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Abstract

Counterfactual prediction is a fundamental
task in decision-making. This paper introduces
G-Net, a sequential deep learning framework for
counterfactual prediction under dynamic time-
varying treatment strategies in complex lon-
gitudinal settings. G-Net is based upon g-
computation, a causal inference method for es-
timating effects of general dynamic treatment
strategies. Past g-computation implementa-
tions have mostly been built using classical re-
gression models. G-Net instead adopts a re-
current neural network framework to capture
complex temporal and nonlinear dependencies
in the data. To our knowledge, G-Net is the first
g-computation based deep sequential model-
ing framework that provides estimates of treat-
ment effects under dynamic and time-varying
treatment strategies. We evaluate G-Net using
simulated longitudinal data from two sources:
CVSim, a mechanistic model of the cardiovas-
cular system, and a pharmacokinetic simulation
of tumor growth. G-Net outperforms both clas-
sical and state-of-the-art counterfactual predic-
tion models in these settings.

Keywords: Counterfactual prediction; deep
sequential models; representation learning;
causal inference; dynamic treatment regimes; g-
computation.
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Introduction

Counterfactual prediction is a fundamental task in
decision-making that entails the estimation of ex-
pected future trajectories of variables of interest un-
der alternative courses of action given observed his-
tory. This is particularly important in clinical set-
tings, where physicians may have to choose between
multiple treatment strategies for their patients but
are unable to test all of them before making a de-
cision. Treatment strategies of interest are usu-
ally time-varying (meaning they comprise decisions
at multiple time points) and dynamic (meaning the
treatment decision at each time point is a function
of the history up to that time point). To aid in the
choice between competing dynamic treatment strate-
gies, it would be desirable to obtain counterfactual
predictions of a patient’s probability of adverse out-
comes were they to follow each alternative strategy
going forward given their observed covariate history
up to the current time.

As an example, consider the problem of fluid ad-
ministration to septic patients in intensive care units
(ICUs) Shahn et al. (2020). It is frequently neces-
sary for physicians to adopt strategies that admin-
ister large volumes of fluids to increase blood pres-
sure and promote blood perfusion through organs in
these patients; however, such strategies can lead to
fluid overload, which can have serious adverse down-
stream effects such as pulmonary edema. Fluid ad-
ministration strategies are time varying and dynamic
because at each time point, physicians decide the vol-
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ume of fluid to administer based on observed patient
history (e.g. blood pressure and volume of fluid al-
ready administered) up that time point. To aid in
the choice between competing dynamic fluid admin-
istration strategies, it would be desirable to obtain
counterfactual predictions of a patient’s probability
of fluid overload (and other outcomes of interest) were
they to follow each alternative strategy going forward
given their observed covariate history up to the cur-
rent time.

Counterfactual prediction is an inherently causal
task in that it must account for the causal effects
of following different treatment strategies. When
treatment strategies of interest are time-varying and
there is treatment-confounder feedback, so-called “g-
methods” (Hernan and Robins, 2020; Robins and
Hernan, 2009) are required to estimate their ef-
fects. G-methods include g-computation (Robins,
1986, 1987), structural nested models (Robins, 1994;
Vansteelandt and Joffe, 2014), and marginal struc-
tural models (Robins et al., 2000; Orellana et al.,
2008). Of these methods, g-computation is best
suited for estimating the effects of general dynamic
treatment strategies conditioned on high dimensional
patient histories (Daniel et al., 2013).

G-computation works by estimating the condi-
tional distribution of relevant covariates given covari-
ate and treatment history at each time point, then
producing Monte Carlo estimates of counterfactual
outcomes by simulating forward patient trajectories
under treatment strategies of interest. Critical to this
method is the use of regression models for estimat-
ing the covariates and outcomes at each time point
conditioned on observed history. While any regres-
sion models could theoretically be input to the g-
computation algorithm, most g-computation imple-
mentations have employed simple regression models
with limited capacity to capture complex temporal
and nonlinear dependence structures. To capture
long-term dependencies using such models, features
summarizing patient history must be hand chosen by
the analyst. In recent years, sequential deep learning
methods such as recurrent neural networks (RNNs)
have achieved state of the art performance in predic-
tive modeling of complex time series data while im-
posing minimal modeling assumptions and without
requiring custom feature construction.

In this paper, we propose G-Net, a sequential deep
learning framework tailored for g-computation.G-Net
admits the use of recurrent networks such as LSTMs
to model time-varying covariates and treatment in

a manner suitable for g-computation. The G-Net
framework supports a flexible representation learn-
ing architecture that allows for various configurations
that can be tailored to the task at hand. To our
knowledge, this is the first work to propose an RNN-
based approach to g-computation.

To evaluate G-Net, we used simulated data in
which counterfactual ground truth can be known.
Specifically, we used CVSim (Heldt et al., 2010), a
well established mechanistic model of the cardiovas-
cular system, to simulate counterfactual patient tra-
jectories under various dynamic fluid and vasopres-
sor administration strategies. Additionally, using a
simulated tumor growth data set, we compared G-
Net with recently introduced Counterfactual Recur-
rent Neural Networks (CRN) (Bica et al., 2020a), and
a Recurrent Marginal Structural Network (R-MSN)
(Lim et al., 2018), a recurrent neural network imple-
mentation of a history adjusted marginal structural
model for estimating static time-varying treatment
effects.

Overall, our contributions are three-fold: (1) We
introduce a novel network architecture tailored to
g-computation (Figure 1) that enables counterfac-
tual predictions under dynamic treatment strate-
gies using RNNs to provide estimates of individual
or population-level time-varying treatment effects.
(2) We provide a flexible sequential representation
learning framework for g-computation under mini-
mal modeling assumptions and evaluate alternative
representation learning approaches to summarize pa-
tient history in settings with complex temporal de-
pendencies. (3) Our simulation experiments demon-
strating the superior performance of G-Net compared
to other state-of-the-art approaches provide a tem-
plate for causal model evaluation using complex and
physiologically realistic simulated longitudinal data.

Related Work

Several recent works have proposed a deep learning
framework for counterfactual prediction from obser-
vational data, including Atan et al. (2018); Alaa et al.
(2017); Yoon et al. (2018). However, these studies
have mostly focused on learning point exposure as
opposed to time-varying treatment effects, which are
the focus of this paper.

G-computation for estimating time-varying treat-
ment effects was first proposed by Robins (1986). Il-
lustrative applications of the general approach are
provided in Taubman et al. (2009); Young et al.
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(2011), and summaries of g-computation (and other
“g-methods” for estimating time-varying treatment
effects) can be found in Hernan and Robins (2020).
The g-computation algorithm takes arbitrary regres-
sion models as inputs. While most applications
(e.g. Taubman et al. (2009); Young et al. (2011))
have thus far employed classical generalized linear
models, there is no conceptual barrier to using more
complex regression models. RNNs, and in particular
LSTMs, have achieved state of the art performance
on a wide variety of time series regression tasks,
including healthcare related tasks (Tomašev et al.,
2019; Xiao et al., 2018; Choi et al., 2016). However,
despite the success of RNNs for time series regres-
sion, we have not seen any “deep” implementations
of g-computation.

