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Abstract

Variational inference is routinely deployed in
Bayesian state-space models as an efficient
computational technique. Motivated by the
inconsistency issue observed by Wang and
Titterington (Wang & Titterington, 2004) for
the mean-field approximation in linear state-
space models, we consider a more expres-
sive variational family for approximating the
joint posterior of the latent variables to re-
tain their dependence, while maintaining the
mean-field (i.e. independence) structure be-
tween latent variables and parameters. In
state-space models, such a latent structure
adapted mean-field approximation can be ef-
ficiently computed using the belief propaga-
tion algorithm. Theoretically, we show that
this adapted mean-field approximation leads
to consistent variational estimates. Further-
more, we derive a non-asymptotic risk bound
for an averaged α-divergence from the true
data generating model, suggesting that the
posterior mean of the best variational ap-
proximation for the static parameters shows
optimal concentration. From a broader per-
spective, we add to the growing literature on
statistical accuracy of variational approxima-
tions by allowing dependence between the la-
tent variables, and the techniques developed
here should be useful in related contexts.

1 Introduction

Variational Inference (VI) has gained major promi-
nence as an approximate Bayesian computational tool
in the past two decades. VI aims to find the clos-
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est member to an otherwise intractable posterior dis-
tribution from a structured family of distributions,
commonly referred to as the variational family. The
closeness is most commonly defined in terms of the
Kullback–Leibler (KL) divergence, and various itera-
tive procedures have been developed to optimize the
resulting objective function.

The choice of the variational family is a crucial compo-
nent of VI, as it trades-off between computational ease
and approximation capability. Perhaps the most com-
monly used variational family is the mean-field family
(henceforth MFVI), which assumes mutual indepen-
dence across (blocks of) parameters. General purpose
algorithms, such as the coordinate ascent variational
inference (CAVI), have been developed to obtain the
MFVI solution. Motivated by its practical success,
there has been a flurry of recent activity studying theo-
retical properties of MFVI (Blei et al., 2017; Pati et al.,
2018; Yang et al., 2020; Zhang & Gao, 2020; Alquier
& Ridgway, 2020; Ghosh et al., 2020; Plummer et al.,
2021; Ray & Szabó, 2021), which establish optimal-
ity properties of MFVI in various statistical models.
Yang et al. (2020) in particular considered latent (or
hidden) variable models, albeit under the assumption
that the observation-latent variable pairs are mutually
independent. A more general treatment of latent vari-
able models has thus far been missing.

An important class of models where the above assump-
tion of independence is violated is state-space models
(Turner & Sahani, 2011). Moreover, Wang & Titter-
ington (2004) noted a lack of consistency of the emis-
sion parameter in linear Gaussian state-space mod-
els (LGSSM), suggesting the mean-field approximation
may not be adequate for these types of models. Mo-
tivated by this observation, Barber & Chiappa (2007)
proposed a more expressive decomposition, where the
dependence between the latent state variables is re-
tained, and a mean-field decomposition is otherwise
employed between the static vectors and the collec-
tion of latent state variables. Such structured de-
compositions have been subsequently termed general-
ized mean-field (GMF) in the literature (Xing et al.,
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2012). A more flexible approach is the belief prop-
agation (BP) (Pearl, 2014), which tries to find local
approximations, which are exactly or approximately
the marginals of the target density. This is also done
in an iterative way called the message passing, where
messages are passed along the edges of a factor graph.
Belief propagation routinely extends beyond the fac-
tor graph as loopy belief propagation (Weiss, 2000)
which is known to converge to the first order station-
ary points of the variational objective.

In this article, we offer a systematic theoretical treat-
ment of such structured VI in SSMs to complement
the algorithmic development. We operate in the α-VB
framework of Yang et al. (2020), who introduce a tem-
perature parameter α P p0, 1s and modify the usual
variational objective in latent variable models to tar-
get a particular tempered posterior distribution. Yang
et al. (2020) showed that frequentist risk bounds for
α ă 1 require fewer assumptions compared to α “ 1,
the usual VI. We shall restrict our attention to α ă 1
throughout this article. Operating in this framework,
we first extend the inconsistency result of Wang & Tit-
terington (2004) to show an inconsistency result for
the full mean-field approximation in scalar LGSSM
for an integrated α-Rényi Bayes risk. Next, we es-
tablish a general risk bound for the gMF decomposi-
tion for general state-space models. In deriving the
risk bounds, while we follow the general technique of
obtaining Kullback-Leibler concentration for non-i.i.d
models (Ghosal & Van Der Vaart, 2007), a key in-
novation is in the introduction of the blow-up func-
tions fλp¨q and fµp¨q which offers additional flexibility
in choosing a neighborhood of the latent variables and
in obtaining a theoretically optimal variational guess.
Applying our general risk bound to scalar and multi-
variate LGSSMs, we obtain a near-optimal (up to loga-
rithmic terms commonly appearing in related Bayesian
calculations) rate of convergence for the static param-
eters. We also delineate sufficient conditions on the
model structure for our risk bound to be applicable
beyond LGSSMs.

1.1 Notation

Given probability measures p and q with a common
dominating measure µ, we denote the KL divergence
as Dpp } qq :“

ş

p logpp{qqdµ. Also, define the V-

divergence V pp } qq “
ş

p log2pp{qqdµ. For α P p0, 1q,
the α-Rényi divergence between p and q is given by
Dαpp } qq “ 1

α´1 log
ş

pαq1´αdµ. Given a probability
density q and a measurable function H, we use xHyq

to denote Eθ„qrHpθqs. For any positive integer m,
rms :“ t1, . . . ,mu.

2 Background

We begin this section with a brief introduction on gen-
eral state-space models, with a special attention to the
linear Gaussian state-space model as our main illustra-
tive example. After that, we discuss the computational
aspect of implementing inference for state-space mod-
els. In particular, we focus on variational inference
and review some recent developments.

2.1 State-Space Models

State-space models (SSM; (Koller & Friedman, 2009;
Zeng & Wu, 2013)) are extremely popular in time-
series applications across diverse disciplines. Given a
time-series consisting of observations tYtu in RdH , the
general formulation of a state-space model involves (a)
specifying a model for Yt | Xt, whereXt P RdV denotes
the collection of all hidden variables at time t, and (b)
specifying a Markovian evolution for the hidden vari-
ables tXtu over time. Specifically, for t P rns, assume

Yt | Xt
ind.
„ pp¨ | Xt, µq, Xt | Xt´1

ind.
„ p̃p¨ | Xt´1, λq.

(1)

Here, p and p̃ respectively denote the distribution fam-
ilies for Yt | Xt and Xt | Xt´1, and µ and λ re-
spectively denote unknown static parameters specify-
ing these distributions. Throughout this article, we
shall use θ “ pµ, λq to denote the collection of static
parameters that are the primary quantities of interest.

An important sub-class of state-space models is linear
Gaussian state-space models (LGSSM) where p and
p̃ are both multivariate Gaussian distributions whose
conditional expectations EpYt | Xtq and EpXt | Xt´1q

are linear in Xt and Xt´1 respectively:

Yt | Xt
ind.
„ NdpBXt,ΣHq,

Xt | Xt´1
ind.
„ NdpAXt´1,ΣV q.

