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APPENDIX A PROOFS

Proposition 1 (Properties). Let f : R” x RY — RF be
a MAP-trained L-layer network under dataset D, and let
Omap be the MAP estimate. Suppose f : R™ x R? — R and

Ovap € R? are obtained via the previous construction, and
L is the resulting loss function under f.

(a) For an arbitrary input x € R™, we have f(ag §MAP) =
f(z; Onvap).

(b) The gradient oféw.nt. the additional weights in W)
is non-linear in 0.

Proof. As the first order of business, for each layer [ =
1,..., L we denote the hidden units and pre-activations of
fas h® and @V, respectively.

We begin with (a). Let x € R" be arbitrary. We need to
show that the output of f, i.e. the last pre-activations a(%),
is equal to the last pre-activations a(™) of f. For the first
layer, we have that
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For every layer ! = 1,..., L —1, we denote the hidden units

as the block vector
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Now, for the intermediate layer { = 2, ..., L—1, we observe
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Finally, for the last layer, we get
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and thus we have the desired invariance.

For part (b), we denote the additional (zero) weights in
W&E) by W& Tt is clear from (3) that the gradient
Vi aP) is given by h(E=1). Hence, by chain rule we
have

vaE = (Vo Z) (VWu) a(L))

= (V. L) R
By observing (1) and (2), along the fact that the non-linearity
¢ is used in the forward pass, it is clear that h(“~1) is non-
linear in 6 = (Wl(l), b Wl(L_l), WQ(L_U, b1
and therefore Vi, £ also is. O

Proposition 2 (Predictive Uncertainty). Suppose f : R™ x
R? — R is a real-valued network and f is as constructed
above. Suppose further that diagonal Laplace-approximated
posteriors N (Ouap, diag(c)), N (Omap, diag(c)) are em-
ployed for f and f, respectively. Under the linearization (4),
for any input x € R™, the variance over the output f(x;0)
is at least that of f(x;0).
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Algorithm 2 Adding LULA units.
Input:

L-layer net with a MAP estimate fyap =

(WM AP b](vlI \p)E_1- Sequence of non-negative integers

(ml)lzl'
1. fori=1,...,L—1do
2: vec Wl(l) ~ p(vec /Wl(l)) > Draw from a prior
3: vec ﬁ/\z(l) ~ p(vec /Wg(l)) > Draw from a prior
4: O ~ p(g(l)) > Draw from a prior
l
() Wl\(/lgP 0
5 Wiiap = >0 e RM>mi-1
w® 0
Wy Wy
1
=) b](V[Z\P
6 bniap -
D
7: end for

8 WL, = (WL, 0) >0 € RFXme1

L L
9: bl(\/IA)P = bI(\/IA)P

~ (1 U
10: Opap = (Wl\(/[/)xpv bl(\/IZ\P)lL:I

11: return §M AP

Proof. Let us denote the random variable taking values in
the augmented parameter space by 6. W.lo. g. we re-arrange
fas (07,07)T where f € R~ contains the weights cor-
responding to the the additional LULA units. If g(x) is the
gradient of the output f(x; ) w.r.t. 6 at Oyap, then the gra-

dient of f(x;0) w.r.t. 6 at Oyap, say g(x), can be written
as the concatenation (g(z)",g(x)")" where g(x) is the

corresponding gradient w.r.t. 8. Furthermore, diag(c) has
diagonal elements

T
(0’11,..., 8J7d’gid) = (O'T,/O'\T)T.

Let « € R” be an arbitrary input. Denoting the output
variance of f(x;0) by v(z), we have

U(z) = g(x) " diag(5)g(x)

Odd; 011y -+ -,

ag(o
(

= (l”)leag 0)g(z) +3(z) " diag(5)g(z)
=v(z)
> v(x),
since diag(c) is positive-definite by definition. O

APPENDIX B IMPLEMENTATION

We summarize the augmentation of a network with LULA
units in Algorithm 2. Note that the priors of the free parame-

Table 4: UQ performances on UCI datasets. Values are the
average (over all data points and ten training-prediction
trials) predictive standard deviations, i.e. the standard devi-
ation of the Gaussian (5). Lower is better for test data and
vice-versa for outliers. By definition, MAP does not have
(epistemic) uncertainty.