Recent works by Lim et al. (2018); Bica et al.
(2020a,b) presented deep learning approaches to es-
timate time-varying treatment effects. Bica et al.
(2020a) applied ideas from domain adaptation to es-
timate treatment effects over time while Lim et al.
(2018) used RNN regression models with history ad-
justed marginal structural models (MSMs) (Van der
Laan et al., 2005) to make counterfactual predictions.
However, none of these approaches are applicable to
dynamic treatment strategies.

G-computation relies on different modeling as-
sumptions than alternative approaches to estimat-
ing time-varying treatment effects, such as MSMs or
structural nested models (Robins, 1994; Vansteelandt
and Joffe, 2014), and can better handle dynamic
treatment strategies, especially conditional on high
dimensional health history. MSMs can only make
counterfactual predictions under static time-varying
treatment strategies that do not depend on recent co-
variate history. For example, a history adjusted MSM
could estimate the probability of fluid overload given
patient history under the (static) treatment strategy
“give 1 liter fluid each hour for the next 3 hours”, but
it could not estimate the probability of fluid overload
given patient history under the (dynamic) treatment
strategy “at each hour for the next 3 hours, if blood
pressure is less than 65 then give 1 liter of fluids, oth-
erwise give 0 liters”. History adjusted MSMs cannot
estimate effects of time-varying treatment strategies
that respond to changes in the patient’s health his-
tory, but g-computation can. Further, g-computation
is able to straightforwardly estimate the distribution
of a counterfactual outcome under a time-varying
treatment strategy. This is not straightforward to
do with (history adjusted) MSMs.

Schulam and Saria (2017) propose Counterfactual
Gaussian Processes (GPs), an implementation of con-
tinuous time g-computation. They only consider
static time-varying treatment strategies, and while
it appears that their method might straightforwardly
be extended to handle dynamic strategies as well, it
is known that GPs are intractable for large datasets
(Titsias, 2009). Sparse GPs, which introduce M in-
ducing points, have at least O(M2N) time complex-
ity (Titsias, 2009), where N is the number of obser-
vations. Borgne et al. Borgne et al. (2021) investi-
gated various machine learning implementations of g-
computation; however, they only considered point ex-
posures, i.e. treatments administered at a single time
point. In contrast, our work is concerned with time-
varying and dynamic sequential treatment strategies.

Recently, deep reinforcement learning (DRL) has
been proposed for treatment decision support in a
healthcare setting Lu et al. (2020); Peng et al. (2018);
Yu et al. (2019). In contrast to our approach, these
DRL approaches typically make simplifying Markov
assumptions to make the backward iterative proce-
dure of identifying an optimal regime tractable.

Background and Problem Definition

G-computation for Counterfactual Prediction

Our goal is to predict patient outcomes under var-
ious future treatment strategies given observed pa-
tient histories. Let:

• t ∈ {0, . . . ,K} denote time, assumed discrete,
with K being the end of followup;

• At denote the observed treatment action at time
t;

• Yt denote the observed outcome at time t
• Lt denote a vector of covariates at time t that
may influence treatment decisions or be associ-
ated with the outcome;

• X̄t denote the history X0, . . . , Xt and Xt denote
the future Xt, . . . , XK for arbitrary time varying
variable X.

At each time point, we assume the causal order-
ing (Lt, At, Yt). Let Ht ≡ (L̄t, Āt−1) denote pa-
tient history preceding treatment at time t. A dy-
namic treatment strategy g is a collection of func-
tions {g0, . . . , gK}, one per time point, such that
gt maps Ht onto a treatment action at time t. A
simple dynamic strategy for fluid volume might be
gt(Ht) = .5×1{bpt < 65}, i.e. give .5 liters of fluid if
mean arterial blood pressure is less than 65 at time t.
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Figure 1: The G-Net: A flexible sequential deep learning framework for g-computation.

Let Yt(g) denote the counterfactual outcome that
would be observed at time t had, possibly contrary to
fact, treatment strategy g been followed from base-
line (Robins, 1986). Further, let Yt(Ām−1, gm) with
t ≥ m denote the counterfactual outcome that would
be observed had the patient received their observed
treatments Ām−1 through time m − 1 then followed
strategy g from time m onward, where g can be spec-
ified by the domain experts, e.g. clinicians.
In counterfactual point prediction, our goal is to es-

timate expected counterfactual patient outcome tra-
jectories

{E[Yt(Ām−1, gm)|Hm], t ≥ m} (1)

given observed patient history through time m for
any m and any specified treatment strategy g, where
g is specified by a domain expert, e.g. a clinician. We
might also be interested in estimating the counterfac-
tual outcome distributions at future time points

{p(Yt(Ām−1, gm)|Hm), t ≥ m}. (2)

If we do not condition on anything in Hm, then
(1) is an expectation (and (2) a distribution) over
the full population. If we condition on a small subset
of variables contained in patient history, then (1) is
an expectation (and (2) a distribution) over a sub-
population. If we condition on all elements of a pa-
tient history, then (1) is still technically only an ex-
pectation (and (2) a distribution) over a hypothetical
sub-population with the exact patient history con-
ditioned on, but in this case (1) and (2) practically
amount to what is usually meant by personalized pre-
diction.

Figure 2: A causal DAG representing a data generating
process in which Assumption 2 (sequential exchangeabil-
ity) holds. Note that all variables influencing treatment
(i.e. with arrows directly into treatment) and associated
with future outcomes are measured.

Under the below standard assumptions, we can es-
timate (1) and (2) through g-computation (Robins,
1986).

1.Consistency: ȲK(ĀK) = ȲK

2. Sequential Exchangeability: Y t(g) ⊥⊥
At|Ht ∀t

3.Positivity: P (At = gt(Ht)) > 0 ∀{Ht :
P (Ht) > 0}

Consistency states that the observed outcome is
equal to the counterfactual outcome corresponding to
the observed treatment. Exchangeability states that
there is no unobserved confounding. This would hold,
e.g., if all drivers of treatment decisions that were
prognostic for the outcome were observed as in Fig-
ure 2. Positivity states that the counterfactual treat-
ment strategy of interest has some non-zero probabil-
ity of actually being followed. Under the assumption
that we specify certain extrapolative predictive mod-
els correctly, positivity is not strictly necessary.
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Under assumptions 1-3, for t = m we have simply
that

p(Ym(Ām−1, gm)|Hm) = p(Ym|Hm, Am = gm(Hm)), (3)

i.e. the conditional distribution of the counterfac-
tual is simply the conditional distribution of the
observed outcome given patient history and given
that treatment follows the strategy of interest. For
t > m, things are slightly more complex because we
need to adjust for time-varying confounding. With
Xi:j = Xi, . . . , Xj for any random variable X, under
assumptions 1-3 the g-formula yields

p(Yt(Ām−1, g
m
) = y|Hm)

=

∫
lm+1:t

p(Yt = y|Hm, Lm+1:t = lm+1:t, Am:t = g(Hm:t))

×
t∏

j=m+1

p(Lj = lj |Hm, Lm+1:j−1 = lm+1:j−1,

Am,j−1 = g(Hm, lm+1:j−1)). (4)

