
vectors v 6∈ V ↓t it holds that W [v, c] = 0, otherwise v and
vc would appear in the same bag. In other words, values of
the cluster centers on c ∈ C↓t are not meaningful for vectors
introduced outside of Tt.

We will design a leaf-to-root dynamic programming algo-
rithm which computes a set of recordsRt at each node t of
T . For each way p of partioning the vectors in the bag Vt
into at most k clusters, the record Rt stores the minimum
cost of clustering the vectors of V ↓t in the coordinates of
C↓t , considering only the partitions of V ↓t that extend p.

Formally, for a node t of T letPt be the set of all equivalence
relations p ⊆ Vt × Vt with at most k equivalence classes.
The record Rt of t is a mapping from Pt to R+. Observe
that |Pt| ≤ (q + 1)q+1.

To introduce the semantics of our records, let Bt be the set
of all real matrices with the row labels V ↓t and the column
labels C↓t . Let Bt be a matrix in Bt. We define the partial
weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c]−Bt[v, c])2.

We also denote the number of forgotten clusters by
fcl(Bt, t), that is, the number of distinct rows in Bt not

The Complexity of k-Means Clustering when Little is Known

equal to any Bt[v], v ∈ Vt. We say that p ∈ Pt with
|[p]| ≤ k equivalence classes is the t-partition of Bt if the
following conditions hold:

• for every v, w ∈ Vt such that (v, w) ∈ p, Bt[v] =
Bt[w],

• fcl(Bt, t) is at most k − |[p]|.

The last two conditions are in fact equivalent to existence of
a cluster-assignment ϕ w.r.t. Bt such that for every u, v ∈
Vt, ϕ(u) = ϕ(v) if and only if (u, v) ∈ p.

We are now ready to define the recordRt. For each p ∈ Pt,
we setRt(p) = τ if there exists Bt ∈ Bt such that:

• p is the t-partition of Bt,

• pwd(Bt, t) = τ , and

• ∀B′t ∈ Bt such that p is the t-partition of B′t,
pwd(B′t, t) ≥ τ .

In this case we say that Bt witnesses thatRt(p) = τ .
Observe that Rt(p) <∞ since any p ∈ Pt is a t-partition
of the zero matrix, and that Rt(p) is well-defined (in the
sense that infBt∈Bt

pwd(Bt, t) is achieved on Bt), since
pwd(Bt, t) is minimized on a matrix constructed by Obser-
vation 5 from an optimal cluster-assignment, and there is
only a finite number of those.

Recall that for the root r of T , we assume Vr = ∅. Hence
Pr contains only one element ∅, andRr(∅) is equal to the
minimum value of ‖W ◦ (A−B)‖2F that can be achieved
by any real matrix B containing at most k distinct rows.
Indeed, if some coordinate c is not processed in r, then
W [v, c] = 0 for every row label v. Let us extend a witness
Br of Rr to a matrix B with column set CA by setting
B[v, c] = 0 for every row label v and every c 6∈ C↓r . Then
Rr(∅) =

∑
v∈V ↓r

∑
c∈C↓r W [v, c] · (A[v, c]−Br[v, c])2 =∑

v∈VA

∑
c∈CA

W [v, c] · (A[v, c] − B[v, c])2. Hence the
instance is a YES-instance if and only ifRr(∅) ≤ `.

We will show how to compute the records in a leaf-to-root
fashion by proceeding along the nodes of T , in each of the
following cases:

t is a leaf node. Let Vt = {v}, then Pt contains only one
equivalence relation p = {(v, v)} and Rt(p) = 0 as there
are no processed coordinates.

t is a forget node. Let t′ be the child of t in T and Vt =
Vt′ \ {v0} for some vector v0, we denote Cnew = C↓t \ C

↓
t′ .

By branching over all p′ ∈ P(t′) such that p′|Vt×Vt
= p,

we compute

R0
t (p) = min

p′
(Rt′(p′) + ∆(p′)) ,

where
∆(p′) =

∑
[v]∈[p′]

∑
c∈Cnew

∆c([v]).

For corectness, assume thatR0
t (p) = τ = Rt′(p′) + ∆(p′)

for some p′ ∈ P(t′) such that p′|Vt×Vt = p. Construct
a matrix Bt from the witness Bt′ of Rt′(p′) by adding a
new column for every label c ∈ Cnew as follows. Fot every
v ∈ Vt′ , we set Bt[v, c] = µ([v]p′ , c). If u ∈ V ↓t′ \ Vt′
is such that Bt′ [u] = Bt′ [v] for some v ∈ Vt′ , we set
Bt[u, c] = µ([v]p′ , c). Otherwise we set Bt′ [u, c] = 0. To
see that p is a t-partition of Bt, assume firstly that there is
v 6= v0 such that (v0, v) ∈ p′, then fcl(Bt, t) = fcl(Bt′ , t

′)
and |[p]| = |[p′]|. Otherwise fcl(Bt, t) ≤ fcl(Bt′ , t

′) + 1
and |[p]| = |[p′]| − 1; in any case p is a t-partition of Bt.
Recall that

pwd(Bt, t) =
∑
v∈V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c]−Bt[v, c])2

= pwd(Bt′ , t
′)+

∑
v∈V ↓t

∑
c∈Cnew

W [v, c]·(A[v, c]−Bt[v, c])2.

As Cnew ∩ C↓t′ = ∅, we have W [v, c] = 0 for all c ∈ Cnew

and v ∈ V ↓t′ \ Vt′ . Therefore,

pwd(Bt, t) = pwd(Bt′ , t
′)

+
∑
v∈Vt′

∑
c∈Cnew

W [v, c] · (A[v, c]− µ([v]p′ , c))
2

= Rt′(p′) + ∆(p′) = τ,

and thus Bt witnesses thatRt(p) ≤ τ .