(2)

A P RdV ˆdV is called the transmission matrix and
B is the dH ˆ dV emission matrix. ΣH and ΣV

are separately dH ˆ dH and dV ˆ dV positive defi-
nite matrices describing innovation covariance struc-
tures, which we shall assume to be diagonal for tech-
nical ease, that is, ΣV “ Diagpσ2

V,1, . . . , σ
2
V,dV

q and

ΣH “ Diagpσ2
H,1, . . . , σ

2
H,dH

q, although our theory can
be extended to non-diagonal covariances. In this pa-
per, we focus on the time-homogeneous setting where
the collection of parameters θ “ pA,B,ΣH ,ΣV q does
not involve over time.

A Bayesian specification of the state-space model
is completed by endowing the static parameters in
θ with a prior distribution πp¨q, and performing
inference based on the joint posterior distribution
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ppθ,Xn|Y nq9ppY n|Xn, µq ppXn|λqπpθq. In particu-
lar, parameter estimation can be carried out based
on the marginal posterior distribution ppθ |Y nq “
ş

ppθ,Xn|Y nq dXn. In the LGSSM, it is common to
endow the transition and emission matrices with entry-
wise independent Gaussian priors, and diagonal en-
tries tσ2

V,i, σ
2
H,j : i P rdV s, j P rdH su of the innovation

covariance matrices with independent inverse-gamma
priors. More generally, one may consider matrix-
Gaussian priors for A and B, and inverse-Wishart
priors for ΣH and ΣV (without imposing the diago-
nal structure) to deliver matrix-level prior structures.
Although the latent variable distribution ppXn|Y n, θq

may fall into some common distribution families in
conditionally conjugate models, the joint posterior of
pθ,Xnq is generally intractable. For example, in the
scalar LGSSM where pA,Bq “ pa, bq and ΣH “ ΣV “

σ2
0 , the latent variable distribution of rXn | Y n, θs is

NnpΛ, σ2
0 Ω

´1q, where

Ω “

»

—

—

—

—

—

–

a2 ` b2 ` 1 ´a . . . 0
´a a2 ` b2 ` 1 . . . 0
...

...
. . .

...
0 0 ¨ ¨ ¨ ´a
0 0 . . . b2 ` 1

fi

ffi

ffi

ffi

ffi

ffi

fl

and Λ “ bΩ´1Y n. Thus, the conditional posterior
distribution of latent variables given static parame-
ters lies in the multivariate Gaussian family with a
tri-diagonally structured precision matrix.

The analytic intractability of the joint posterior dis-
tribution necessitates numerical techniques for ap-
proximate Bayesian computation. Sampling-based ap-
proaches such as Markov chain Monte Carlo (MCMC)
and Sequential Monte Carlo (SMC) have received a lot
of attention (Kantas et al., 2009) in dealing with state
space models. However, the relative high accuracy
of these approaches comes at the price of expensive
computations, making them only suitable for small to
moderate data sets. More recently, variational approx-
imations have gained popularity due to their scalabil-
ity to massive data by exploiting the computational
advantages of optimizations over samplings. However,
unlike MCMC and SMC, which carry asymptotic guar-
antees of convergence to the exact marginal posterior
of θ given Y n, variational inference approximates this
marginal posterior from a restrictive class which may
induce non-negligible systematic bias. Hence it is im-
portant to study the quality of estimation provided by
VI, which we undertake in this article.

2.2 Variational Inference in State-Space
Models

Variational inference aims to find the best approxima-
tion (in terms of the KL divergence) to the joint poste-

rior of parameters and latent variables from a tractable
family of probability distributions Γ, called the varia-
tional family. A common structural constraint on the
variational family is the mean-field structure, which
posits that all constituent variable components are mu-
tually independent. In the context of SSMs, letting
Wn “ pθ,Xnq collect latent variables and static pa-
rameters, the mean-field family consists of all distri-
butions of the form

qWnpWnq “

„ n
ź

t“1

qXt
pXtq

ȷ

qθpθq. (3)

Here and elsewhere, we use bold subscripts to distin-
guish the various variational densities.

For a class of latent variable models where the
observation-latent variable pairs are mutually indepen-
dent, Yang et al. (2020) established that the mean
of the optimal mean-field variational solution pqθ at-
tains the minimax rate of parameter estimation up
to logarithmic factors. However, in SSMs, this mutu-
ally independence assumption is clearly violated due
to the dependence among the Xt’s across time, and
the theory of Yang et al. (2020) cannot be directly
applied. In fact, Wang & Titterington (2004) pro-
vided a counter-example that illustrated the lack of
consistency of mean-field VI (MFVI) in the context
of LGSSMs. By inspecting their derivation, it turns
out that the inconsistency is due to the ignorance of
the dependence structure among the latent variables
Xn “ pX1, . . . , Xnq. In light of this, a natural idea is
to retain this dependence within the variational family
by considering a block mean-field decomposition:

qWnpWnq “ qXnpXnq qθpθq. (4)

Such a variational family was employed in the influen-
tial article (Barber & Chiappa, 2007). More generally,
in situations where retaining such a partial dependence
within the variational family is warranted, a decom-
position as in (4) is called generalized mean-field VI
(GMFVI; (Xing et al., 2012)).

Due to a natural trade-off between the flexibility of
the variational family and the complexity of numer-
ically computing the variational solution using iter-
ative procedures, the GMFVI solution in general is
computationally more expensive than MFVI. How-
ever, in LGSSMs and other conjugate SSMs, carefully
designed algorithms can mitigate this computational
gap. A commonly used algorithm to compute the vari-
ational solution is the coordinate ascent VI (CAVI)
algorithm, which iteratively updates each component
in the mean-field factorization by minimizing the KL
divergence to the target while keeping the other com-
ponents fixed at their current states. In condition-
ally conjugate models, these updates naturally lie in
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an exponential family without any additional assump-
tions on the constituent components. Specifically, in
the context of block mean-field approximation (4), the
CAVI alternatively updates the two blocks with for-
mulas

qXn pXnq9 exp
“

xlog ppθ,Xn | Y nqyqθ

‰

,

qθpθq9 exp
“

xlog ppθ,Xn | Y nqyqXn

‰

. (5)

The main challenge lies in computing and manipulat-
ing qXn . In LGSSMs, qXnpXnq lies in the Gaussian
family with a non-diagonal covariance matrix, and a
naive manipulation with this multivariate Gaussian
density renders an Opn3q complexity due to matrix
inversion. However, the precision matrix of this Gaus-
sian distribution has a banded structure (e.g. the Ω in
the scalar case), which can be exploited in designing
more efficient algorithms. In particular, the compu-

tation of univariate and bivariate marginals q
psq

XnpXkq

and q
psq

XnpXk, Xk`1q at any iteration s can be efficiently
carried out using Belief Propagation (BP; (Yedidia
et al., 2000, 2003)) and its many related variants For
example, Barber & Chiappa (2007) used the related
Rauch–Tung–Striebe (RTS) Smoother (Welch et al.,
1995; Koller & Friedman, 2009). It is worth noting
here that qXnpXnq cannot be computed exactly in
general when the graph structure is not a tree. In
such circumstances, loopy belief propagation (LBP)
is commonly employed. LBP can be recognized as a
first-order stationary point of the variational objective;
however, global convergence is not generally guaran-
teed. Further, in non-conjugate models, one may re-
quire a hybrid algorithm which combines MCMC to
approximate certain analytically intractable steps in
the iterative procedure.