It is not generally possible to compute this inte-
gral in closed form, but it could be approximated
through Monte-Carlo simulation. We repeat Algo-
rithm 1 M times. (There the outcome Yt is without
loss of generality deemed to be a variable in the vec-
tor Lt+1.) At the end of this process, we have M
simulated draws of the counterfactual outcome for
each time t = {m, . . . ,K}. For each t, the empiri-
cal distribution of these draws constitutes a Monte-
Carlo approximation of the counterfactual outcome
distribution (2). The sample averages of the draws
at each time t are an estimate of the conditional ex-
pectations (1) and can serve as point predictions for
Yt(Ām−1, gm) in a patient with history Hm.
Key to the g-computation algorithm is the abil-

ity to simulate from joint conditional distributions
p(Lt|L̄t−1, Āt−1) of the covariates given patient his-
tory at time t. Of course, in practice we do not have
knowledge of these conditional distributions and need
to estimate them from data. Most implementations
use generalized linear regression models to estimate
the conditional distributions of the covariates. Often,
these models do not capture temporal dependencies
present in the patient data. We propose the G-Net
for this task.

The G-Net Framework

The G-Net framework depicted in Figure 1 enables
the use of sequential deep learning models to esti-
mate conditional distributions p(L̄t|L̄t−1, Āt−1) of co-
variates given history at each time and perform the

Algorithm 1 G-Computation (One simulation)

Set a∗m = gm(Hm)
Simulate l∗m+1 from p(Lm+1|Hm, Am = a∗m)
Set a∗m+1 = gm(Hm, l∗m+1, a

∗
m)

Simulate l∗m+2 from p(Lm+2|Hm, Lm+1 =
l∗m+1, Am = a∗m, Am+1 = a∗m+1)
Continue simulations through time K

g-computation algorithm described in Algorithm 1 to
simulate variables under various treatment strategies.
Without loss of generality, we set Yt as one of the co-
variates in L for notational simplicity.

Let L0
t , . . . , L

p−1
t denote p components of the vec-

tor Lt. Here, a ‘component’ Lj
t is just a po-

tentially multivariate subset of the covariate vec-
tor that is jointly modeled in the same ‘box’ in
our architecture. We impose an arbitrary ordering
L0
1, L

1
1, L

2
1, . . . , L

p−1
1 , A1, . . . , L

0
K , L1

K , L2
K , . . . , Lp−1

K , Ak and
estimate the conditional distributions of each Lj

t

given all variables preceding it in this ordering. At
simulation time, we exploit the basic probability iden-
tity

p(Lt|L̄t−1,Āt−1) = p(L0
t |L̄t−1, Āt−1)× p(L1

t |L0
t , L̄t−1, Āt−1)

× · · · × p(Lp−1
t |L0

t , . . . , L
p−2
t , L̄t−1, Āt−1) (5)

to simulate from p(Lt|L̄t−1, Āt−1) by
sequentially simulating each Lj

t from
p(Lj

t |L0
t , . . . , L

j−1
t , L̄t−1, Āt−1). There are at

least two reasons to allow for subdivision of the
covariates. First, if covariates are of different types
(e.g. continuous, categorical, count, etc.), it is
difficult to simultaneously simulate from their joint
distribution. Second, customizing models for each
covariate component can potentially lead to better
performance. Figure 1 illustrates this decomposi-
tion where at each time point the components are
depicted via ordered (grey shaded) boxes that are
responsible for the estimation of the various terms
needed to compute the conditional distributions.
One could set p = 1 and model all covariates
simultaneously or at the other extreme set p to be
the total number of variables.

The sequential model used in G-Net provides
us with estimates of the conditional expectations
E[Lj

t |L̄t−1, L
0
t , . . . , L

j−1
t , Āt−1] for all t and j. To sim-

ulate from p(Lj
t |L̄t−1, L

0
t , . . . , L

j−1
t , Āt−1), we pro-

ceed as follows. If Lj
t is multinomial, its conditional

expectation defines its conditional density. If Lj
t has

a continuous density, there are various approaches we
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might take to simulate from its conditional distribu-
tion. Without making parametric assumptions, we
could simulate from Lj

t |L0
t , . . . , L

j−1
t , L̄t−1, Āt−1 ∼

Ê[Lj
t |L0

t , . . . , L
j−1
t , L̄t−1, Āt−1] + ϵjt , where ϵjt is a

draw from the empirical distribution of the resid-
uals Lj

t − L̂j
t in a holdout set not used to fit the

model parameters used to generate L̂j
t as an esti-

mate of E[Lj
t |L0

t , . . . , L
j−1
t , L̄t−1, Āt−1]. This method

makes the simplifying assumption that the covariate
error distribution does not depend on patient his-
tory. This is the approach we take in the experi-
ments in this paper, and is depicted in the simula-
tion noise nodes at the top of Figure 1. Alterna-
tively, we might specify a parametric distribution for
Lj
t −E[Lj

t |L0
t , . . . , L

j−1
t , L̄t−1, Āt−1], e.g. a Gaussian,

and directly estimate its parameters by maximum
likelihood.
As shown in the yellow boxes in Figure 1, at each

time t, a representation Rt of patient history can be
computed as Rt = rt(L̄t, Āt; Θ), where Θ represents
model parameters learned during training. In its sim-
plest form, rt may just be an identity function pass-
ing the covariates without transformation. In other
configurations, rt can provide abstractions of histo-
ries using sequential learning architectures such as
RNNs. Using the selector in Figure 1, different com-
ponents of Rt can be passed to models for different
covariates.This formulation of rt allows for much flex-
ibility in how information is shared across variables
and time.
Estimates from each of the p covariate groups can

then be obtained, as shown in Figure 1, by succes-
sive estimation of conditional expectations of covari-
ates. Specifically, the conditional expectation of each
Lj
t+1, 0 ≤ j < p given the representation of patient

history Rt and the other variables from time t + 1
that precede it in the arbitrary predefined ordering is
estimated by the functions f j

t :

L0
t+1 = f0

t (Rt; Λ0)

L1
t+1 = f1

t (Rt, L
0
t+1; Λ1)

· · ·
Lj
t+1 = f j

t (Rt, L
0
t+1, . . . , L

j−1
t+1 ; Λj)

· · · (6)

where each f j
t represents the specialized estimation

function for group j and Λj are learnable parameters.

The f j
t might be sequential models (e.g. RNN) or

models focused only on the representation at t (e.g.
linear models).

The parameters (Θ,Λ) are learned by optimizing
a loss function forcing G-Net to accurately estimate
covariates Lt at each time point t using standard gra-
dient descent techniques. We use teacher-forcing (i.e.
using observed values of L0:j−1

t+1 as inputs to f j
t in

equation 6) as shown in Figure 1 Williams and Zipser
(1989). Given G-Net parameters, the distribution of
the Monte Carlo simulations produced by Algorithm
1 constitute an estimate of uncertainty about a coun-
terfactual prediction.