Test set | Outliers 1
Dataset DE LA LA-LULA DE LA LA-LULA
Housing 5.82 1.26 1.37 145.33 222.76 377.92
Concrete 8.11 1044 16.89 964.63  30898.92 83241.42
Energy 4.40 1.05 1.08 126.11 1070.09 5163.53
Kin8nm 0.10 0.14 0.18 2.12 0.80 2.12
Power 19.85 2.85 320 12235.87 4148.98 221287.80
Wine 0.64 1.15 1.22 28.57 186.76 21383.17
Yacht 5.17 2.08 2.78 187.41 5105.69 13119.99

Table 5: Predictive performances on UCI regression datasets
in terms of average test log-likelihood. The numbers re-
ported are averages over ten training-prediction runs along
with the corresponding standard deviations. The perfor-
mances of LULA are similar to LA’s. The differences be-
tween their exact values are likely due to MC-integration.

Dataset MAP DE LA LA-LULA
Housing ~ -2.794+0.012 -3.045+0.009  -3.506+0.055  -3.495+0.047
Concrete  -3.409+0.036 -3.9514+0.062  -4.730£0.205  -4.365+0.094
Energy -2.270+£0.128 -2.673£0.015  -2.707£0.030 ~ -2.698+0.014
Kin8nm -0.923+0.000 1.086+£0.022  -0.9654+0.003 ~ -0.9694-0.003
Power -3.154+0.002  -54.804+7.728  -3.273+0.015  -3.27740.024
Wine -1.190+0.014 -1.038+£0.018  -1.624+0.075 = -1.630%0.092
Yacht -1.835£0.053 -3.2724£0.079  -2.509£0.367 ~ -2.663£0.276

ters /V[7(l), v (lines 2 and 3) can be chosen as independent
Gaussians—this reflects the standard procedure for initializ-
ing NNs’ parameters.

APPENDIX C ADDITIONAL RESULTS

C.1 TOY DATASET

To show the effectiveness of LULA training, we compare
the standard Laplace, untrained LULA, and trained LULA
in Fig. 6. As predicted by Proposition 2, untrained LULA
increases predictive uncertainty estimates. However, this
increase of uncertainty is not well-adapted to the data (b).
Training 0 using (9) make it more calibrated to both inliers
and outliers (c).

C.2 UCI REGRESSION

To validate the performance of LULA in regressions, we
employ a subset of the UCI regression benchmark datasets.
Following previous works, the network architecture used
here is a single-hidden-layer ReLU network with 50 hidden
units. The data are standardized to have zero mean and
unit variance. We use 50 LULA units and optimize them
for 40 epochs using OOD data sampled uniformly from
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Figure 6: The effect of LULA training.

[—10,10]™. For LA and LULA, each prediction is done via
MC-integration with 100 samples. For the evaluation of
each dataset, we use a 60-20-20 train-validation-test split.
We repeat each train-test process 10 times and take the
average.

In Table 4 we report the average predictive standard devi-
ation for each dataset. Note that this metric is the direct
generalization of the 1D uncertainty estimates in Fig. 1 to
multi-dimension. The test outliers are sampled uniformly
from [—10, 10]™. Note that since the inlier data are centered
around the origin and have unit variance, they lie approx-
imately in a Euclidean ball with a radius of 2. Therefore,
these outliers are far away from them. Thus, naturally, high
uncertainty values over these outliers are desirable. Uncer-
tainties over the test sets are generally low for all methods,
although LULA has slightly higher uncertainties compared
to the base LA. However, LULA yield much higher un-
certainties over outliers across all datasets, significantly
more than the baselines. Moreover, in Table 5, we show
that LULA maintains the predictive performance of the base
LA. Altogether, they imply that LULA can detect outliers
better than other methods without costing the predictive
performance.

C.3 IMAGE CLASSIFICATION

To complement Fig. 5, we present the ECE and Brier score
results on CIFAR-10-C in Fig. 7. As observed in the main
text, LULA consistently improves the base LA. Furthermore,
LULA is competitive to the state-of-the-art DE, especially
in higher severity levels.

We furthermore present the detailed results on OOD de-
tection in terms of MMC, FPR95 (Tables 6 and 7), and
additionally area under ROC (AUROC) and precision-recall
(AUPRC) curves (Tables 8 and 9). We use standard datasets:
EMNIST, KMNIST, EMNIST, and LSUN. Furthermore, we
use the following artificial datasets:

* GRAYCIFARI10: obtained by converting CIFAR-10
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Figure 7: Summarized ECE and Brier score at each severity
level of the CIFAR-10-C dataset.

test data into grayscale images.