Although the block mean-field approximation (4) that
preserves latent variable dependence does not impose
significantly more computational burdens thanks to
the aforementioned algorithmic developments using
BP, the theoretical properties of GMFVI, such as con-
sistency and the rate of convergence, remain an open
question. In this article, we close this gap and offer
for the first time a theoretical treatment of GMFVI
in SSMs. A key upshot of our analysis is that the
variational Bayes estimator θ̂B defined as the mean of
the optimal GMFVI posterior pqθ is estimation consis-
tent and achieves a near-optimal rate of convergence.
We conduct our analysis under the α-VB framework
of Yang et al. (2020), where the joint likelihood of the
observed and hidden variables is raised to a fractional
power α P p0, 1q, and the corresponding α-fractional
posterior (Bhattacharya et al., 2019)

pαpθ,Xn | Y nq9
“

ppY n | Xn, θq ppXn | θq
‰α

ppθq (6)

replaces the usual posterior distribution as the target.

With this setup, the variational solution is defined as

`

pqθ,α, pqXn,α

˘

“ argmin
pqθ ,qXnq

"

DrqWnp¨q } pα p¨ | Y nqs

`p1 ´ αqH pqXnq

*

, (7)

where HpqXnq “ ´
ş

qXn log qXndXn is the differen-
tial entropy of qXn . When α “ 1, the above crite-
rion reduces to the usual variational objective func-
tion. From a computational perspective, the α-VB
objective can be trivially incorporated into existing
algorithms, while certifying theoretical optimality for
α-VB requires fewer assumptions than usual VB.

3 Variational Risk Bounds for
State-Space Models

We now provide finite-sample risk bounds for GMFVI
in SSMs. We operate in a frequentist framework by
assuming the observations Y n to be generated from
model (1) with true parameters µ˚ and λ˚. Define
θ˚ “ pµ˚, λ˚q as the true static parameter. We use a
sample size rescaled α-Rényi divergence

Dpnq
α pθ, θ˚q “ n´1 Dαpp

pnq

θ || p
pnq

θ˚ q

as a measure of discrepancy between θ and θ˚, where

recall that Dα is the α-Rényi divergence and p
pnq

θ de-
notes the marginal density of Y n under parameter θ
obtained by integrating out the latent variables:

p
pnq

θ pY nq “

ż

ppY n|Xn, θq ppXn| θq dXn. (8)

Here, we rescale the α-Rényi divergence by a factor of

n´1 since p
pnq

θ is the joint distribution of n (dependent)

observations. In the i.i.d. setting, D
pnq
α pθ, θ˚q reduces

to Dαppθ||pθ˚ q due to the additivity, or tensorization,
of Dα.

In the sequel, we aim to provide an upper bound to the

variational risk
ş

D
pnq
α pθ, θ˚q pqθ,αpdθq, which is the ex-

pected discrepancy to the true data generating model
with respect to the α-variational posterior pqθ,α of the
static parameter. The variational risk tends to be
small as pqθ,α becomes concentrated around θ˚.

Now, let us briefly discuss why the considered varia-
tional risk is meaningful. In fact, the commonly used
risk criterion for characterizing distribution estimation
with non i.i.d. data, the averaged square-Hellinger dis-

tance h2pθ, θ˚q :“ n´1h2pp
pnq

θ , p
pnq

θ˚ q (Ghosal & Van

Der Vaart, 2007), is bounded above by D
pnq

1{2pθ, θ˚q. In

addition, the Dα family indexed by α P p0, 1q satis-
fies α

β
1´β
1´αDβ ď Dα ď Dβ for any 0 ă β ď α ă 1
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(Van Erven & Harremos, 2014). Consequently, a

bound on
ş

D
pnq
α pθ, θ˚q pqθ,αpdθq for any fixed α P p0, 1q

leads to the same bound up to a constant multiple
on

ş

h2pθ, θ˚q pqθ,αpdθq. In particular, a desirable vari-
ational risk bound should scale like n´1 in sample size
n, since it implies the n´1{2 parametric convergence
rate of some point estimator based on pqθ,α (Yang et al.,
2020).

We introduce some notation next. Let

πXn :“ ppXn | Y n, θq

be a shorthand notation for the conditional posterior
of the latent variables given data and static parameter
θ. We also use π˚

Xn to denote the corresponding quan-
tity conditioned on the true parameter θ˚. Given two
non-decreasing functions fλpnq and fµpnq, define the
following KL neighborhoods around π˚

Xn and µ˚ with
respective radius ελ and εµ as

Bn pπ˚
Xn , ελq “

"

D pπ˚
Xn }πXnq ď fλpnq ε2λ,

V pπ˚
Xn }πXnq ď fλpnq ε2λ

*

, (9)

Bn pµ˚, εµq “

"

max
1ďiďn

EXn|θ˚ Dipµ
˚, µq ď fµpnq ε2µ,

max
1ďiďn

EXn|θ˚ Vipµ
˚, µq ď fµpnq ε2µ

*

,

(10)

where Dipµ
˚, µq :“ D rp p¨ | µ˚, Xiq } pp¨ | µ,Xiqs ,

Vipµ
˚, µq :“ V rp p¨ | µ˚, Xiq } pp¨ | µ,Xiqs .

Here, recall that V pp||qq denotes the V-divergence
which will be useful in controlling the variance of the
log-likelihood function when applying Chebyshev’s in-
equality to derive a high probability bound. We are
now prepared to state our main theoretical result; a
proof sketch is provided in Section 6.

Theorem 1. For any fixed pελ, εµq P p0, 1q2 and

D ą 1, with Ppnq

θ˚ probability at least 1 ´ 5{tpD ´

1q2pε2λfλpnq ` ε2µnfµpnqqu, where the fλpnq and fµpnq

are defined in equation (9) and (10), it holds that

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď

Dα

1 ´ α

ˆ

fλpnq

n
ε2λ

` fµpnqε2µ

˙

`

"

´
1

np1 ´ αq
logPλ rBn pπ˚

Xn , ελqs

*

(11)

`

"

´
1

np1 ´ αq
logPµ rBn pµ˚, εµqs

*

.