Evaluation and Experiment Settings

Simulations Using CVSim

To evaluate counterfactual predictions, it is neces-
sary to use simulated data in which counterfactual
ground truth for outcomes under alternative treat-
ment strategies is known. To this end, we performed
experiments on data generated by CVSim, a program
that simulates the dynamics of the human cardiovas-
cular system (Heldt et al., 2010). We used a CVSim
6-compartment circulatory model which takes as in-
put 28 variables that together govern a hemodynamic
system. We built on CVSim by adding stochastic
components and interventions for the purposes of
evaluating our counterfactual simulators. Full details
are in the Appendix.

Data Generation: We generated an ‘observa-
tional’ datasetDo under treatment regime go and two
‘counterfactual’ datasets Dc1 and Dc2 under treat-
ment regimes gc1 and gc2. The data generating pro-
cesses producing Do and Dcj were the same except
for the treatment assignment rules. For each j, gcj
was identical to go for the first m−1 simulation time
steps before switching to a different treatment rule
for time steps m to K as illustrated in Figure 3.

Figure 3: Covariate trajectories for the same patient un-
der two different treatment strategies: gc1 (blue) and gc2
(orange) starting at t = 34 (black dashed line).
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Under the (stochastic) observational treatment
strategy go, the probability of receiving a non-zero
dose of vasopressor or fluid at a given time increases
as mean arterial pressure (MAP) and central ve-
nous pressure (CVP) decrease according to a logis-
tic regression function. Given that a dose is non-
zero, its amount is drawn from a normal distribution
with mean inversely proportional to MAP and CVP.
Since all drivers of treatment under go are observed
in our data, the sequential exchangeability assump-
tion holds and g-computation may be validly applied.
Both gc1 and gc2 are similar to go, except they are de-
terministic treatment strategies with different coeffi-
cients linking treatment and dose volume to covari-
ates. Again, details are provided in the Appendix.
Experimental Setup: We set ourselves the task

of training G-Net on the observational regime dataset
Do and using it to predict the trajectories of pa-
tients in the counterfactual regime dataset Dcj for
time steps m to K for each j. This setup is designed
to evaluate the performance of G-Net in a situation in
which we observe data from past patients (Do) who
received usual care (go) for K time steps and would
like to predict how a new patient who has been ob-
served form time steps would fare were they to follow
a different treatment strategy of interest (gcj) for time
steps m to K. This is a standard use case for coun-
terfactual prediction. Dcj provides ground truth data
for a collection of patients whose trajectories follow
the path we are interested in predicting. By aggregat-
ing predictive performance metrics across simulated
patients in Dcj , we generate measures of population
level performance of G-Net at the counterfactual pre-
diction task for which it was intended.

Table 1: G-Net Experimental Model Setup

With pass thru rt With sequential rt

(Linear) (LSTM1 )

fi:LR • rt: Identity • rt: LSTM
• p = 2 • p = 2
• (f0, f1): linear • (f0, f1): linear

(LSTM2 ) (LSTM3 )

fi:RNN • rt: Identity • rt: LSTM
• p = 2 • p = 2
• (f0, f1): LSTMs. • (f0, f1): LSTMs

As shown in Table 1, we explore two specific crite-
ria: (a) using sequential vs. identity functions for rt,
and (b) using sequential models on the entire patient
history vs. linear models focused only on the current

time point for ft. This provides us four implementa-
tions of G-Net: (Linear), (LSTM1 ), (LSTM2 ), and
(LSTM3 ). Additionally, we implemented G-Net us-
ing multi-layer perceptron (MLP) as a nonlinear es-
timator.

We employed a version of G-Net with 2 boxes (one
for all continuous variables and one for categorical
variables). We chose p = 2 because we have both cat-
egorical and continuous variables in our experiments,
and it is nontrivial to simulate from joint continuous
and discrete error distributions. Parameter settings
are in the Appendix.

The LSTM-based implementations of G-Net were
compared to a baseline implementation of g-
computation using generalized linear models (GLMs)
and MLPs with observations from the previous time
point as predictors. This comparison is meant to
illustrate the importance of both flexible nonlin-
ear modeling and automatic construction of relevant
summaries of history that G-Net provides.

Evaluation: We evaluate the accuracy (Root
Mean Squared Error, RMSE) of the counterfac-
tual simulations generated by a G-Net as follows.
Say Dcj comprises Nc trajectories of random vari-

able (L̄cj
K , Ācj

K). Given observed history Hcj
mi =

(L̄cj
mi, Ā

cj
m−1i) for patient i from Dcj , a G-Net G fit

to Do produces M (in our experiments, 100) sim-
ulations of the counterfactual covariate trajectory
{L̃cj

ti (H
cj
mi, G, k) : t ∈ m : K; k ∈ 1 : M}. These

simulated trajectories are the light blue lines in Fig-
ure 4.

The G-Net’s point prediction of Lti is its esti-
mate of E[Lt(gcj)|Hm = Hmi], i.e. the average of

the M simulations L̂ti(G) ≡ 1
M

∑M
k=1 L̃

c
t(H

c
mi, G, k).

This is the dark blue line in Figure 4. If Lt has
dimension d, we compute the MSE of counterfac-
tual predictions by a G-Net G in the dataset Dc

as 1
Nc(K−m)d

∑Nc

i=1

∑K
t=m

∑d
h=1(L

h,CF
ti −L̂h,CF

ti (G))2.

The RMSE is the square root of this value.

Experiments/Results: We used a total of 12,000
simulated trajectories generated from CVSim in Do

(No = 12, 000), of which 83% (10, 000) were used for
training, and the remaining 17% (2, 000) for valida-
tion. For testing, we generated 1000 simulated trajec-
tories in the Dcj datasets (Nc = 851 after filtering as
described in the Appendix). We included a total of 20
CVSim output variables (i.e. two treatment variables
and 18 covariates, including all variables influencing
treatment assignment under go) to construct Do and
Dcj ; each trajectory is of length 66 time steps (d=20,
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Figure 4: G-Net simulated MAP trajectories (100 Monte
Carlo simulations in light blue, average in solid dark blue)
and ground truth (dashed dark blue) for one patient under
gc1 (starting t = 34).

K=66). In each Dcj , the switching time point m from
go to gc is fixed at 34 for all trajectories (m = 34).

We fit G-Net to the training portion of Do (83%),
and used the remaining portion as validation. Next,
given observed covariate history through 34 time
steps and treatment history through 33 time steps
of each trajectory in each Dcj , we computed the
RMSE of the G-Nets’ counterfactual predictions for
time steps 35 to 66, inclusive (total 32 predicted time
steps).

Figure 5 compares the performance of LSTM-based
implementations of G-Net to a GLM baseline in terms
of RMSE under gc1 and gc2. The advantage of LSTM-
based G-Net over the GLM baseline increases over
time for both counterfactual regimes. Among the
three LSTM-based models, the models with LSTM
representation layers, i.e. LSTM1 and LSTM3, per-
formed slightly better than LSTM2, which did not
have any representation layers. MLP results are not
shown in these plots as the RMSE over time (1.03
to 1.80) was much higher than both the LSTM and
GLM implementations of G-Net. The MLP regres-
sion models had better validation loss (0.48) than
the GLM (0.51), meaning that the MLP’s flexibility
enabled it to perform better on the task of one-step-
ahead prediction than the GLM (as expected), but
flexibility without suitable incorporation of patient
history led to unstable counterfactual prediction.