* UNIFORMNOISE: obtained by uniformly sampling
from the hypercube [0, 1]™.

* SMOOTHEDNOISE: obtained by permuting, blurring,
and contrast re-scaling the original test images [Hein
etal., 2019].

* FMNIST3D: obtained by converting the grayscale
FMNIST images into 3-channel images.

We observe that LULA consistently improves the base LA.
Especially, LULA makes the confidence estimates over
OQOD data lower without introducing underconfidence on
in-distribution data.



Table 6: Detailed MMC results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST 99.8 99.84+0.0 99.7 99.8£0.0 99.7£0.0 98.3£0.0 99.3+0.0 99.24+0.0 99.4+0.0 71.5+£0.4
EMNIST 84.6 86.240.0 82.8 87.440.0 84.1£0.0 56.6£0.5 73.7£0.2 67.4+0.3 81.240.0 31.74£0.2
KMNIST 71.3 73.84+0.0 67.8 76.1+0.0 70.54+0.0 34.7£0.4 56.4+0.3 45.6£0.5 66.5+0.0 23.7£0.1
FMNIST 76.7 79.0£0.0 69.6 80.1£0.0 75.7£0.0 37.6£0.9 57.3+£0.3 50.3+1.2 32.6+0.0 22.440.1
GrayCIFAR10 68.2 71.0£0.0 554 66.7£0.0 66.940.0 32.4£0.6 46.2£0.2 42.54+0.7 10.2+0.0 22.140.2
UniformNoise 82.0 83.7£0.1 67.4 94.610.1 75.7+0.4 29.4£0.7 36.0+£0.9 39.6%1.2 10.1£0.0 21.7£0.7
Noise 99.4 99.7£0.0 99.5 99.91+0.0 99.4+0.0 85.6+1.5 96.4£0.2 95.94+0.6 10.440.0 14.24+0.1
SVHN 98.5 97.1£0.0 98.1 97.5£0.0 98.5+0.0 97.5£0.0 91.8+0.5 95.94£0.1 98.4+0.0 98.4+0.0
CIFAR10 72.5 62.44+0.0 58.7 58.1+0.0 71.8£0.0 60.8£0.1 48.5£0.2 52.3+0.4 10.7£0.0 13.3£0.2
LSUN 73.1 63.940.0 59.0 59.6+0.0 73.0£0.0 61.5£0.2 48.2+0.3 52.5+0.5 10.3£0.0 12.8+0.3
CIFAR100 73.4 63.5+0.0 60.0 59.6+0.0 72.7£0.0 61.6£0.1 48.9£0.2 52.9+0.4 11.3£0.0 14.0+0.3
FMNIST3D 74.6 64.84+0.0 64.1 61.440.0 74.0£0.0 65.2£0.2 53.3+04 57.6+0.4 10.6+0.0 13.7£0.2
UniformNoise 79.1 70.8+0.1 54.6 63.8+0.2 77.8£0.2 62.5£0.6 43.9£0.5 51.6+0.3 10.0£0.0 12.4+0.3
Noise 64.2 55.1+0.2 533 51.7+0.2 63.5£0.2 53.6£0.1 41.3£0.2 45.8+£0.4 55.3+0.1 54.3+0.1
CIFAR10 97.2 94.84+0.0 96.1 95.7£0.0 96.9£0.0 96.2£0.0 90.6+0.0 83.4+0.2 97.3£0.0 97.0£0.0
SVHN 70.6 57.240.0 57.2 52.6+0.0 67.7£0.1 63.2£0.3 42.1£0.5 35.0£0.5 56.1£0.0 53.3+0.1
LSUN 74.8 61.5+0.0 65.6 61.84+0.0 73.4£0.0 68.7£0.2 51.3+0.3 40.5£0.4 66.2+0.0 64.4+0.1
CIFAR100 8.7 67.1£0.0 71.2 68.3+0.0 77.3£0.0 73.4£0.1 56.6+0.1 46.6£0.2 78.1£0.0 76.6£0.0
FMNIST3D 68.8 53.7+0.0 60.7 54.74+0.0 66.5+0.1 61.2+0.1 40.4£0.4 32.94+0.3 61.4+0.0 59.24+0.0
UniformNoise 88.0 71.5+0.1 89.3 82.240.0 79.5+0.6 62.6£1.6 30.7+0.6 25.24+0.2 10.1£0.0 12.2£0.1
Noise 64.5 52.240.2 53.7 52.6+0.1 59.6+0.2 53.8+0.3 35.5+0.4 30.3+0.4 48.6+0.3 46.4£0.2
CIFAR100 85.7 76.8+£0.0 81.5 80.6+0.0 80.410.0 72.6£0.1 75.7+£0.1 63.8+0.2 86.54+0.0 81.2+0.1
SVHN 61.3 42.0£0.0 475 42.240.0 52.940.1 40.7£0.5 46.8£0.6 33.0+0.8 63.7+0.0 54.6+0.2
LSUN 64.9 47.8£0.0 51.7 49.3£0.0 56.0£0.2 46.1£0.1 49.1£0.4 37.5+0.8 58.4+0.0 50.8+0.3
CIFAR10 67.2 51.84+0.0 56.1 54.440.0 58.940.1 49.8+0.1 52.6+0.1 41.6£0.2 68.8+0.0 59.7+£0.1
FMNIST3D 56.4 35.7+0.0 45.8 39.24+0.0 49.0+£0.1 40.1£0.3 42.7£0.2 32.6+0.3 53.940.0 46.2£0.2
UniformNoise 68.3 56.5+0.1 29.5 43.7+£0.1 45.3+0.5 33.0+0.8 36.5+0.9 24.7+0.8 1.7£0.0 1.7£0.0
Noise 68.7 55.3+0.2 50.5 50.24+0.3 58.1£0.2 36.3+1.0 51.2+1.0 29.0+1.4 64.5+0.2 53.8+0.4