On the other hand, assume that Rt(p) = τ and Bt is a
matrix in Bt witnessing this. Let Bt′ be obtained from Bt
by deleting the columns with labels in Cnew. We construct
p′ ∈ P(t′) from p by adding v0 to an equivalence class
of arbitrary v ∈ Vt′ such that Bt[v0] = Bt[v]. If there
is no such v, we create a new equivalence class {v0}. In
any case p′ is a t′-partition of Bt′ : if |[p′]| = |[p]| then
fcl(Bt′ , t

′) = fcl(Bt, t), in case |[p′]| = |[p]| + 1 we have
fcl(Bt′ , t

′) = fcl(Bt, t)− 1. Therefore Bt′ witnesses that

Rt′(p′) ≤ pwd(Bt′ , t
′)

= τ −
∑
v∈Vt′

∑
c∈Cnew

W [v, c] · (A[v, c]−Bt[v, c])2

≤ τ −
∑

[v]∈[p′]

∑
c∈Cnew

∆c([v]) = τ −∆(p′).

So in our algorithmR0
t (p) ≤ Rt′(p′) + ∆(p′) ≤ τ . Hence,

we can correctly setRt = R0
t .

t is an introduce node. Let t′ be the child of t in T and let
Vt = Vt′ ∪{v0} for some vector v0. For every p in P(t), we
setR0

t (p) = Rt′(p′) where p′ = p|Vt′×Vt′ . For correctness,
it will be useful to observe that C↓t = C↓t′ . Recall from

The Complexity of k-Means Clustering when Little is Known

the first paragraph of the proof that W [v0, c] = 0 for every
c ∈ C↓t′ . AssumeRt(p) = τ with a witnessBt, let us obtain
Bt′ from Bt by deleting the row with label v0. Then Bt′
admits the t′-partition p′ and pwd(Bt′ , t

′) = pwd(Bt, t),
so Bt′ witnesses thatRt′(p′) ≤ τ .

If on the other hand Rt′(p′) = τ and Bt′ is a matrix wit-
nessing this, let us add to Bt′ a row with the label v0 so
that p is a t-partition of the resulting matrix Bt. For this,
if (v0, v) ∈ p for some v ∈ Vt′ , we set Bt[v0] := Bt′ [v],
which results in |[p]| = |[p′]| and fcl(Bt, t) = fcl(Bt′ , t

′).
Otherwise |[p]| = |[p′]| + 1; we make Bt[v0] equal to any
row of Bt′ that is not among {Bt′ [v] | v ∈ Vt′} (if such a
row exists) and by this achieve fcl(Bt, t) = fcl(Bt′ , t

′)− 1.
If all the rows of Bt′ are among {Bt′ [v] | v ∈ Vt′}, we
set Bt[v0] equal to any of them. Then p is a t-partition of
Bt and Bt witnesses Rt(p) ≤ τ , so we can correctly set
Rt = R0

t .

t is a join node. Let t1, t2 be the children of t in T . For
every p in Pt we setR0

t (p) = Rt1(p)+Rt2(p). For correct-
ness, assume thatR0

t (p) = τ = τ1+τ2 where τ1 = Rt1(p),
τ2 = Rt2(p). Let Bi be a witness of Rti(p) = τi and
let ϕi be the cluster-assignment w.r.t. Bi such that for ev-
ery u, v ∈ Vt, ϕi(u) = ϕi(v) if and only if (u, v) ∈ p,
i = 1, 2. Without loss of generality we may assume that
ϕ1|Vt = ϕ2|Vt . As V ↓t1 ∩ V

↓
t2 = Vt and C↓t1 ∩ C

↓
t2 = ∅,

there exists a composition of (B1, ϕ1) and (B2, ϕ2), we de-
note it by Bt. Recall that Bt admits the cluster-assignment
ϕ = ϕ1 ∪ ϕ2, in particular, p is a t-partition of Bt. As
W [v, c] = 0 for every c ∈ C↓ti and v 6∈ V ↓ti , i = 1, 2, we
have

pwd(Bt, t) =
∑
v∈V ↓t1

∑
c∈C↓t1

W [v, c] · (A[v, c]−Bt[v, c])2

+
∑
v∈V ↓t2

∑
c∈C↓t2

W [v, c] · (A[v, c]−Bt[v, c])2

= pwd(B1, t1) + pwd(B2, t2) = τ1 + τ2 = τ.

Hence Bt witnesses thatRt(p) ≤ τ .

For the converse, assume thatRt(p) = τ and Bt is a matrix
witnessing this. Let Bi be the restriction of B to rows V ↓ti
and columns C↓ti , i = 1, 2. Then p is a t-partition of B1

and B2 and in our algorithmR0
t (p) = Rt1(p) +Rt2(p) ≤

pwd(B1) + pwd(B2) = pwd(Bt) = τ . So the resulting
recordRt = R0

t is correct, which concludes the correctness
proof of the algorithm.

To estimate the time complexity, recall that in a forget node
we branch over at most (q + 1)q+1 = tw(GP)O(tw(GP))

partitions p′. Computing ∆(p′) requires time at most
|Cnew| · (q + 1)2 ≤ |Cnew| · O(tw(GP)2). Observe that
each column appears in Cnew of at most one forget node
in T , as all rows that have a value of “1” in the same col-

umn form a clique. Thus, the processing time of all forget
nodes is upper-bounded by d · tw(GP)O(tw(GP)). For the
rest of the nodes, it is easy to see that the processing time of
each node is upper-bounded by tw(GP)O(tw(GP)). Since
the nice tree-decomposition T has O(n) nodes, the total
running time is at most (n+ d) · tw(GP)O(tw(GP)).