G-Net can be used to estimate population average
counterfactual outcomes, quantities sometimes more
relevant to policy decisions. The estimated and ac-
tual population-level average trajectories under gc1
and gc2 from the CVSim data set for one of the se-
lected variable, AP (arterial pressure), are plotted in
Figure 6. The plot shows that LSTM-based models
outperform GLMs and more accurately predict coun-
terfactual population AP trajectories. Predicted tra-

Figure 5: G-Net overall normalized RMSE (averaged
across all output covariates) over time for gc1 and gc2.

Figure 6: Estimated and actual population average tra-
jectories under gc1 vs gc2 for arterial pressure (AP).

jectories for additional covariates are shown in the
Appendix.

Comparison with R-MSN & CRN

We compared G-Net to a recurrent neural net-
work implementation of a history adjusted marginal
structural model (R-MSN) introduced in Lim et al.
(2018) and a domain adaptive Counterfactual Re-
current Network (CRN) introduced in Bica et al.
(2020a), using the simulation setup from Lim et al.
(2018). As in Lim et al. (2018), we generate sim-
ulated ‘observational’ data from a pharmacokinetic-
pharmacodynamic model of tumor growth under a
stochastic regime (Geng et al., 2017a). In this simu-
lation, chemotherapy and radiation therapy comprise
a two dimensional time-varying treatment impact-
ing tumor growth. Under the observational regime,
probability of receiving each treatment at each time
depends on volume history, so there is time-varying
confounding. Details of data generation are in the
Appendix.
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To evaluate model performance, we generated four
test sets in which various counterfactual regimes
(static, as R-MSNs can only estimate counterfactu-
als under static regimes) were followed for the fi-
nal four time points in the test set: give only ra-
diotherapy, only chemotherapy, both chemotherapy
and radiotherapy, and no treatment. Table 2 shows
the percent RMSE of predictions from both mod-
els in the final four time points (when counterfac-
tual strategies were in effect) conditioned on previ-
ous time points. (RMSEs were divided by the max-
imum possible tumor volume, 1150 cm3, as in Lim
et al. (2018).) LSTM-based implementations of G-
Net outperformed CRN and R-MSN at this task for
all treatment strategies, which is not surprising given
that g-computation is known to be more statistically
efficient than MSMs when all models are correctly
specified Daniel et al. (2013). We also observe that
the G-Net model LSTM1, with an LSTM representa-
tion layer as input to a linear regressor, achieved the
best overall RMSE performance in three of the four
cancer growth datasets. In contrast, using the higher-
dimensional CVSim dataset, LSTM3, a G-Net model
using an LSTM-representation-layer as input to an
LSTM regressor, performed slightly better than the
other variants of LSTM-based G-Net models.

Table 2: Cancer growth data: Percent RMSE for various
prediction horizons. A-Overall. Best performing models
in bold.

rMSN CRN GNet GNet GNet GNet GNet
t Linear MLP LSTM1 LSTM2 LSTM3

No 1 1.13 1.00 0.63 0.45 0.25 0.25 0.28
Treat 2 1.24 1.20 1.21 0.87 0.47 0.47 0.54

3 1.85 1.49 1.78 1.27 0.72 0.70 0.83
4 2.60 1.78 2.35 1.67 1.01 0.94 1.20
A 1.68 1.40 1.62 1.16 0.67 0.64 0.79

Radio 1 5.27 4.91 7.14 4.29 3.29 3.84 3.10
2 5.38 4.92 7.43 4.03 3.14 3.60 2.89
3 5.13 4.94 7.05 3.81 3.02 3.59 3.09
4 4.81 4.92 6.50 3.68 3.00 3.76 3.40
A 5.15 4.92 7.04 3.96 3.11 3.70 3.13

Chemo 1 1.42 1.04 1.58 0.56 0.34 0.47 0.39
2 1.27 1.09 3.14 0.97 0.63 0.84 0.70
3 1.46 1.03 4.52 1.64 0.84 1.08 1.04
4 1.69 1.02 5.47 2.15 0.89 1.20 1.33
A 1.47 1.05 3.96 1.46 0.71 0.94 0.93

Radio 1 4.76 4.66 7.76 4.21 3.10 3.72 2.89
Chemo 2 3.59 4.36 7.32 3.25 2.28 2.89 2.31

3 2.76 3.65 6.13 2.43 1.50 2.34 2.05
4 2.30 2.95 4.88 1.65 1.18 2.12 1.71
A 3.48 3.96 6.62 3.04 2.15 2.84 2.28

Discussion and Conclusion

We introduced a novel and flexible framework, G-Net,
for counterfactual prediction under dynamic treat-

ment strategies through g-computation using sequen-
tial deep learning models and evaluated it in two re-
alistically complex simulation settings where we had
access to ground truth counterfactual outcomes. Our
extensive experiments show strong empirical perfor-
mance of G-Net under both static and dynamic time-
varying treatment strategies. Using a cancer-growth
dataset, we have demonstrated the superior perfor-
mance of G-Net over two other state-of-the-art RNN
based techniques, rMSN and CRN.

In the dynamic treatment setting, which we ex-
plored using data from CVSim, we sought to tease
apart how much improvement in counterfactual pre-
dictive performance is coming from capturing nonlin-
ear or long term temporal dependencies by compar-
ing LSTM based implementations with both GLM
and MLP-based implementations. The finding that
MLPs (which capture nonlinearity but not long term
temporal dependency) did not outperform GLMs sug-
gests that much of the gain in performance from
LSTM-based implementations comes from incorpo-
ration of patient history. Something to be cautious
about when using flexible regression models is not
to extrapolate to counterfactual treatment strategies
too far afield from what appears in the data. We
would also not expect our method to outperform al-
ternatives when there are not nonlinear or long term
dependencies in the data.

An area of future work is quantification of model
uncertainty. Given G-Net parameters, the distribu-
tion of the Monte Carlo simulations produced by g-
computation Algorithm 1 constitute an estimate of
uncertainty about a counterfactual prediction. But
this estimate ignores uncertainty about the G-Net
parameter estimates themselves. One way to in-
corporate such model uncertainty would be to fit a
Bayesian model and, before each Monte Carlo trajec-
tory simulation in g-computation, draw new network
parameters from their posterior distribution. These
Monte Carlo draws would be from the posterior pre-
dictive distribution of the counterfactual outcome.
Bayesian deep learning can be prohibitively computa-
tionally intensive, but can be approximated through
dropout Gal and Ghahramani (2016).

In on-going work, we are investigating alternative
representation learning architectures for summarizing
patient history and the use of G-Net on real-world
data to inform sequential treatment decision making
in a critical care setting.
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Appendix A: Example Estimated
Individual Trajectories in CVSim

Figure 7 illustrates how G-Net could be used for deci-
sion making in individual patients. Both patients (a)
and (b) have relatively similar MAP trajectories in
the first half of the simulated trajectories; however,
while Patient (a)’s MAP is projected to increase sig-
nificantly under a more aggressive fluid administra-
tion strategy (gc2) compared to a less aggressive strat-
egy (gc1), Patient (b)’s MAP is not, possibly because
their blood volume is already high. If these were real
patients, a physician looking at these results might
choose to administer fluids to patient (a) but not to
patient (b) because the small predicted gain in MAP
in patient (b) would not be worth the risk of fluid
overload.