In the above display, Pπ and Pµ respectively denote
the prior probabilities defined for λ and µ respec-
tively. As in Yang et al. (2020), the variational risk

bound in Theorem 1 offers a trade-off between the
sizes of the neighborhood and the prior probability
assigned to these neighborhoods. A crucial difference
from Yang et al. (2020) is the introduction of the blow-
up factor fλpnq and fµpnq inside the neighborhoods.
Since Yang et al. (2020) only considered the case where
the observation-latent variable pairs are mutually in-
dependent, such a quantity did not appear in their
analysis. However, in the present case, our varia-
tional family preserves the dependence among latent
variables via qXn . As a consequence, the tensoriza-
tion property (for i.i.d. variables) D

`

π˚
Xn }πXn

˘

“

nD
`

π˚
X1

}πX1

˘

« Cn}λ ´ λ˚}2 is no longer true, and
we need to figure out the leading factor fpnq so that
D
`

π˚
Xn }πXn

˘

ď fpnq}λ ´ λ˚}2 holds for all λ’s that
are sufficiently close to λ˚, by dealing with the n-
dimensional joint distribution of Xn. Introduction of
fλpnq and fµpnq allows added flexibility in calibrating
the prior probability of the neighborhood. In particu-
lar, as we will show in Lemma 2, for weakly dependent
latent variables, for example, those form an α-mixing
Markov chain with α P p0, 1q (see, e.g. Bradley (2005)
for a precise definition), we can take fλpnq to be a mul-
tiple of n and fµpnq “ Op1q, which corresponds to the
scalar LGSSM in Section 2.2 with a˚ P p´1, 1q. There-
fore, the folklore in time series analysis that weakly
dependent data are not too much different from inde-
pendent data also applies to a carefully designed vari-
ational inference.

The next theorem shows the necessity of preserving
the latent variable dependence in qXn by showing that
the full mean-field approximation (3) that factorizes
everything will lead to estimation inconsistency.

Theorem 2. Consider the full mean-field decompo-
sition (3) for a scalar LGSSM model (12). As-
sume the true a˚ P p0, 1q. Then we have

limnÑ`8

ş

D
pnq
α pθ, θ˚qpqθ,αpdθq ą c for some constant

c ą 0.

Theorem 2 extends the point estimation inconsistency
result of Wang & Titterington (2004) (which is for the
usual posterior, i.e., α´VB with α “ 1) by first adapt-
ing their proof for the inconsistency of the variational
posterior mean of a to the current α-VB framework,
based on which a lack of consistency for the integrated
variational Bayes risk can be proved

4 Applications to Concrete
State-Space Models

We now illustrate how to apply Theorem 1 to special-
ized contexts. We begin with the simplest setup of a
scalar LGSSM, and then extend the result to general
LGSSMs. We finally consider a more general class of
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SSMs under appropriate control over the KL and V
divergences.

4.1 Risk Bound in Scalar LGSSMs

Recall the following scalar version of the LGSSM de-
scribed in Section 2.2:

Yt|Xt
ind.
„ N pbXt, σ

2
Hq, Xt|Xt´1

ind.
„ N paXt´1, σ

2
V q,
(12)

where static parameter θ “ pa, b, σ2
H , σ2

V q. We assume
independent priors are imposed on the components of
θ as a „ N p0, σ2

Aq, b „ N p0, σ2
Bq, σ2

H „ IGpdH1
, dH2

q,
σ2
V „ IGpdV1

, dV2
q, where IGpa, bq denotes an inverse-

Gamma distribution with shape parameter a and rate
parameter b.

To apply Theorem 1 in this setup, let us analyze how to
choose some theoretical tuning parameters ελ and εµ
to make the variational risk upper bound in Theorem 1
small. Recall that this upper bound is the sum of two
terms:

Dαε2λfλpnq

p1 ´ αqn
`

"

´
1

np1 ´ αq
logPλ rBn pπ˚

Xn , ελqs

*

and
Dαε2µfµpnq

1 ´ α
`

"

´
1

np1 ´ αq
logPµ rBn pµ˚, εµqs

*

.

First, we need to determine the scaling of functions
fλpnq and fµpnq in the context of scalar LGSSM, which
is summarized in the following lemma.

Lemma 1. For LGSSM model (12), we have the fol-
lowing bounds on fλpnq and fµpnq depending on the
absoulte value of a:

1. If |a| ă 1, then fλpnq ď Cn and fµpnq ď C;
2. If |a| “ 1, then fλpnq ď Cn3 and fµpnq ď Cn2;
3. If |a| ą 1, then fλpnq ě ecn and fµpnq ě ecn.

Here C, c are positive constants independent of n.

In this lemma, the cubic Opn3q lower bound for fλpnq

at |a| “ 1 is due to the growth rate of the V diver-
gence. Note that the time series pXi : i P rnsq forms
an |a|-mixing Markov chain when |a| ă 1, correspond-
ing to the good regime where fλpnq “ Opnq and the
overall variational risk bound behaves as the Opn´1q

parametric risk bound.

Based on the above lemma,
`

fλpnq, fµpnq
˘

can be
chosen as pCn,Cq when |a˚| ă 1 and pCn3, Cn2q

when |a˚| “ 1 respectively. Then, we set
ε2λfλpnq

n “

ε2µfµpnq “
plognq

β

n to ensure that pε2λfλpnq `

ε2µnfµpnqq Ñ 8, and pε2λfλpnq ` ε2µnfµpnqq{n Ñ 0

no slower than logn
n . With these choices, by carefully

estimating Pλ rBn pπ˚
Xn , ελqs and Pµ rBn pµ˚, εµqs as a

function of n, we obtain the following corollary.

Corollary 1. Suppose the true |a˚| ď 1. Then, there

exists β ą 0, C ą 0 and D ą 0 s.t. with Ppnq

θ˚ probabil-
ity at least 1 ´ D´2plog nq´β, it holds that

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď

CDplog nqβ_1

n
.

From this Corollary, it is evident that the GM-
FVI achieves the optimal theoretical convergence rate
Op1{nq under the condition |a˚| ď 1. Minimax rates
for SSMs in the literatures (De Castro et al., 2016;
Lehéricy, 2018) involve the log n{n scaling in n, so the
presence of the logarithmic factor in the rate is not
entirely an artifact of our proof.

4.2 Risk Bound in Multivariate LGSSMs

Next, we consider the general LGSSM defined in (2).
We again assume that the following independent pri-
ors are imposed on all components of static parameter
θ “ pA,B,ΣH ,ΣV q where ΣH and ΣV are diagonal
matrices,

Ai,j
ind.
„ N p0, σ2

Aq, Bk,l
ind.
„ N p0, σ2

Bq,

σH
2
k

ind.
„ IGpτH1, τH2q, σV

2
j

ind.
„ IGpτV 1, τV 2q,

where i, j, l P rdV s, k P rdH s.

Let ρmaxpAq denote the spectral radius of a square ma-
trix matrix A, i.e., its maximum absolute eigenvalue.
Also, denote d2 :“ d2V _ pdV dHq and use the same
fλpnq and fµpnq from Lemma 1. We then have the
following result in the multivariate setup.

Corollary 2. If ρmaxpA˚q ď 1, then there exists

β,C,D ě 0, such that with Ppnq

θ˚ probability at least
1 ´ D´2plog nq´β, it holds that

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď CD

ˆ

plog nqβ

n
_

d2 log n

n

˙

The assumption ρmaxpA˚q ď 1 can be viewed as a gen-
eralization of the assumption |a˚| ď 1 in Corollary 1
in the scalar case. Since the number of parameters
now is of order d2, the optimal rate is d2{n modulo
logarithmic terms.

4.3 Risk Bound in General State-Space
Models

Finally, consider the general SSM as in (1). Still writ-
ing the parameters as θ “ pλ, µq, and assuming that
they have dimension pdλ, dµq, we have the following
convergence bound.