5. An Incidence-Graph Based Algorithm for
Real-Valued MCME

While Theorem 4 significantly expands the previously
known boundaries of tractability for MCME, the algo-
rithm’s performance strongly depends on the structural prop-
erties of the primal graph. In general, primal graph repre-
sentations are known to be denser than incidence graph
representations, and this may make them unsuitable for
the application of structure-based algorithms on certain in-
stances (see, e.g., the example below Theorem 6).

As our final result, we show that although a fixed-parameter
algorithm for REAL-VALUED MCME parameterized by
tw(GI) remains beyond our reach, we can exploit a different
parameter of the incidence graph to achieve fixed-parameter
tractability—namely, the local feedback edge number.
Theorem 6. REAL-VALUED MCME is fixed-parameter
tractable when parameterized by lfen(GI).

We note that it is not difficult to show that lfen(GI) and
tw(GP) are pairwise incomparable parameterizations. In-
deed, an n × 1 mask consisting only of “1” entries has
lfen(GI) = 0 but tw(GP) = n − 1. On the other hand,
consider, for some integer m, an (m + 1) × 2m mask W
such that the first row v0 of W consists only of “1” entries,
while for each i ∈ [m] the (i + 1)-th row has “1” entries
on precisely two positions: i and i+m. Then GP is a star
with center in v0, so tw(GP) = 1. However, GI consists
of m edge-disjoint cycles intersecting in v0. It is then easy
to observe that the local feedback edge number of v0 with
respect to any spanning tree of GI is m.

We proceed by introducing some additional terminology that
will be useful in the coming arguments. Let T be a fixed
rooted spanning tree of G such that lfen(G,T) = lfen(G),
denote the root by r. For t ∈ V (T), let Tt be the subtree of
T rooted at t. We define the boundary δ(t) of t to be the set
of endpoints of all edges in G with precisely one endpoint
in V (Tt) (observe that the boundary can never have a size
of 1). t is called closed if |δ(t)| ≤ 2 and open otherwise.
Proposition 7 (Ganian and Korchemna (2021)).

1. For every closed child t′ of t in T , it holds that δ(t′) =
{t, t′} and tt′ is the only edge between V (Tt′) and
V (G) \ V (Tt′) in G.

2. |δ(t)| ≤ 2 lfen(G) + 2.

3. Let {ti|i ∈ [j]} be the set of all open children of t in T .

The Complexity of k-Means Clustering when Little is Known

Then j ≤ 2 lfen(G) and
δ(t) ⊆

⋃j
i=1 δ(ti) ∪ {t} ∪NG(t).

To prove Theorem 6, we will provide a leaf-to-root dynamic
programming algorithm which stores information about op-
timal partitionings of δ(t) into clusters. On a very intuitive
level, Point 1. of Proposition 7 allows the algorithm to han-
dle the closed children in a greedy manner, Point 2. ensures
that the size of the records is bounded, and Point 3. is used
in the dynamic programming step to compute records for
a parent based on the records of its children. Furthermore,
one can observe that |

⋃j
i=1 δ(ti)| is upper-bounded by a

linear function of lfen(t), which will be useful to ascertain
the runtime bound for the algorithm.

Observation 8. For each node t in T , |
⋃j
i=1 δ(ti)| ≤

4 lfen(t) + 2.

Proof. By Point 2. of Proposition 7, the number of ver-
tices in

⋃j
i=1 δ(ti) that belong to δ(t) is at most |δ(t)| ≤

2 lfen(G) + 2. If v ∈ δ(ti) \ (δ(t)) for some i ∈ [j], then
v = ti. So the number of such v is at most j ≤ 2 lfen(G)

by Point 3. of Proposition 7. In total, |
⋃j
i=1 δ(ti)| ≤

4 lfen(t) + 2.

We are now ready to establish the claimed result by provid-
ing an algorithm for REAL-VALUED MCME with running
time (kn2 + d) · lfen(GI)

O(lfen(GI)), assuming a spanning
tree T of minimum local feedback edge number is provided.
We note that such a spanning tree can be computed by a
fixed-parameter algorithm (Ganian & Korchemna, 2021).

Proof of Theorem 6. We will design a leaf-to-root dynamic
procedure computing the set of records for every node of
T . Intuitively, the record in t will store the minimum sum
of distances of processed vectors, computed along the pro-
cessed coordinates, to their cluster centers for every possible
partition of vectors in δ(t) into clusters.

Formally, let V ↓t and C↓t be the sets of vectors and coordi-
nates of Tt correspondingly, we denote by Vt and Ct the
restrictions of δ(t) to vectors and coordinates respectively,
then δ(t) = Vt t Ct. Let Pt be the set of all equivalence
relations p ⊆ Vt × Vt with at most k equivalence classes.
The record Rt of t is a mapping from Pt to R+. Observe
that |Pt| ≤ lfen(GI)

O(lfen(GI)).

To introduce the semantics of our records, let Bt be the set
of all real matrices with the row labels V ↓t ∪ Vt and the
column labels C↓t . Let Bt be a matrix in Bt. We define the
partial weighted distance from Bt to A in t as follows:

pwd(Bt, t) =
∑

v∈Vt∪V ↓t

∑
c∈C↓t

W [v, c] · (A[v, c]−Bt[v, c])2.

For a matrix Bt with the row labels V ↓t ∪Vt and the column
labels C↓t , we say that p ∈ Pt is the t-partition of Bt if the
following conditions hold:

• for every v, w ∈ Vt such that (v, w) ∈ p, Bt[v] =
Bt[w],

• the number fcl(Bt, t) of pairwise different rows in Bt
not equal to any B[v], v ∈ Vt, is at most k − |[p]|.