Figure 7: Estimated effects of two treatment strategies gc1
(blue) vs gc2 (green) in two patients with similar MAP.
100 Monte Carlo simulated trajectories in light blue and
green respectively. Both patients would receive similar
fluid amount under gc2, but patient (a)’s predicted treat-
ment effect is larger compared to no treatment than pa-
tient (b) due to differences in their underlying physiology.
Predicted treatment effect under gc1 is similar for both
patients.

Appendix B: Example
Population-Level Trajectories in
CVSim

The estimated and actual population-level average
trajectories under gc1 and gc2 from the CVSim data
set are plotted in Figure 8 for selected covariates. For
every covariate shown, LSTM-based G-Net outper-
forms GLMs in predicting counterfactual trajectories.

Appendix C: CVSim Data and
Settings

CVSim is an open-source cardiovascular simulator
available at PhysioNet1. In this work, we focus on
CVSim-6C, which consists of 6 components function-
ing as pulmonary and systemic veins, arteries, and
micro-circulations. CVSim-6C is regulated by an
arterial baroreflex system to simulate Sah’s lumped
hemodynamic model Heldt et al. (2010). The aggre-
gate model is capable of simulating pulsatile wave-
forms, cardiac output and venous return curves, and
spontaneous beat-to-beat hemodynamic variability.
In this work, we modified and built on CVSim by
adding stochastic components and interventions for
the purposes of evaluating our counterfactual simu-
lators. We call our stochastic simulation engine S-
CVSim.

A CVSim 6-compartment circulatory model takes
as inputs 28 variables that together govern a hemo-
dynamic system. It then deterministically simulates
forward in time a set of 25 output variables according
to a collection of differential equations (parameter-
ized by the input variables) modeling hemodynamics.
By modeling only a subset of these variables in our
dataset, we ensure that there are long range tempo-
ral dependencies present in our observed data that
are mediated by the excluded variables. Important
variables in CVSim include arterial pressure (AP),
central venous pressure (CVP), total blood volume
(TBV), and total peripheral resistance (TPR). In real
patients, physicians observe AP and CVP and seek
to keep them at safe levels by intervening on TBV
(through fluid administration) and TPR (through va-
sopressors).

We defined simulated treatment interventions that
were designed to mimic the impact of fluids and va-
sopressors. These simulated interventions alter the
natural course of the simulation by increasing either

1. https://www.physionet.org/content/cvsim/1.0.0/
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Figure 8: Estimated and actual population average trajectories under gc2 for selected covariates. The best-performing
G-Net implementation (LSTM3 ) is shown in comparison to GLM baselines.

TBV (in the case of the simulated fluids intervention)
or TPR (in the case of the simulated vasopressor in-
tervention). We generated patients by randomly ini-
tiating baseline inputs (which we hid from our G-Nets
to make this a stochastic modeling problem) within
plausible physiologic ranges, then using CVSim to
simulate covariates forward and intervening accord-
ing to the relevant treatment strategy at each time
step.

Inputs of S-CVSim

Varying hemodynamic parameters of CVSim causes
it to simulate the cardiovascular system under various
conditions. We randomly generate values of a subset
of model parameters when initiating simulation at
time 0 (t = 0) to obtain a population distribution
of trajectories. These model parameters are listed in
Table 3. Note that initial value ranges do not
bound values of input covariates for times t >
0.

Outputs of S-CVSim

At each time t, CVSim-6C generates hemodynamic
data including vascular resistance and variables char-

Table 3: Names and corresponding ranges of input pa-
rameters of S-CVSim.

Input Covariates Range

Total Blood Volume 3,500 - 6,500
Nominal Heart Rate 40 - 160

Total Peripheral Resistance 0.1 - 1.3
Arterial Compliance 0.4 - 1.1

Total Zero-pressure filling Volume 500 - 3,500
Pulmonary Arterial Compliance 2.0 - 3.4

Pulmonary Microcirculation Resistance 0.4 - 1.00

acterizing flow, pressure, and volume. In addition to
the original 25 hemodynamic outputs, we introduce
4 new outputs, including systolic blood pressure, di-
astolic blood pressure, mean arterial pressure, and a
pulmonary edema binary indicator, bringing the total
number of output variables to 29. For this work, we
only predict a subset of output covariates highlighted
in Table 4. The complete list of outputs is also in
Table 4. Below are definitions of the new variables
we added.
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• Systolic Blood Pressure (SBP) is defined as
the highest measured arterial blood pressure dur-
ing a cardiac cycle.

• Diastolic Blood Pressure (DBP) is defined
as the lowest measured arterial blood pressure
during a cardiac cycle.

• Mean Arterial Pressure (MAP) is defined
as the average pressure during one cardiac cycle,
computed as follows, MAP = 2∗DBP+1∗SBP

3 .
• Pulmonary Edema (PE) is defined as the in-
dicator of pulmonary venous pressure above a
threshold, computed as follows, PE = [PV P >
25].

Table 4: Outputs of S-CVSim. Covariates highlighted
with ∗ are the selected outputs. (Note that treatment
variables are not included in this table.)

Output Covariates

Left Ventricle Pressure∗ LVP
Left Ventricle Flow∗ LVQ
Left Ventricle Volume LVV

Left Ventricle Contractility∗ LVC
Right Ventricle Pressure∗ RVP
Right Ventricle Flow∗ RVQ
Right Ventricle Volume RVV

Right Ventricle Contractility∗ RVC
Central Venous Pressure∗ CVP

Central Venous Flow CVQ
Central Venous Volume CVV
Arterial Pressure∗ AP
Arterial Flow∗ AQ

Arterial Volume∗ AV
Pulmonary Arterial Pressure PAP
Pulmonary Arterial Flow PAQ

Pulmonary Arterial Volume PAV
Pulmonary Edema∗ PE

Pulmonary Venous Pressure PVP
Pulmonary Venous Flow PVQ

Pulmonary Venous Volume∗ PVV
Heart Rate∗ HR

Arteriolar Resistance∗ AR
Venous Tone∗ VT

Total Blood Volume∗ TBV
Intra-thoracic Pressure PTH

Mean Arterial Pressure∗ MAP
Systolic Blood Pressure∗ SBP
Diastolic Blood Pressure DBP

Disease Simulation, St

We introduce the concept St to simulate hemody-
namic instability of the cardiovascular system, such
as sepsis and bleeding at each time step. St consists
of two events, sepsis and blood loss. In the mod-
ule St, we set P (St|Lt) = 0.05, and P (Sepsis|St) =
P (BloodLoss|St) = 0.5, with blood loss and sepsis
being mutually exclusive events at any time t in the
simulation process.

• When sepsis occurs, Ltpr
t+1 = αsep ∗

Ltpr
t , where αsep = 0.7. This means that

Ltpr
t , total peripheral resistance at time t,

decreases in αsep at time t+ 1
• When blood loss happens, Ltbv

t+1 = αloss ∗ Ltbv
t ,

where αloss = 0.85 meaning that Ltbv
t , total

blood volume at time t, would decrease in αloss

at time t+ 1.