Corollary 3. Assume there exists C,C1, C2, D, β ą 0
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such that

max

"

D pπ˚
Xn }πXnq , V pπ˚

Xn }πXnq

*

ď C1fλpnq}λ ´ λ˚}2,

max max
1ďkďn

"

EXn|θ˚ Dkpµ˚, µq,EXn|θ˚ Vkpµ˚, µq

*

ď C2fµpnq}µ ´ µ˚}2.

where } ¨ } is the Euclidean metric. Also assume
that the multivariate prior densities pλ and pµ are
Riemann integrable over their domain. Then, we

have the following bound with Ppnq

θ˚ probability at least
1 ´ D´2plog nq´β,

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď

CD

ˆ

plog nqβ

n
_

dλ log fλpnq

n
_

dµ logpnfµpnqq

n

˙

.

(13)

Corollary can be applied to general state-space models
subject to the quadratic bounds above on appropriate
KL and V divergences. Note that a similar Lipschitz
assumption on the densities also appears in Example
7.1 of Ghosal et al. (2000) and is typically satisfied for
a wide range of parametric densities. Since in our case,
the assumption is directly on the joint densities as op-
posed to on the independent marginals as in Ghosal
et al. (2000), it is important to characterize the role
of the data (in particular through the sample size) in
the Lipschitz constant. From this result, one can al-
ways achieve the parametric variational risk Op1{nq

(modulo poly-log n terms) as long as fλpnq and fµpnq

grow at most polynomially in n. This explains why
Corollary 1 (as a special case of Corollary 3) requires
condition |a˚| ď 1 (cf. Lemma 2). The same comment
applies to Corollary 2.

Remark. The choice of the Euclidean metric } ¨ } in
Corollary 3 is not a necessary assumption. To accom-
modate a more complex dependence structure of θ on
pθ, usage of other metrics may be considered leading
to a possible alteration of the convergence rate.

5 Comments on Implementation

Although the primary focus of this article is theoret-
ical, we offer some discussion about implementation
in general state-space models. We also provide nu-
merical illustration for a scalar LGSSM in the supple-
mental document, where we compute the Bayes risk in
a small-scale simulation study. The CAVI algorithm
for LGSSMs in (5) can be adapted to general condi-
tionally conjugate SSMs as long as the belief propa-
gation can be analytically carried out, and the vari-
ational distribution for the static parameters can be

updated in a conjugate fashion. The pseudo-code in
Algorithm 1 offers a general template. Beyond the lin-
ear Gaussian setup, there is subclass of exponential
family named exponential dispersion family (EDM)
(Jørgensen, 1992) whose probability density functions
or probability mass functions taking the form of

fpy; θ, ϕq “ apy, ϕq exp

„

1

ϕ
tyθ ´ κpθqu

ȷ

, y P R

for suitable known functions ap¨, ¨q and κp¨q, where θ
the canonical parameter taking values in an open in-
terval such that the log-partition function κpθq ă 8,
and ϕ ą 0 is the dispersion parameter. This fam-
ily retains the conjugacy of ppXi|Y

n, θq so that the
belief propagation can be performed with analytically
closed forms. This family has been used as the gener-
ative model for the latent process; see Vidoni (1999)
for example. In particular, further restricting to the
Tweedie EDM (Dunn & Smyth, 2005), whose variance
function takes polynomial form, an iterative algorithm
very similar to Barber & Chiappa (2007) can be de-
veloped. Alternatively, a hybrid algorithm combining
Monte Carlo approximation to the expectations in the
updating formula (5) can be employed in the absence
of conjugacy.

Algorithm 1: Pseudo Algorithm for CAVI in a
General Conjugate SSM

Data: Y n;
Result: rqpXn, θq :“ qXnpXnqqθpθq;
while qXnpXnq and qθpθq haven’t converged do

for i “ 1 to i “ n do

Calculate q
psq

XnpXiq using the belief
propagation in the subroutine
Algorithm 2 ; /* Belief Propagation

*/
end

Calculate q
ps`1q

θ using conditional conjugacy;
/* Conjugacy */

end

6 Proof Sketch of Theorem 1

Here we provide a sketch of the proof of Theorem 1.
It follows from Yang et al. (2020) that the α-VB ob-
jective function in the right hand side of (7) can be
equivalently expressed as

Ψn,α pqθ, qXnq :“

ż

Θ

ˆ

ℓn pθ˚q ´ pℓnpθq

˙

qθpdθq

` α´1D pqθ}pθq ,

where ℓn pθ˚q “ log ppY n | θ˚q is the (marginal) log-
likelihood function evaluated at the true parameter θ˚,
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Algorithm 2: Forward-Backward Algorithm for
the Belief Propagation in Algorithm 1

Data: Y n, qθpθq;
Result: qXnpXiq;
FORWARD:
for i “ 1 to i “ n do

Calculate qpXi | Y1:i, θq9
ş

qpXi´1 |

Y1:i´1, θqqpXi´1 | XiqqpYi | XiqdXi´1 ;

end
BACKWARD:
for j “ n ´ 1 to j “ 1 do

Calculate qpXj | Xj`1, Y
n, θq9qpXj`1 |

Xj , θqqpXj | Y1:j , θq;
Then, calculate qpXj | Y n, θq “

ş

qpXj |

Xj`1, Y
n, θqqpXj`1 | Y n, θqdXj`1 ;

Then, qXnpXiq “
ş

qpXj | Y n, θqqθpθqdθ ;

end

pθ is the prior distribution on θ, and pℓnpθq is defined
as

pℓnpθq “

ż

Xn

qXn pXnq log
p pY n | µ,XnqπXn

qXn pXnq
.

In their Theorem 3.1, Yang et al. (2020) showed that
for any ζ P p0, 1q, it holds with Pn

θ˚ probability at least
p1 ´ ζq that for any probability measure qθ P Γθ with
qθ ! pθ and any probability measure qXn P ΓXn on
Xn,
ż

Dpnq
α pθ, θ˚q pqθ,αpθqdθ ď

α

np1 ´ αq
Ψn,α pqθ, qXnq

`
1

np1 ´ αq
logp1{ζq.

This result relates the variational risk bound to the
variational objective Ψn,α. The general strategy then
is to make judicious choices of qθ and qXn in the right
hand side of the above display to appropriately control
Ψn,α pqθ, qXnq. However, in all their statistical exam-
ples, qXn had a further mean-field decomposition, and
additional care needs to be exercised to make these
choices in the presence of dependence as in our con-
text.

In our context, we first set

qXn :“ rqXnpXnq9P pY n | µ,XnqP pXn | θ˚q

to get the following bound
ż

Dpnq
α pθ, θ˚q pqθ,αpθqdθ ď

α

np1 ´ αq

„

´

ż

Θ

ż

Xn

rqXn pXnq log
P pY n | µ,XnqπXn

P pY n | µ˚, Xnqπ˚
Xn

qθpdθq

`
D pqθ}pθq

α
`

logp1{ζq

α

ȷ

.