Note that the existence of a t-partition automatically implies
that Bt has at most k distinct rows. We are now ready to
define the recordRt. For each p ∈ Pt, we setRt(p) = τ if
there exists Bt ∈ Bt such that:

• p is the t-partition of Bt,

• pwd(Bt, t) = τ , and

• ∀B′t ∈ Bt such that p is the t-partition of B′t,
pwd(B′t, t) ≥ τ .

In this case we say that Bt witnesses thatRt(p) = τ .

Recall that for the root r ∈ T , the boundary is empty, in
particular Vr = ∅, so Pr contains only one element ∅, and
Rr(∅) is equal to the minimum value of ‖W ◦ (A−B)‖2F
that can be achieved by any real matrix B containing at
most k distinct rows. Hence the instance is a YES-instance
if and only if Rr(∅) ≤ `. We will compute the records in
a leaf-to-root fashion by proceeding along the nodes of T .
Note that for any leaf vector v, there are no coordinates in
Tv and thereforeRv(p) = 0 for every p ∈ Pv .

Let t = c be a (maybe leaf) coordinate with children
v1, . . . , vm where v1, . . . , vj are open and the rest are closed.
Recall from Proposition 7 that j ≤ 2 lfen(GI). We asssume
that the closed children are sorted by the coordinate c, i.e.,
A[vi, c] ≤ A[vi+1, c], i ∈ [m − 1] \ [j]. Let us denote
V0 = {v|(v, c) ∈ E(GI) \ E(T)}, and for each i ∈ [m],
Vi = Vvi , Ci = Cvi , V

↓
i = V ↓vi , and C↓i = C↓vi . Observe

that Vt ⊆
⋃
i∈[j]0 Vi.

For every p0 ∈ Pt, we initiate by settingRt(p0) = dnMA+
1 and branch over all equivalence relations p on

⋃
i∈[j]0 Vi

such that |[p]| ≤ k and p|Vt
= p0. In every branch we

construct a partition p∗ on the domain D∗ =
⋃
i∈[m]0

Vi
extending p to the set of closed children. Intuitively, p∗ will
provide a subdivision of the interval [j+1,m] into at most k
subintervals such that closed children vi1 and vi2 belong to
the same cluster if i1 and i2 belong to the same subinterval.

To find the optimal (i.e., minimizing the sum of distances in
the coordinate c) subdivision, we will compute the dynamic
programming tableM(i, S, kcl) for every subset S ⊆ [p]
and non-negative integers i ∈ [j,m] and kcl ≤ k−|[p]|, that
stores the minimum sum of distances along the coordinate c
for the closed children vj+1 . . . vi if they are partitioned into
|S|+ kcl clusters with the following property: kcl clusters
do not contain any open children, and for each equivalence

The Complexity of k-Means Clustering when Little is Known

class [v] ∈ S, there is a cluster intersecting the set of open
children by exactly [v]. We initiate by settingM(j, ∅, 0) =
0 andM(j, S, kcl) = dnMA + 1 whenever S 6= ∅ or kcl 6=
0. Further, we setM(i, ∅, 0) = dnMA + 1 for i > j and
then for remaining triples S ⊆ [p], i ∈ [j + 1,m] and
kcl ≤ k − |[p]| compute:

M1(i, S, kcl) = min
j≤i′<i

(
M(i′, S, kcl − 1) + ∆c(v(i′,i])

)
,

M2(i, S, kcl) =

min
j≤i′≤i

min
[v]∈S

(
M(i′, S \ {[v]}, kcl) + ∆c([v] ∪ v(i′,i])

)
,

where v(i′,i] = {vy : y ∈ [i] \ [i′]}. As special cases,
we set M1(i, S, kcl) = dnMA + 1 if kcl = 0, and
M2(i, S, kcl) = dnMA + 1 if S = ∅. Intuitively, M1

corresponds to the case where the children in v(i′,i] form a
separate cluster, whileM2 represents the addition of v(i′,i]
to the cluster of open children from [v].M2 also captures
an option when no closed children are added to the clus-
ter of [v], namely, when i = i′. We set M(i, S, kcl) =
min(M1(i, S, kcl),M2(i, S, kcl)).

When all the entries of M are computed, let ∆c(p) =
min0≤kcl≤k−|[p]|M(m, [p], kcl) =M(m, [p], k0cl). A sim-
ple back-tracking allows to construct the partition p∗

of D∗ extending p such that |[p∗]| = |[p]| + k0cl and∑
[v]∈[p∗] ∆c([v]) = ∆c(p). We try to improveR0

t (p0) :=

min(R0
t (p0),

∑
i∈[m]Rvi(p∗|Vi

) + ∆c(p)).

For correctness, assume that in our algorithm R0
v(p) =

τ =
∑
i∈[m]Rvi(p∗|Vi

) + ∆c(p). For every i ∈ [j], let
pi = p∗|Vi and let Bi be the witness ofRvi(pi). We define
the matrix B0 with the only column label c and row labels
V0 by setting B0[v, c] = µ([v]p∗ , c). Then, in particular,∑
u∈[v]∩V0

W [u, c] · (A(u, c) − B0(u, c))2 = ∆c([v]) for
every [v] ∈ [p∗]. For every i ∈ [m]0, pi = p∗|Vi and
therefore we can construct cluster-assignments ϕi w.r.t. Bi
such that

• for every u, v ∈ Vi, ϕi(u) = ϕi(v) if and only if
(u, v) ∈ p∗, i ∈ [m]0;

• for every v ∈ Vi1 ∩ Vi2 , ϕi1(v) = ϕi2(v), i1, i2 ∈
[m]0.