Table 7: Detailed FPR9S5 results. Values are averages over five prediction runs.

Dataset MAP  MAP-Temp DE  DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - - - - - -
EMNIST 239 24.040.0 223 224400 239400 = 236402 = 24.0402 23.5+0.1 275400 235406
KMNIST 24 24400 1.8 23400 24400 0.8-0.0 1.840.2 1.040.1 51400 3.6404
FMNIST 24 24400 1.1 1.840.0 23400 0.8-£0.0 1.540.1 0.9+0.1 0.2:40.0 1.840.2
GrayCIFAR10 0.1 0.0£0.0 0.0 0.0£0.0 0.0-£0.0 0.0-£0.0 0.0-£0.0 0.0£0.0 0.0£0.0 0.8-£0.2
UniformNoise 1.1 1.040.0 0.0 0.2:£0.0 0.3£0.0 0.0-£0.0 0.0-£0.0 0.0£0.0 0.0£0.0 0.9+0.5
Noise 0.1 0.1:£0.0 0.2 0.2+40.1 0.1:£0.0 9.4+3.0 7622 14403 0.0£0.0 0.2-£0.2
SVHN - - - - - - - - - -
CIFAR10 24.0 23.240.0 113 141400 238401 207402  23.7+18 19.6:0.4 0.0£0.0 0.0-£0.0
LSUN 257 253400 1.0 163400 255402 213405 222422 19.740.8 0.0£0.0 0.0-£0.0
CIFAR100 255 24.840.0 133 168400  253+0.1 219402  243+16 20.5+0.4 0.2:£0.0 0.12£0.0
FMNIST3D 297 28.940.0 225 225400 298401 = 294403  33.0%1.6 292403 0.0£0.0 0.0£0.0
UniformNoise 332 34.1+03 54 184403 317403  195+£1.1 14.0£2.1 15.60.6 0.0£0.0 0.0£0.0
Noise 175 17.04£0.5 78 100+£0.5  17.1+£05  13.6+03 147417 12.140.7 10.3£0.1 10.240.2
CIFAR10 - - - - - - - - - -
SVHN 417 354400 250  20.1£0.0 389402  37.6+05 19.6£0.8 204+13 228400  20.920.1
LSUN 50.7 45.740.0 453 393400 509402 = 489405 = 419402 374+1.1 383400 384402
CIFAR100 60.1 55.940.0 546 517400 597403 587402 514404 50.4£0.4 580400  57.5402
FMNIST3D 40.4 313400 352 27.0400  39.0+£03  36.3+03 19.14£0.6 17.440.4 300400 292402
UniformNoise ~ 89.0 81.6+0.5 999  993+0.1 739417 313459 0.12£0.1 0.7£0.3 0.0£0.0 0.0-£0.0
Noise 36.6 31.8+0.5 257  31.6£02 289404 243407 9.9:0.7 11.0£1.0 154402 140403
CIFAR100 - - - - - - - - - -
SVHN 73.8 67.940.0 621 582400 733403 688406 724409 67.5+0.9 759400 741403
LSUN 81.7 81.740.0 730 753400 824406 821404 = 817406 81.0+0.8 69.740.0  71.040.8
CIFAR10 83.0 81.540.0 772 782400 829402 828403 823402 82.740.2 824400  81.5+0.2
FMNIST3D 70.2 59.540.0 643 588400  70.6+02  69.1£06 = 69.140.3 67.840.9 63.14£00 629404
UniformNoise 977 100.04£0.0 157  99.5+0.1  89.1+1.1 712443  76.9+3.1 57.5+5.6 0.0+0.0 0.0+£0.0