The above inequality is true for any qθ ! pθ. We
specifically choose qθ :“ rqθ as the probability density
function of the probability measure rQθ given by

rQθp¨q “
Pπ r¨ X Bn pπ˚

Xn , ελqs b Pµ r¨ X Bn pµ˚, εµqs

Pπ rBn pπ˚
Xn , ελqs ¨ Pµ rBn pµ˚, εµqs

.

With this choice, we proceed to further bound the right
hand side of the previous display. By applying Fubini’s
theorem, we obtain

Eθ˚

„
ż

Θ

rqθpθq

„
ż

Xn

rqpXnq

log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

dθ

ȷ

“

ż

Θ

Eθ˚

„
ż

Xn

rqpXnq

log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

rqθpθqdθ

Simplifying the the inner integral over a number of
steps, we obtain:

Eθ˚

„
ż

Xn

´rqpXnq log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q

dXn

ȷ

ď fλpnqε2λ ` nfµpnqε2µ

A similar analysis leads to

Varθ˚

„
ż

Θ

rqθpθq

„
ż

Xn

rqpXnq log
ppY n | µ,Xnq

ppY n | µ˚, Xnq

ppXn | θq

ppXn | θ˚q
dXn

ȷ

dθ

ȷ

ď 2fλpnqε2λ ` 2nfµpnqε2µ

Putting pieces together, we obtain by applying Cheby-
shev’s inequality that

Pθ˚

"
ż

Θ

rqθpθq

ż

Xn

rqpXnq log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ ď ´Dpfλpnqε2λ ` nfµpnqε2µq

*

ďPθ˚

"
ż

Θ

rqθpθq

ż

Xn

rqpXnq log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ ´ Eθ˚

„
ż

Θ

rqθpθq

ż

Xn

rqpXnq

log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ

ȷ

ď ´ pD ´ 1qpfλpnqε2λ ` nfµpnqε2µ2q

*

ď
4

pD ´ 1q2pε2λfλpnq ` ε2µnfµpnqq

Finally, we have



Honggang Wang, Yun Yang, Debdeep Pati, Anirban Bhattacharya

D prqθ}pθq “ ´rlogPπ rBn pλ˚, ελqs

` logPµ rBn pµ˚, εµqss,

since for any probability measure ϕ, a measurable set
A with ϕpAq ą 0, and rϕp¨q “ ϕp¨XAq{ϕpAq the restric-

tion of ϕ to A, Dprϕ}ϕq “ ´ log ϕpAq. This completes
the proof sketch. A complete proof and all remaining
proofs can be found in the supplemental document.

7 Discussions

In this paper, we illustrate that mean-field varia-
tional inference may lead to inconsistent parameter
estimates. In particular, in the context of Bayesian
state-space models, carefully designed variational fam-
ilies that preserve dependence among latent variables
dependence are necessary to achieve parameter esti-
mation consistency. One immediate future direction
is to extend the current method and theory to time-
inhomogeneous state-space models where the transi-
tion and emission matrices may evolve over time. An-
other interesting direction is to extend the current
variational framework to other latent variable mod-
els beyond the state-space models where the underly-
ing graphical structure of the latent variables is more
complicated than a chain, for example, can be a tree
or even contain loops. Last, it is also of practical im-
portance to analyze the algorithmic properties of the
aforementioned CAVI algorithms, or more generally
belief propagation algorithms, by identifying a mini-
mal set of conditions under which the algorithm con-
verges polynomially or exponentially to the variational
solution prqθ,α, rqXn,αq.
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Supplementary Material:
Structured Variational Inference in Bayesian State-Space Models

A Proof of Theorem 1:

Proof: Theorem 3.1 from Yang et al. (2020) showed that for any ζ P p0, 1q, it holds with Pn
θ˚ probability at least

p1 ´ ζq that for any probability measure qθ P Γθ with qθ ! pθ and any probability measure qXn P ΓXn on Xn,

ż

Dpnq
α pθ, θ˚q pqθ,αpθqdθ ď

α

np1 ´ αq
Ψn,α pqθ, qXnq `

1

np1 ´ αq
logp1{ζq,

where

Ψn,α pqθ, qXnq :“

ż

Θ

ˆ

ℓn pθ˚q ´ pℓnpθq

˙

qθpdθq ` α´1D pqθ}pθq ,

and

pℓnpθq :“

ż

Xn

qXn pXnq log
p pY n | µ,XnqπXn

qXn pXnq
.

In our context, we first set
qXn :“ rqXnpXnq9P pY n | µ,XnqP pXn | θ˚q

to get the following bound

ż

Dpnq
α pθ, θ˚q pqθ,αpθqdθ ď

α

np1 ´ αq

„

´

ż

Θ

ż

Xn

rqXn pXnq log
P pY n | µ,XnqπXn

P pY n | µ˚, Xnqπ˚
Xn

qθpdθq

`
D pqθ}pθq

α
`

logp1{ζq

α

ȷ

.

The above inequality is true for any qθ ! pθ. We specifically choose qθ :“ rqθ as the probability density function
of the probability measure rQθ given by

rQθp¨q “
Pπ r¨ X Bn pπ˚

Xn , ελqs b Pµ r¨ X Bn pµ˚, εµqs

Pπ rBn pπ˚
Xn , ελqs ¨ Pµ rBn pµ˚, εµqs

.

With this choice, we proceed to further bound the right hand side of the previous display. By applying Fubini’s
theorem, we obtain

Eθ˚

„
ż

Θ

rqθpθq

„
ż

Xn

rqpXnq log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

dθ

ȷ

“

ż

Θ

Eθ˚

„
ż

Xn

rqpXnq log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

rqθpθqdθ

Simplifying the the inner integral over a number of steps, we obtain:

Eθ˚

„
ż

Xn

´rqpXnq log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

ď fλpnqε2λ ` nfµpnqε2µ

A similar analysis leads to

Varθ˚

„
ż

Θ

rqθpθq

„
ż

Xn

rqpXnq log
ppY n | µ,XnqppXn | θq

ppY n | µ˚, XnqppXn | θ˚q
dXn

ȷ

dθ

ȷ

ď 2fλpnqε2λ ` 2nfµpnqε2µ
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Putting pieces together, we obtain by applying Chebyshev’s inequality that

Pθ˚

"
ż

Θ

rqθpθq

ż

Xn

rqpXnq log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ

ď ´ Dpfλpnqε2λ ` nfµpnqε2µq

*

ďPθ˚

"
ż

Θ

rqθpθq

ż

Xn

rqpXnq log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ

´Eθ˚

„
ż

Θ

rqθpθq

ż

Xn

rqpXnq log
ppY n | µ,XnqπXn

ppY n | µ˚, Xnqπ˚
Xn

dXndθ

ȷ

ď ´ pD ´ 1qpfλpnqε2λ ` nfµpnqε2µ2q

*

ď
4

pD ´ 1q2pε2λfλpnq ` ε2µnfµpnqq

Finally, we have

D prqθ}pθq “ ´ rlogPπ rBn pλ˚, ελqs ` logPµ rBn pµ˚, εµqss ,

since for any probability measure ϕ, a measurable set A with ϕpAq ą 0, and rϕp¨q “ ϕp¨ XAq{ϕpAq the restriction

of ϕ to A, Dprϕ}ϕq “ ´ log ϕpAq. This completes the proof sketch. A complete proof and all remaining proofs
can be found in the supplemental document.