Note that the sets of column labels of Bi are pairwise
disjoint, so there exists a composition Bt of (Bi, ϕi),
i ∈ [m]0. Recall that Bt admits the cluster-assignment
ϕ =

⋃
i∈[m]0

ϕi, has row labels
⋃
i∈[m](Vi ∪ V

↓
i) ∪ V0 =

Vt ∪ V ↓t and column labels
⋃
i∈[m] C

↓
i ∪ {c} = C↓t . Let

us compute pwd(Bt, t) =
∑
v∈Vt∪V ↓t

∑
c′∈C↓t

W [v, c′] ·
(A[v, c′]−Bt[v, c′])2.

Observe that if c′ ∈ C↓i and v 6∈ Vi ∪ V ↓i , then
W [v, c′] = 0, i ∈ [m]. The set of v such that
W [v, c] = 1 is precisely V0. Therefore pwd(Bt, t)

can be computed as
∑
i∈[m]

∑
v∈Vi∪V ↓i

∑
c′∈C↓i

W [v, c′] ·
(A[v, c′] − Bi[v, c

′])2 +
∑
v∈V0

W [v, c] · (A[v, c] −
B0[v, c])2 =

∑
i∈[m] pwd(Bi, vi) +

∑
[v]∈[p∗] ∆c([v]) =∑

i∈[m]Rvi(pi) + ∆c(p) = τ . Hence Bt witnesses that
R0
v(p) ≤ τ .

For the converse, assume that Rt(p0) = τ and Bt is a
matrix witnessing this. There exists a cluster-assignment
ϕ w.r.t. Bt such that for every u, v ∈ Vt, ϕ(u) = ϕ(v) if
and only if (u, v) ∈ p0. We define the equivalence relation
p∗ on domain D∗ as follows: (u, v) ∈ p∗ if and only if
ϕ(u) = ϕ(v). In particular, p∗ extends p0 and |[p]| ≤ k.

Claim 2. If u and v are closed children of c and A[u, c] ≤
A[v, c] but Bt[u, c] ≥ Bt[v, c], then there exists a witness
B′t ∈ Bt of Rt(p0) ≤ τ with cluster-assignment ϕ′ such
that:

• ϕ′(u) = ϕ(v), ϕ′(v) = ϕ(u);

• ϕ′ coincides with ϕ outside of V ↓u ∪ V ↓v ;

• B′t[u, c] = Bt[v, c], B′t[v, c] = Bt[u, c];

• B′t[vi, c] = Bt[vi, c] for every vi 6∈ {u, v}, i ∈ [m];

Proof. Let us define ϕ′ as follows:

• if w ∈ V ↓u ∪ V ↓v and ϕ(w) = ϕ(u), then ϕ′(w) =
ϕ(v);

• if w ∈ V ↓u ∪ V ↓v and ϕ(w) = ϕ(v), then ϕ′(w) =
ϕ(u);

• for the rest of w ∈ Vt ∪ V ↓t , ϕ′(w) = ϕ(w);

We define the matrixB′t with row and column labels Vt∪V ↓t
and C↓t :

• if ϕ′(w) 6= ϕ′(v) and ϕ′(w) 6= ϕ′(u), we set B′t[w] =

Bt[w], w ∈ Vt ∪ V ↓t ;

• B′t[v, c
′] = Bt[v, c

′] for c′ ∈ C↓v ∪ C↓u; B′t[v, c
′] =

Bt[u, c
′] for the rest of c′;

• B′t[u, c
′] = Bt[u, c

′] for c′ ∈ C↓v ∪ C↓u; B′t[u, c
′] =

Bt[v, c
′] for the rest of c′;

• if ϕ′(w) = ϕ′(x), we set B′t[w] = B′t[x], x ∈ {u, v}.

From the last definition it is clear that ϕ′ is a cluster-
assignment w.r.t. B′t. Observe that ϕ coincides with ϕ′

on Vt, in particular, p0 is a t-partition of B′t. Let us compare
pwd(Bt, t) and pwd(B′t, t). Summands corresponding tow
with ϕ′(w) 6= ϕ′(v) and ϕ′(w) 6= ϕ′(u) obviously coincide.
Consider w 6= v with ϕ′(w) = ϕ′(v). If w ∈ V ↓v ∪ V ↓u ,
then ϕ(w) = ϕ(v) and therefore for c′ ∈ C↓v ∪ C↓u we
have B′t[w, c

′] = B′t[v, c
′] = Bt[v, c

′] = Bt[w, c
′]. For

c′ 6∈ C↓v ∪ C↓u, W [w, c′] = 0 as v and u are closed chil-
dren. Assume that w 6∈ V ↓v ∪ V ↓u , then ϕ(w) = ϕ(u). For
c′ ∈ C↓v ∪ C↓u, we have W [w, c′] = 0. For the rest of c′,
B′t[w, c

′] = B′t[v, c
′] = Bt[u, c

′] = Bt[w, c
′], so all the

The Complexity of k-Means Clustering when Little is Known

summands corresponding to w coincide. Similarly they
coincide for w 6= u with ϕ′(w) = ϕ′(u). In particular,
B′t[vi, c] = Bt[vi, c] for every vi 6∈ {u, v}, i ∈ [m]. The
only difference may occure in the summands correspond-
ing to u and v. Moreover, the only coordinate c′ where
W [v, c′] = 1 and B′t[v, c

′] 6= Bt[v, c
′], is c′ = c, similarly

for u. So comparing pwd(Bt, t) and pwd(B′t, t) is in fact
comparing (A[v, c]−Bt[v, c])2 + (A[u, c]−Bt[u, c])2 and
(A[v, c]−Bt[u, c])2 +(A[u, c]−Bt[v, c])2. It is easy to see
that the second sum is not larger then the first, see Figure 3
for the illustration.