Noise 74.2 72.0£0.5 63.3 63.8+0.4 71.6£0.5 57.1£1.8 69.9+0.5 543+1.6 66.6+0.3 61.6+0.8




Table 8: Detailed AUROC results. Values are averages over five prediction runs.

Dataset MAP  MAP-Temp DE  DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - - - - - -

EMNIST 89.5 89.5£0.0  89.8  89.6+£0.0 89500  90.64+02  89.6+0.1 90.3£0.0 929400  93.240.1
KMNIST 98.9 989400  99.1 989400 989400 995400  99.3+0.0 99.5£0.0 98.6£0.0  98.940.1
FMNIST 98.8 98.8+0.0 992 99.0+£0.0 989400 993400  99.340.0 99.3+0.1 997400  99.240.0
GrayCIFARIO ~ 99.7 99.6+00 998  99.84£0.0 997400  99.6+00  99.8+0.0 99.7£0.0 100.0£0.0  99.340.0
UniformNoise ~ 99.1 992400 998  99.1£0.0 995400  99.840.0  100.0+0.0 99.8-£0.0 100.04£0.0  99.440.1
Noise 97.4 97.3£00 969  96.8£00 974400  963+03  96.7+0.1 96.7£0.1 100.0£0.0 ~ 99.940.0
SVHN - - - - - - - - - -

CIFARI0 95.2 953400 977 972400 953400  96.240.1 95.5+0.3 96.5£0.0 100.0£0.0  100.0£0.0
LSUN 94.9 949400 979 969400 949400  96.040.1 95.8+0.3 96.5+0.1 100.0+£0.0  100.040.0
CIFAR100 94.6 946+0.0 972 965400 947400 958400 953403 96.240.0 100.04£0.0  100.0£0.0
FMNIST3D 94.2 943+0.0 962  96.0+£00 942400  94.440.1 93.0+0.5 94.3+0.1 100.0+£0.0  100.040.0
UniformNoise ~ 93.8 93.40.1 985  96.5+0.0  94.1+0.1 = 96.6£02 = 97.4402 97.340.1 100.04£0.0  100.040.0
Noise 96.6 96.6=0.1 983  97.940.1  966+0.1 974400 = 972403 97.7+0.1 97.9+0.1 97.9+40.1
CIFAR10 - - - - - - - - - -

SVHN 94.6 953+0.0 966  97.1£00 949400  95.040.1 96.9+0.1 96.6-0.2 97.0£0.0  97.240.0
LSUN 92.5 93.540.0 937  943£00 925400  92.840.1 93.2+40.1 93.9+0.2 949400  94.940.0
CIFAR100 90.0 90.6+£0.0  91.1  91.6£0.0  90.1£0.0  90.1£00  90.240.1 90.0+£0.1 90.14£0.0  90.240.0
FMNIST3D 94.7 958+0.0 953 963400 949400 953400  97.0+0.1 97.240.1 959400  96.040.0
UniformNoise ~ 91.5 92.6+£0.0 886  91.0£0.0  93.6£0.1 962403  99.4+0.1 99.3+0.0 100.0+£0.0  100.040.0
Noise 95.2 95.7+40.1 96.6  959+0.1  96.0+0.1 = 96.7+0.1 98.1£0.1 98.0+0.1 97.1£0.1 97.4+0.1
CIFAR100 - - - - - = - - - -

SVHN 80.2 83.940.0 850 867400  80.5+0.1 835404  80.74+0.4 84.14+0.7 80.14£0.0 802402
LSUN 78.1 80.1+£0.0 825 827400  785+02  79.140.1 79.4-£0.4 79.8£0.9 837400 832402
CIFARI0 75.4 764400 787 786400 755400 754402  75.8+0. 75.3+40.2 754400  75.840.0
FMNIST3D 84.1 882400 866  89.1£0.0  83740. 841402  843+02 84.5+0.3 86.4+0.0  86.240.1
UniformNoise ~ 78.7 75.5+40.1 96.8  88.5+0.0  88.1+04 912406 904406 93.0+£0.6 100.04£0.0  100.040.0
Noise 69.3 715402 809  78.1+02  743+03 = 862409 = 75.54+09 87.0+1.4 751402 78.5404

Table 9: Detailed AUPRC results. Values are averages over five prediction runs.