B Proof of Theorem 2:

Proof: For showing the inconsistency of the α´VI estimator under the MF regime, we can show the bayesian

risk we defined at the beginning of §3 I can rn :“
ş

D
pnq
α pa, a˚q pqa,αpdaq does not go to 0 in the limit case when

a˚ P p0, 1q. For showing this, we only need to prove the poterior mean for a is not consistently converging to
the true transmitting parameter a˚. Denoting the poterior mean as âα. Since we set a in a normal distribution,
the poterior of a is given by q̂a,α “ N pâα, σ̂

2
a,αq. For simplicity, we just denote them as pâ, σ̂2

aq as α “ 1.
Under this regime, the inconsistency result lim

nÑ8
|â ´ a˚| ą c0 has already been shown in Wang & Titterington

(2004). For showing the inconsistency for the bayesian risk rn in the general α´vb case, we first need to show
lim
nÑ8

â “ lim
nÑ8

âα , and then we can use this result to show lim
nÑ8

rn ą 0 which is just what we want.

In order to show the inconsistency result for general α in the MF setup, we need to put the connection between
the objective function in two cases. The α´VB solver defined in our paper is

ppqθ,α, pqXn,αq “ argmin
pqθ ,qXnqPΓ

Ψn,α pqθ, qXnq ,

which is equivalent to the formation

argmin
pqθ ,qXnqPΓ

´

ż

Θ

pℓnpθqqθpdθq ` α´1D pqθ}pθq .

In Wang & Titterington (2004), the objective function is just

´

ż

qpX, θq log
ppθ,X, Y q

qpX, θq
dXdθ,

which is the case when we set α “ 1 in our configuration.
Next, we introduce the MF variational family as qXk

„ N pµk, σ
2
kq and the prior for a is pa “ N p0, σ2

Aq. Also,
we set X0 „ N p0, σ2

0q. Taking derivatives over the objective function and make them all equal to 0, we can get
following equations,

σ2
k “

σ2
0

1 ` â2α ` σ̂2
a,α ` b2

, (S1)
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and

σ2
n “

σ2
0

1 ` b2
, (S2)

and
¨

˚

˚

˚

˚

˝

1 ` â2α ` σ̂2
a,α ` b2 ´âα ¨ ¨ ¨ 0

´âα 1 ` â2α ` σ̂2
a,α ` b2 ´âα

...
...

. . .
. . .

...
0 ¨ ¨ ¨ ´âα 1 ` b2

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

µ1

...

...
µn

˛

‹

‹

‹

‹

‚

“ Φ, (S3)

where Φ is defined as Φ “ bY n. Y n is the observation vector in the scalar case. We can then optimize the
objective function w.r.t. pâα, σ̂

2
a,αq. Plugging (S1)-(S3) back, we get

Fα,npâα, σ̂
2
a,αq “ α´1

"

1

2
log σ̂2

a,α ´
1

2σ2
A

␣

σ̂2
a,α ` â2α

(

*

´
1

2σ2
0

`

σ̂2
a,α ` â2α

˘

n´1
ÿ

k“1

`

σ2
k ` µ2

k

˘

`
âα
σ2
0

n´1
ÿ

k“1

µkµk`1. (S4)

Denoting fα,n :“ 1
nFα,n, (S4) can then be written as

fα,n “ fn `
pα´1 ´ 1q

n

"

1

2
log σ̂2

a,α ´
1

2σ2
A

␣

σ̂2
a,α ` â2α

(

*

“ fn ` gα,n. (S5)

Without loss of generality, we can assume pâα, σ̂a,αq P D1 :“ r´C1, C1s ˆ rc1, C1s, where C1 ą c1 ą 0. Easy to

verify that gα,n Ñ 0 and g
1

α,n Ñ 0 on D1. So, we have lim
nÑ8

f
1

α,n “ lim
nÑ8

f
1

n on D1. So the result lim
nÑ8

â “ lim
nÑ8

âα

can be shown by the uniform convergence. Since lim
nÑ8

|â ´ a˚| ą c0 holds for some c0 ą 0. Define the region

D2 :“ pâα ´ c2, âα ` c2q where c0 ą c2 ą 0. We have
ş

D2
pqa,αpdaq ą c3 for large n where c3 ą 0. So lim

nÑ8
rn ą 0.

The inconsistency then gets proved.

C Risk Bound in Scalar Case:

Let’s first define two functions S1pnq and S2pnq for the convenient notation. Both will be used in later sections.
They are used to quantify the KL divergence and V divergence. In this way, we can easily analyse the growth
rate for these two divergence with different value taken for max |λA˚ | as n increases. Based on this, we get the
hint for how to pick the blow-up factors fλpnq and fµpnq.

S1pnqptq “ pn ` pn ´ 1qt2 ¨ ¨ ¨ ` t2pn´1qq “
1 ´ t2pn`1q

p1 ´ t2q2
`

n ` 1

1 ´ t2
, when |t| ‰ 1.

S1pnqptq “
npn ` 1q

2
, when |t| “ 1.

Also denote

S2pnqptq “

n
ÿ

i“1

ˆ i´1
ÿ

j“0

t2j
˙2

“

n
ÿ

i“1

ˆ

1 ´ t2i

1 ´ t2

˙2

.

When |t| ă 1, we have

S2pnqptq ď
1

p1 ´ t2q2

„ n
ÿ

i“1

p1 ´ t2iq

ȷ

“
1

p1 ´ t2q2

ˆ

n ´
t2p1 ´ t2nq

1 ´ t2

˙

.

When |t| “ 1, we have

S2pnqptq “

n
ÿ

i“1

i2 “
1

6
npn ` 1qp2n ` 1q.
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C.1 Proof of Corollary 1:

Proof: Direct application of Corollary 2 by setting dH “ dV “ 1 and t “ |a˚| ď 1.

D Proof of Lemma 1:

We first restate Lemma 1 in the main manuscript to correct a typo; we should have fµpnq ď Cn2 instead of
fµpnq ď Cn for the |a˚| “ 1 case. This does not change the conclusion of any Corollary.

Lemma 2. 1 (Restatement) For the scalar LGSSM, we have the following bounds on fλpnq and fµpnq depending
on the absoulte value of a:

1. If |a˚| ă 1, then fλpnq ď Cn and fµpnq ď C;

2. If |a˚| “ 1, then fλpnq ď Cn3 and fµpnq ď Cn2;

3. If |a˚| ą 1, then fλpnq ě ecn and fµpnq ě ecn.

Here C, c are positive constants independent of n.

Proof: Observing the Lemma 3, Lemma 4 and (S13), we can see the growth rate for fλpnq and fµpnq are
separately

fλpnq “

#

Cn |a˚| ă 1

Cn3 |a˚| “ 1,

and

fµpnq “

#

Cn |a˚| ă 1

Cn2 |a˚| “ 1.