Figure 3. Red and green segments represent contribution of v and
u along c into the total sum, for Bt and B′

t correspondingly. For
any arrangement of A[u, c], A[v, c], Bt[u, c] and Bt[v, c], the sum
of squares of green segments is not larger then the sum of squares
of red ones.

In fact, Claim 2 allows us to assume without loss of general-
ity that every cluster intersects the set of closed children of
c by some v(i1,i2], i1 ≤ i2. Indeed, pick any closed children
vi and vi′ of c with i < i′, then A[vi, c] ≤ A[vi′ , c]. We
will say that the pair (vi, vi′) is bad if one of the following
holds:

• Bt[vi, c] > Bt[vi′ , c];

• Bt[vi, c] = Bt[vi′ , c], ϕ(vi) 6= ϕ(vi′) but there exists
i′′ > i′ such that ϕ(vi) = ϕ(vi′′).

Observe that if there are any bad pairs, we can chose one
of them so that application of the Claim 2 to it decreases
the number of bad pairs. Applying Claim 2 iteratively until
there remain no bad pairs, we finally obtain a witness B∗t

of Rt(p0) = τ with cluster-assignment ϕ∗ such that any
cluster of ϕ∗ intersects the set of closed children of c in
some v(i1,i2]. Further we assume B∗t = Bt, ϕ∗ = ϕ. By op-
timality ofBt, we conclude that

∑
u∈[v]W [u, c] ·(A[u, c]−

Bt[u, c])
2 = ∆c([v]) for every [v] ∈ [p∗]. Every such case

is captured by the computation scheme of the dynamic table
M, so we haveM(m, [p], k0cl) ≤

∑
[v]∈[p∗] ∆c([v]) where

p is the restriction of p∗ toD∗\v(j,m] and k0cl = |[p∗]|−|[p]|.
Let Bi be the restriction of Bt to rows Vi ∪V ↓i and columns
C↓i , i ∈ [m]. Then p∗|Vi

is vi-partition of Bi and hence in
our algorithm

R0
t (p0) ≤

∑
i∈[m]

Rvi(p∗|Vi
) +M(m, [p], k0cl)

≤
∑
i∈[m]

pwd(Bi, vi) +
∑

[v]∈[p∗]

∆c([v])

= pwd(Bt, t) = τ.

It remains to consider the case where t = v is a vector
with children c1, . . . , cm in T , where c1, . . . , cj are open
and the rest are closed. We will use the notations Vi = Vci ,
Ci = Cci , V

↓
i = V ↓ci and C↓i = C↓ci , i ∈ [m]. For every

p0 ∈ Pt, we initiate by setting Rt(p0) = ndMA + 1 and
then branch over equivalence relations p on

⋃
i∈[j] Vi ∪

{v} ⊇ Vt such that |[p]| ≤ k and p|Vt = p0. In every branch
we set R0

v(p0) := min(R0
v(p0),

∑
i∈[m]Rci(pi)) where

pi = p|Vi for i ∈ [j] and pi = {(v, v)} for i ∈ [m] \ [j].

For correctness, assume that in our algorithm R0
v(p0) =

τ =
∑
i∈[m]Rci(pi) and let Bi be the witness of Rci(pi).

We define ϕ on the domain of p and with values in [k]
by setting ϕ(u) = ϕ(w) if and only if (u,w) ∈ p. Re-
call that pi = p|Vi

for i ∈ [j] and pi = {(v, v)} for
i ∈ [m] \ [j], so there exist cluser-assignments ϕi w.r.t.
Bi which agree with ϕ on intersections of their domains.
Sets of columns of Bi are pairwise disjoint, so there
exists a composition matrix Bt with cluster-assignment⋃
i∈[m] ϕi = ϕ, row labels

⋃
i∈[m](Vi ∪ V

↓
i) = Vt ∪

V ↓t and column labels
⋃
i∈[m] C

↓
i = C↓t . Let us com-

pute pwd(Bt, t) =
∑
u∈Vt∪V ↓t

∑
c∈C↓t

W [u, c] · (A[u, c]−
Bt[u, c])

2. Here C↓t = ti∈[m]C
↓
i and W [u, c] = 0 when-

ever c ∈ C↓i and u 6∈ Vi ∪ V ↓i . Therefore pwd(Bt, t) =∑
i∈[m]

∑
u∈Vi∪V ↓i

∑
c∈C↓i

W [u, c]·(A[u, c]−Bi[u, c])2 =∑
i∈[m] pwd(Bi, vi) =

∑
i∈[m]Rci(pi) = τ . Hence Bt

witnesses thatRv(p) ≤ τ .

For the converse, assume thatRt(p0) = τ and Bt is a ma-
trix witnessing this. Let ϕ be the cluster-assignment w.r.t.
Bt such that for every u, v ∈ Vt, ϕ(u) = ϕ(v) if and only
if (u, v) ∈ p0. We extend p0 to the equivalence relation p
on domain

⋃
i∈[j] Vi ∪ {v} defined as follows: (u, v) ∈ p if

and only if ϕ(u) = ϕ(v). Let Bi be the restriction of Bt to

The Complexity of k-Means Clustering when Little is Known

rows Vi ∪ V ↓i and columns C↓i , i ∈ [m], then pi = p|Vi

is ci-partition of Bi, i ∈ [j]. Hence in our algorithm
R0
t (p0) ≤

∑
i∈[j]Rci(pi) +

∑
i∈[m]\[j]Rci({(v, v)}) ≤∑

i∈[m] pwd(Bi, ci) = pwd(Bt, t) = τ . Hence the re-
sulting record Rt = R0

t is correct, which concludes the
correctness proof of the algorithm.