Dataset MAP MAP-Temp DE DE-Temp LA LA-LULA LLLA LLLA-LULA OE OE-LULA
MNIST - - - - - - - - - -

EMNIST 673 67.240.0 670 665400  67.3+£02 = 697407  67.9404 69.10.3 84.5+£0.0  81.0+0.3
KMNIST 97.9 97.9+0.0 984  98.0400  98.0+0.0 995400  99.240.1 99.4+0.0 98.6+£0.0  99.0+0.0
FMNIST 98.3 98.4+0.0 989 985400 984400 993400  99.140.0 99.3+0.1 99.74£0.0  99.3+0.0
GrayCIFARI0  99.7 99.7+0.0 99.9 998400 997400 997400  99.840.0 99.7+0.0 100.0+£0.0  99.4+0.0
UniformNoise ~ 99.8 99.8+0.0 100.0 998400  99.940.0  100.040.0  100.040.0 100.0+0.0 100.0+£0.0 ~ 99.94+0.0
Noise 99.5 99.4+0.0 994 993400  99.5+0.0 99240  99.340.0 99.3+0.0 100.0+£0.0  100.040.0
SVHN - - - - - - - - - -

CIFAR10 97.8 97.8+0.0 99.1 988400  97.840.0 983400  98.140.2 98.5+0.0 100.04£0.0  100.040.0
LSUN 99.9 99.940.0 100.0 1000400  99.940.0 ~ 99.940.0  99.940.0 100.0+0.0 100.040.0  100.040.0
CIFAR100 97.4 97.3+0.0 98.8 984400 974400 980400 = 97.9402 98.3£0.0 100.04£0.0  100.040.0
FMNIST3D 97.4 97.440.0 985 983400  97.3+£00  97.5400  96.840.3 97.4+£0.0 100.04£0.0  100.040.0
UniformNoise ~ 99.4 99.340.0 99.9 997400 994400 997400  99.840.0 99.8+0.0 100.04£0.0  100.040.0
Noise 99.7 99.7+0.0 99.8 998400 997400  99.840.0  99.840.0 99.8+0.0 99.8+0.0  99.8+0.0
CIFAR10 - - - - - - - - - -

SVHN 91.5 92.240.0 945 950400  91.9+00 = 92.0+0.1 943402 93.9+0.3 943400  94.6+0.0
LSUN 99.7 99.7+0.0 99.7 998400 997400 997400  99.740.0 99.7+0.0 99.8+0.0  99.8+0.0
CIFAR100 90.3 90.6+0.0 912 916400 903400 903400  89.640.1 89.140.1 90.3+0.0  90.3%0.0
FMNIST3D 95.3 96.120.0 957 966400 955400 957400  97.040.1 97.240.1 96.140.0  96.24+0.0
UniformNoise ~ 98.1 98.4+0.0 975 98.1400  986+0.0  9924+0.  99.940.0 99.8+0.0 100.04£0.0  100.040.0
Noise 98.8 98.9+0.0 99.1  99.0400  99.0+£0.0 992400 = 99.540.0 99.5+0.0 992400  99.3+0.0
CIFAR100 - - - - - - - - - -

SVHN 67.8 72.340.0 731 754400 674402  717+10  66.54+0.9 71.9+1.6 69.4+0.0 683403
LSUN 99.0 99.10.0 992 992400  99.0+£0.0  99.0+£0.0  99.040.0 99.0+0.1 99.3+£0.0  99.24+0.0
CIFAR10 74.7 75.240.0 778 776400 744401 738402 746403 73.1+0.4 753400  753+0.1
FMNIST3D 85.0 88.540.0 87.5  89.6+£00  84340. 842402  84.5+02 84.34+0.3 87.1400  86.6%0.1
UniformNoise ~ 94.7 94.0+0.0 993 974400 972401 980402  97.8402 98.4-£0.1 100.04£0.0  100.040.0
Noise 90.2 91.0+0.1 942 92840.0 922401 = 962403 = 92.5404 96.440.5 92.140.1 93.3+0.2
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