Treatment Simulation, At

Under treatment rule g, treatment at time t is given
by At = g(L̄t). At = (A1

t , A
2
t ) was two dimensional,

with A1
t indicating the amount by which total blood

volume should increase (emulating the effect of a fluid
bolus) and A2

t indicating the amount by which total
peripheral resistance should increase (emulating a va-
sopressor). The probability of choosing fluids or vaso-
pressor is dependent on whether the patient has pul-
monary edema; the treatments will not be adminis-
tered at the same time. The dosage of At depends on
a subset of Lt, which indicates hemodynamic balance.
More specifically, since adequate blood pressure is an
important clinical goal (Rhodes et al., 2017), we de-
note mean arterial pressure, MAP, of 70 mmHg and
central venous pressure, CVP, of 10 mmHg as tar-
get goals. Therefore, we define ∆map,t ≡ 70 − Lmap

t

and ∆cvp,t ≡ 10−Lcvp
t as proxies of how much dosage

should be delivered. The following section will discuss
the differences between between our counterfactual
strategies gc1 and gc2 and our observational regime
go.

Observational Regime, go

Under gobs, the probability and dosage of treatment
are denoted as the following

• Probability of treatment, P (At|Lt) = 1
1+e−x

,where x = C1 ∗∆map +C2 ∗∆cvp +C0, where
probability of fluids P (A1

t |Lt) = B0 −B1 ∗LPE
t .
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• If we administer fluids, we generate the dose (in
mL) A1

t ∼ max(0, β1
1 ∗ ∆map,t + β1

2 ∗ ∆cvp,t +
N (0, 500)).

• If we administer vasopressors, we generate the
dose A2

t ∼ max(0, β2
1∗∆map+β2

2∗∆cvp+N (0, 1))
Administering a fluid dose of A1

t increases TBV as
Ltbv
t+1 = Ltbv

t + A1
t , while administering a vasopressor

dose of A2
t increases as Ltpr

t+1 = Ltpr
t + 1− 1

A2
t+1

.

Counterfactual Regime, gc1

Under gc1, probability and dosage of treatment are
denoted as following

• Probability of treatment, P (At|Lt) = 1 if and
only if Lmap

t < 65, where probability of fluids,
P (A1

t |Lt) = 1 if and only if Lpe
t = 0.

• If we administer fluids, we generate the dose (in
mL) A1

t ∼ max(0, β1
1 ∗∆map,t+β1

2 ∗∆cvp,t+β1
0).

• If we administer vasopressors, we generate the
dose A2

t ∼ max(0, β2
1 ∗∆map + β2

2 ∗∆cvp).
We experimented with multiple parameters and
opted to use C0 = 0.65, C1 = 0.3, C2 = 0.24, B0 =
0.5, B1 = 0.2, β1

0 = 1000, β1
1 = 20, β1

2 = 120, β2
1 =

0.2, β2
2 = 0.3.

Counterfactual Regime, gc2

Counterfactual regime gc2 follows the same rules as
gc1, except that P (At|Lt) = 1 if and only if Lmap

t <
75.

Data Generation

To simulate the trajectory for a single patient under
treatment strategy g,

• Initialize input variables V1, ..., VN by drawing
from independent uniform distributions using
predefined plausible physiological ranges for each
variable (Table 3).

• For t in 0 : K,
– generate Lt as Fsim,t(V, L̄

′

t−1, At−1, St−1),
where A−1 is taken to be 0, Fsim,t(·) de-
notes the CVSim simulation function, and
L̄

′

t−1 is the ‘natural’ value of the covariates
but with total blood volume and arterial
pressure at t − 1 altered post hoc (i.e. af-
ter Lt−1 values were recorded) according to
At−1;

– generate At as g(L̄t).
Using S-CVSim, we generated 15,000 trajectories

under the observational regime and 1,000 trajecto-
ries under each counterfactual regime. All trajecto-

ries spanned 66 time steps in length. To filter physio-
logically improbable patient trajectories, we removed
any trajectories whose non-treatment covariates at
the first visit were greater than the 99th percentile
of the dataset or beyond 250 for MAP and 250 for
HR. After filtering, we were left with 12,774 trajecto-
ries under the observational regime and 851 trajecto-
ries under each counterfactual regime. We removed
an additional 774 trajectories under the observational
regime so that we were left with exactly 12,000 sam-
ples, of which 10,000 (83%) were used for training and
2,000 (17%) were used for validation. There were no
overlapping patients across the training, validation,
and held-out test datasets. All continuous variables
were z-score standardized using mean and standard
deviations from the training set.

Figure 9: Causal DAG for Do generated under obser-
vational regime go. Green arrows denote directed paths
from treatments to outcomes. Treatment only depends on
current covariates. Lt denotes ‘observed’ covariates and
L∗

t denotes all variables generated. All covariates with
arrows into treatment (i.e. MAP, CVP, and pulmonary
edema) are observed, satisfying the sequential exchange-
ability assumption as in Figure 1.

The DAG in Figure 9 depicts the causal struc-
ture of Do. Note that only observed covariates have
arrows pointing into treatment (treatment is actu-
ally only a function of CVP, MAP, and pulmonary
edema), so that there is no unobserved confound-
ing and g-computation may be applied. Also, omit-
ting certain variables from the analysis induces long
term dependencies mediated by the missing variables.
The unobserved V acting as a common cause of all
non-treatment variables across time also induces long
term dependencies.

CVSim Experimental Settings

Hyperparameter optimization was performed by
searching over the hyperparameter space shown in
Table 5. G-Net was trained using the Adam opti-
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mizer with early stopping for a maximum of 50 epochs
and a batch size of 32.

The experiments were performed on NVIDIA Tesla
V100 SXM2 GPUs. After searching over the hyper-
parameter space, the optimal parameters for the net-
work were found to have representation number of
layers of 1, categorical and continuous number of lay-
ers of 1, representation hidden dimension of 32, cate-
gorical RNN hidden dimension of 8, continuous RNN
hidden dimension of 64, and learning rate of 0.01.

Appendix D: Tumor Growth
Simulation

Following PK-PD model in Geng et al. (2017b), tu-
mor volume V (t) was generated according to the for-
mula:

V (t) = (1 + ρlog
K

V (t− 1)︸ ︷︷ ︸
Tumor Growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αd(t) + βd(t)2)︸ ︷︷ ︸
Radiation

+ ϵt︸︷︷︸
Noise

)V (t− 1) (7)

where ρ,K, β, α are model parameters sampled for
each patient according to prior distributions. d(t) is
the dose of radiation applied at t, and drug concen-
tration C(t) is generated according to an exponential
decay with a half life 1 day.