Let us estimate the time for processing coordinates t = c.
For a fixed c with mc children, we branch over equivalence
relations p on domain

⋃
i∈[j]0 Vi ⊆ δ(c) ∪

⋃
i∈[j] δ(vi). By

Observation 8, the size of the domain is upper-bounded
by O(lfen(GI)), so there are at most lfen(GI)

O(lfen(GI))

branches. In every branch, we start from computing
∆c([v]∪ v(i′,i]) and ∆c(v(i′,i]) for each [v] ∈ [p] and i′ < i
from [mc] \ [j]. Taking into account Observation 5, all the
computations can be performed in time at most m2

c · |[p]|.
After this, every entry of M can be calculated in time
O(mc · |[p]|) ≤ mc · O(lfen(GI)). M has size at most
mck · 2|[p]| ≤ mck · 2O(lfen(GI)) and therefore can be com-
puted for all the branches in time m2

ck · lfen(GI)
O(lfen(GI)).

As
∑
c∈CA

m2
c ≤ (

∑
c∈CA

mc)
2 ≤ n2, processing all the

coordinates c takes time of at most n2k ·lfen(GI)
O(lfen(GI)).

Record for a vector v with mv children can be com-
puted in mv · lfen(GI)

O(lfen(GI)), which yields the time
d · lfen(GI)

O(lfen(GI)) for processng all the vectors. There-
fore the total runnung time of the algorithm is upper-
bounded by (kn2 + d) · lfen(GI)

O(lfen(GI)).

6. Concluding Remarks
While our algorithmic results are specifically designed to
deal with MEANS CLUSTERING WITH MISSING ENTRIES,
it would be interesting to see whether the approaches and
techniques developed here can be applied to other clustering
variants or, e.g., the related task of low-rank matrix comple-
tion. Still, on the theoretical side the by far most prominent
problem that is relevant to this research direction is the
complexity of k-MEANS CLUSTERING for real-valued ma-
trices when parameterized by the number of columns. A
W[1]-hardness result for this problem would immediately
exclude the existence of a fixed-parameter algorithm for
REAL-VALUED MCME parameterized by the incidence
treewidth of the mask, while a fixed-parameter algorithm
could potentially open up the way towards tractability.

It would also be interesting to see how the considered spar-
sity parameters behave in practical settings. In particular,
even though direct implementations of our exact algorithms
with runtime guarantees are unlikely to outperform state-
of-the-art heuristics, it may be possible to exploit these
parameters to guide or otherwise improve existing methods.

Acknowledgements
Robert Ganian, Thekla Hamm, Viktoriia Korchemna, and
Kirill Simonov acknowledge support by the Austrian Sci-
ence Fund (FWF, projects Y1329 and P31336). Karolina
Okrasa acknowledges support by the European Research
Council, grant agreement No 714704; parts of this work
were performed while visiting TU Wien, Vienna, Austria.

References
Aloise, D., Deshpande, A., Hansen, P., and Popat, P. Np-

hardness of euclidean sum-of-squares clustering. Mach.
Learn., 75(2):245–248, 2009.

Bodlaender, H. L. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Discret.
Math., 25(6):1305–1317, 1996.

Bodlaender, H. L., Jansen, B. M. P., and Kratsch, S. Prepro-
cessing for treewidth: A combinatorial analysis through
kernelization. SIAM J. Discret. Math., 27(4):2108–2142,
2013.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin,
F. V., Lokshtanov, D., and Pilipczuk, M. A ckn 5-
approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

Cohen-Addad, V., de Mesmay, A., Rotenberg, E., and
Roytman, A. The bane of low-dimensionality clus-
tering. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pp. 441–456. SIAM, 2018. ISBN 978-1-6119-7503-
1. URL http://dl.acm.org/citation.cfm?
id=3174304.3175300.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov,
D., Marx, D., Pilipczuk, M., Pilipczuk, M., and
Saurabh, S. Parameterized Algorithms. Springer,
2015. ISBN 978-3-319-21274-6. doi: 10.1007/
978-3-319-21275-3. URL https://doi.org/10.
1007/978-3-319-21275-3.

Dahiya, Y., Fomin, F. V., Panolan, F., and Simonov, K.
Fixed-parameter and approximation algorithms for PCA
with outliers. In Meila, M. and Zhang, T. (eds.), Proceed-
ings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Re-
search, pp. 2341–2351. PMLR, 2021.

Downey, R. G. and Fellows, M. R. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer,
2013.

http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

The Complexity of k-Means Clustering when Little is Known

Drineas, P., Frieze, A. M., Kannan, R., Vempala, S. S., and
Vinay, V. Clustering large graphs via the singular value
decomposition. Mach. Learn., 56(1-3):9–33, 2004.

Dvorák, P., Eiben, E., Ganian, R., Knop, D., and Ordyniak,
S. The complexity landscape of decompositional param-
eters for ILP: programs with few global variables and
constraints. Artif. Intell., 300:103561, 2021.

Eiben, E., Fomin, F. V., Golovach, P. A., Lochet, W.,
Panolan, F., and Simonov, K. EPTAS for k-means
clustering of affine subspaces. In Marx, D. (ed.), Pro-
ceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2021, Virtual Conference, Jan-
uary 10 - 13, 2021, pp. 2649–2659. SIAM, 2021a. doi:
10.1137/1.9781611976465.157. URL https://doi.
org/10.1137/1.9781611976465.157.

Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., and Szei-
der, S. The parameterized complexity of clustering
incomplete data. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 7296–7304. AAAI Press,
2021b. URL https://ojs.aaai.org/index.
php/AAAI/article/view/16896.

Fellows, M. R., Protti, F., Rosamond, F. A., da Silva, M. D.,
and Souza, U. S. Algorithms, kernels and lower bounds
for the flood-it game parameterized by the vertex cover
number. Discret. Appl. Math., 245:94–100, 2018.

Fomin, F. V., Golovach, P. A., and Panolan, F. Parameter-
ized low-rank binary matrix approximation. In Chatzi-
giannakis, I., Kaklamanis, C., Marx, D., and Sannella,
D. (eds.), 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs,
pp. 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

Fomin, F. V., Golovach, P. A., and Simonov, K. Parame-
terized k-clustering: Tractability island. J. Comput. Syst.
Sci., 117:50–74, 2021.

Ganian, R. and Korchemna, V. The complexity of bayesian
network learning: Revisiting the superstructure. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 430–442. Curran
Associates, Inc., 2021.

Ganian, R. and Ordyniak, S. The complexity landscape of
decompositional parameters for ILP. Artif. Intell., 257:
61–71, 2018.

Ganian, R. and Ordyniak, S. Solving integer linear programs
by exploiting variable-constraint interactions: A survey.
Algorithms, 12(12):248, 2019. URL https://doi.
org/10.3390/a12120248.

Ganian, R., Kanj, I. A., Ordyniak, S., and Szeider, S. Pa-
rameterized algorithms for the matrix completion prob-
lem. In Dy, J. G. and Krause, A. (eds.), Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 1642–1651. PMLR,
2018. URL http://proceedings.mlr.press/
v80/ganian18a.html.

Gaspers, S. and Najeebullah, K. Optimal surveillance of
covert networks by minimizing inverse geodesic length.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, pp. 533–540. AAAI Press, 2019.

Grüttemeier, N., Komusiewicz, C., and Morawietz, N. Effi-
cient bayesian network structure learning via parameter-
ized local search on topological orderings. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pp. 12328–
12335. AAAI Press, 2021.

Inaba, M., Katoh, N., and Imai, H. Applications of weighted
Voronoi diagrams and randomization to variance-based k-
clustering. In Proceedings of the 10th annual Symposium
on Computational Geometry (SoCG), pp. 332–339. ACM,
1994.

Kloks, T. Treewidth: Computations and Approximations.
Springer, Berlin, 1994.

Koana, T., Froese, V., and Niedermeier, R. Parameterized
algorithms for matrix completion with radius constraints.
In Gørtz, I. L. and Weimann, O. (eds.), 31st Annual Sym-
posium on Combinatorial Pattern Matching, CPM 2020,
June 17-19, 2020, Copenhagen, Denmark, volume 161
of LIPIcs, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

Koana, T., Froese, V., and Niedermeier, R. Binary matrix
completion under diameter constraints. In Bläser, M. and
Monmege, B. (eds.), 38th International Symposium on
Theoretical Aspects of Computer Science, STACS 2021,
March 16-19, 2021, Saarbrücken, Germany (Virtual Con-
ference), volume 187 of LIPIcs, pp. 47:1–47:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

Lloyd, S. P. Least squares quantization in PCM. IEEE Trans.
Inf. Theory, 28(2):129–136, 1982.

https://doi.org/10.1137/1.9781611976465.157
https://doi.org/10.1137/1.9781611976465.157
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://doi.org/10.3390/a12120248
https://doi.org/10.3390/a12120248
http://proceedings.mlr.press/v80/ganian18a.html
http://proceedings.mlr.press/v80/ganian18a.html

The Complexity of k-Means Clustering when Little is Known

Mertzios, G. B., Nichterlein, A., and Niedermeier, R. The
power of linear-time data reduction for maximum match-
ing. Algorithmica, 82(12):3521–3565, 2020.

Moshkovitz, M., Dasgupta, S., Rashtchian, C., and Frost,
N. Explainable k-means and k-medians clustering. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pp. 7055–7065. PMLR, 2020.

Nesetril, J. and de Mendez, P. O. Sparsity - Graphs, Struc-
tures, and Algorithms, volume 28 of Algorithms and Com-
binatorics. Springer, 2012.

Ordyniak, S. and Szeider, S. Parameterized complexity
results for exact bayesian network structure learning. J.
Artif. Intell. Res., 46:263–302, 2013.

Robertson, N. and Seymour, P. D. Graph minors. i. ex-
cluding a forest. J. Comb. Theory, Ser. B, 35(1):39–61,
1983.

Robertson, N. and Seymour, P. D. Graph minors. III. planar
tree-width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

Samer, M. and Szeider, S. Fixed-parameter tractability.
In Biere, A., Heule, M., van Maaren, H., and Walsh, T.
(eds.), Handbook of Satisfiability, volume 185 of Fron-
tiers in Artificial Intelligence and Applications, pp. 425–
454. IOS Press, 2009.

Samer, M. and Szeider, S. Constraint satisfaction with
bounded treewidth revisited. J. Comput. Syst. Sci., 76(2):
103–114, 2010.

Simonov, K., Fomin, F. V., Golovach, P. A., and Panolan, F.
Refined complexity of PCA with outliers. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 5818–5826. PMLR, 2019.

Wang, S., Li, M., Hu, N., Zhu, E., Hu, J., Liu, X., and
Yin, J. K-means clustering with incomplete data. IEEE
Access, 7:69162–69171, 2019. doi: 10.1109/ACCESS.
2019.2910287.