Treatment Policy Assignment

Following Lim et al. (2018) to introduce time-
dependent confounding, probabilities pc(t) and pd(t)
of delivering nonzero doses of chemotherapy or radio-
therapy, respectively, depend on tumor diameter.

pc(t) = ρ(
γc

Dmax
(D̄(t)−θc)); pd(t) = ρ(

γd
Dmax

(D̄(t)−θd))

where D̄(t) is the average tumor diameter over the
last 15 days, ρ is the inverse logit function, and θ∗
and γ∗ are constant parameters. θ∗ is fixed such that
θc = θd = Dmax

2 , giving the model a 0.5 probability
of treatment application when the tumor is half its
maximum size. In this paper we set both γc and γd
to 10.

10,000 trajectories were simulated and used for
training, and 1,000 simulated trajectories for hyper-
parameter optimization (validation data), with an-
other 1,000 for testing.

Settings for Propensity Networks, Encoder &
Decoder for R-MSN

Hyperparameter optimization was performed using
50 iterations of random search and networks were
trained using the Adam optimizer. For each set of
samples, simulation trajectories were grouped into B
minibatches and networks were trained for a max-
imum of 100 epochs. LSTM state sizes were also
defined in relation to the number of inputs for
the network C. The experiments were performed
on NVIDIA Tesla K80 GPU with 2 vCPUs + 13
GB memory. The hyperparameter search space is
shown in Table 6. The optimal hyperparameters for
propensity score are dropout rate of 0.1, state size of
4c, minibatch size of 64, learning rate of 0.01, Max
Gradient Norm of 0.5. The optimal parameter for
encoder are dropout rate of 0.2, state size of 2c, mini-
batch size of 128, learning rate of 0.01, Max Gradient
Norm of 0.5. The optimal hyperparameter of decoder
are dropout rate of 0.1, state size of 4C, minibatch
size of 128, learning rate of 0.01, Max Gradient Norm
of 2.0.

Settings for Encoder & Decoder for CRN

Hyperparameter optimization was performed using
50 and 30 iterations of random search for the encoder
and decoder, respectively, and networks were trained
using the Adam optimizer. CRNs were implemented
as described in Bica et al. (2020a)2. Parameters are
also defined in relation to the size of the input, C,
and the size of the balancing representation, R. The
experiments were performed on NVIDIA Tesla K80
GPU with 12 vCPUs + 110 GB memory. The hyper-
parameter search space for the encoder and decoder
is shown in Table 7 and Table 8, respectively, with
optimal parameters starred.

Settings for G-Net

Hyperparameter optimization was performed by
searching over the hyperparameter space shown in
Table 9 with optimal parameters starred. G-Net was
trained using the Adam optimizer with early stop-
ping with patience of 10 epochs for a maximum of 50
epochs. The experiments were performed on NVIDIA
Tesla K80 GPU with 12 vCPUs + 110 GB memory.

2. We used the publicly available implemen-
tation from https://github.com/ioanabica/
Counterfactual-Recurrent-Network.
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Table 5: Hyperparameter search space for G-Net in CVSim experiments. Note that when training LSTM3 , the
number of layers was set to 1 for the representational layer, as well as the categorical and continuous boxes (e.g. no
tuning over number of layers).

Hyperparameters Search Range

Linear Learning Rate 0.001∗, 0.01

Number of Layers 2∗, 4
Hidden Dimension 16, 32∗

MLP Learning Rate 0.001∗, 0.01

Number of Layers (Representation) 1, 2, 4∗

Hidden Dimension (Representation) 16, 32∗

LSTM 1 Learning Rate 0.001, 0.01∗

Number of Layers (Categ & Contin) 1, 2, 4∗

Hidden Dimension (Categorical) 8∗, 16
Hidden Dimension (Continuous) 32, 64∗

LSTM 2 Learning Rate 0.001∗, 0.01

Hidden Dimension (Representation) 16, 32∗

Hidden Dimension (Categorical) 8∗, 16
Hidden Dimension (Continuous) 32, 64∗

LSTM 3 Learning Rate 0.001, 0.01∗

Table 6: Hyperparameter Search Range for Propensity
Networks, Encoder, and Decoder

Hyperparameters Search Range

Search Iteration 50
Dropout Rate 0.1 , 0.2 , 0.3, 0.4, 0.5
State Size 1C, 2C, 4C, 8C, 16C

Minibatch Size 64, 128, 256
Learning Rate 0.01, 0.005, 0.001

Max Gradient Norm 0.5, 1.0, 2.0

Table 7: Hyperparameter Search Range for Encoder.

Hyperparameters Search Range

Search Iteration 50
Learning Rate 0.01, 0.001∗, 0.0001
Minibatch Size 64∗, 128, 256

RNN Hidden Units 0.5C, 1C, 2C, 3C, 4C∗

Balancing Representation Size 0.5C, 1C, 2C∗, 3C, 4C
FC Hidden Units 0.5R, 1R, 2R∗, 3R, 4R

RNN Dropout Probability 0.1∗, 0.2, 0.3, 0.4, 0.5
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Table 8: Hyperparameter Search Range for Decoder.

Hyperparameters Search Range

Search Iteration 30
Learning Rate 0.01, 0.001∗, 0.0001
Minibatch Size 256∗, 512, 1024

Balancing Representation
RNN Hidden Units Size of Encoder

Balancing Representation Size 0.5C, 1C, 2C, 3C∗, 4C
FC Hidden Units 0.5R, 1R, 2R, 3R∗, 4R

RNN Dropout Probability 0.1∗, 0.2, 0.3, 0.4, 0.5

Table 9: Hyperparameter search space for G-Net in cancer
experiments.

Hyperparameters Search Range

Linear Learning Rate 0.001∗, 0.01

Number of Layers 1, 2, 4∗

Hidden Dimension 2, 4∗, 8
MLP Learning Rate 0.001∗, 0.01

Number of Layers (Representation) 1∗, 2
Hidden Dimension (Representation) 8, 16, 32, 64∗

LSTM 1 Learning Rate 0.001, 0.01∗

Number of Layers (Continuous) 1∗, 2, 4
Hidden Dimension (Continuous) 4, 16, 64∗

LSTM 2 Learning Rate 0.001, 0.01∗

Number of Layers (Representation) 1∗, 2
Number of Layers (Continuous) 1∗, 2

Hidden Dimension (Representation) 16, 32, 64∗

Hidden Dimension (Continuous) 16, 32∗, 64
LSTM 3 Learning Rate 0.001, 0.01∗

299


	Introduction
	Related Work
	Background and Problem Definition
	G-computation for Counterfactual Prediction

	The G-Net Framework
	Evaluation and Experiment Settings
	Simulations Using CVSim
	Comparison with R-MSN & CRN

	Discussion and Conclusion
	Acknowledgements
	Appendix A: Example Estimated Individual Trajectories in CVSim
	Appendix B: Example Population-Level Trajectories in CVSim
	Appendix C: CVSim Data and Settings
	Inputs of S-CVSim
	Outputs of S-CVSim
	Disease Simulation, St 
	Treatment Simulation, At
	Observational Regime, go
	Counterfactual Regime, gc1
	Counterfactual Regime, gc2
	Data Generation
	CVSim Experimental Settings

	Appendix D: Tumor Growth Simulation
	Treatment Policy Assignment
	Settings for Propensity Networks, Encoder & Decoder for R-MSN
	Settings for Encoder & Decoder for CRN
	Settings for G-Net