Noticing in the scalar case with our setup, we have the equation

DpppXn | θ˚q}ppXn | θqq “ n

˜

log
σ0

σ˚
0

`
σ˚
0
2

2σ2
0

´
1

2

¸

`
σ˚
0
2
pa˚ ´ aq2

2σ2
0

S1pn´1qpa˚q, (S6)

EXn|θ˚ DpppYk | Xk, θ
˚q}ppYk | Xk, θqq “

ˆ

log
σ0

σ˚
0

`
σ˚2
0

2σ2
0

´
1

2

˙

`
σ˚
0
2
pa˚ ´ aq2

2σ2
0

ˆ k´1
ÿ

i“0

a˚2i

˙

. (S7)

Then when |a˚| ą 1, it is necessary to pick fλpnq and fµpnq with an exponential rate because of the last term in
(S6) and (S7).

E Risk Bound in Multivariate Case:

With the formulation of a multivariate AR(1) stated in §4.2, the marginal distribution pt for Xt is,

pt :“ ppXtq „ N dp0,Ωtq,

where

Ωt “ ΣV ` AΩt´1A
T ,

Ω1 “ ΣV .

Using the Ωt to denote the precision matrix.
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E.1 KL Divergence Bound

Given the two multivariate normal distributions,

p1 “ N dpµ1,Σ1q

p2 “ N dpµ2,Σ2q,

the KL divergence between them Dpp1}p2q can be written as

Dpp1}p2q “
1

2

„

log
|Σ2|

|Σ1|
´ d ` TrpΣ´1

2 Σ1q ` pµ2 ´ µ1qTΣ´1
2 pµ2 ´ µ1q

ȷ

.

For our multivariate model, we can get the KL divergence bound by the following lemma.

Lemma 3. S1(KL Divergence Bound) Denote t “ max
1ďiďdV

|λA˚ |, an upper bound for Dpπ˚
Xn}πXnq is

Dpπ˚
Xn}πXnq ď T1n ` T2}A ´ A˚}2FS1pn´1qptq,

where T1, T2 are defined in the proof.

Proof: Using the chain rule for KL divergence, we have

DpppXn | θ˚q}ppXn | θqq “ Dpp1pX1 | θ˚q}p1pX1 | θqq `

n´1
ÿ

k“1

EppXkqDpppXk`1 | Xk, θ
˚q}ppXk`1 | Xk, θqq.

Pick p1 and p2 as

p1 “ N dpA˚Xk,Σ
˚
V q,

p2 “ N dpAXk,ΣV q.

We have

Dpp1}p2q “
1

2

„

log
|ΣV |

|ΣV
˚

|
´ dV ` trpΣ˚

V Σ
´1
V q ` XT

k pA˚ ´ AqTΣV
´1

pA˚ ´ AqXk

ȷ

“
1

2

„

log
|ΣV |

|ΣV
˚

|
´ dV ` trpΣ˚

V Σ
´1
V q ` Tr

´

pA˚ ´ AqTΣ˚
V

´1
pA˚ ´ AqXkX

T
k

¯

ȷ

.

Then we take the expectation,

Ep˚
k

pDpp1}p2qq ď
1

2

«˜

log max
1ďiďdV

σV
2
i

σ˚
V
2
i

` max
1ďiďdV

σ˚
V
2
i

σV
2
i

´ 1

¸

dV ` Tr
`

pA˚ ´ AqTΣV
´1

pA˚ ´ AqΩ˚
k

˘

ff

.

Then we can sum it over by the chain rule,

Dpπ˚
Xn}πXnq ď

ndV
2

˜

log max
1ďiďd

σV
2
i

σ˚
V
2
i

` max
1ďiďd

σ˚
V
2
i

σV
2
i

´ 1

¸

` Tr

„

pA˚ ´ AqTΣV
´1

pA˚ ´ Aq

ˆ n´1
ÿ

k“1

Ω˚
k

˙ȷ

ď I ` II.

Remind of the property that when M1, M2 are s.p.d. matrices, we have

TrpM1M2q ď TrpM1qTrpM2q.

Applying this property to term II, we have

II ď Tr
“

pA˚ ´ AqTΣV
´1

pA˚ ´ Aq
‰

Tr

˜

n´1
ÿ

k“1

Ω˚
k

¸

.
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Then we can derive

Tr

˜

n´1
ÿ

k“1

Ω˚
k

¸

“

n´1
ÿ

k“1

Tr

„

pn ´ kq pA˚q
k´1

Σ˚
V

´

A˚T
¯k´1

ȷ

“

n´1
ÿ

k“1

pn ´ kqTr

„

´

A˚T
¯k´1

pA˚q
k´1

Σ˚
V

ȷ

ď max
1ďiďdV

σ˚
V
2
iS1pn´1qptqdV ,

where t “ max
1ďiďd

|λA˚ |. Then we have the bound

Dpπ˚
Xn}πXnq ď

ndV
2

ˆ

log max
1ďiďdV

σV
2
i

σ˚
V
2
i

` max
1ďiďdV

σ˚
V
2
i

σV
2
i

´ 1

˙

` dV

ˆ

max
1ďiďdV

σ˚
V
2
i

˙ˆ

max
1ďiďdV

σV
´2
i

˙

}A ´ A˚}2FS1pn´1qptq

: “ T1n ` T2}A ´ A˚}2FS1pn´1qptq,

where

T1 : “
dV
2

ˆ

log max
1ďiďdV

σV
2
i

σ˚
V
2
i

` max
1ďiďdV

σ˚
V
2
i

σV
2
i

´ 1

˙

,

T2 : “ dV

ˆ

max
1ďiďdV

σ˚
V
2
i

˙ˆ

max
1ďiďdV

σV
´2
i

˙

.

E.2 V Divergence Bound

Under the same multivariate AR(1) constructions, we can have the following lemma for bounding the V divergence
between the two joint densities over the latent space.

Lemma 4. S2(V Divergence Bound) Denote t “ max
1ďiďdV

|λA˚ |, an upper bound for V pπ˚
Xn}πXnq is given by

V pπ˚
Xn}πXnq ď T3n ` T4}A ´ A˚}2FS1pn´1qptq ` T5}A ´ A˚}4FS2pnqptq,

where T3, T4, T5 are functions related to pΣV ,Σ
˚
V q which are defined in the proof.

Proof: Still we can use the chain rule to get inequality

V pppXn | θ˚q}ppXn | θqq ď V pp1pX1 | θ˚q}p1pX1 | θqq `

n´1
ÿ

k“1

Eppxkq V pppXk`1 | Xk, θ
˚q}ppXk`1 | Xk, θqq.

We can try to get the V divergence for two single multivariate guassians. With assuming them separately as

p1 “ N dpµ1,Σ1q,

p2 “ N dpµ2,Σ2q,

we can write the V divergence between them as

V pp1}p2q “

ż

1

4

„

log
|Σ2|

|Σ1|
´ pX ´ µ1qTΣ´1

1 pX ´ µ1q ` pX ´ µ2qTΣ´1
2 pX ´ µ2q

ȷ2

p1pXqdX

“

ż

1

4

„

log
|Σ2|

|Σ1|
` pX ´ µ1qT pΣ´1

2 ´ Σ´1
1 qpX ´ µ1q ` 2pµ1 ´ µ2qTΣ´1

2 pX ´ µ1q`

pµ1 ´ µ2qTΣ´1
2 pµ1 ´ µ2q

‰2
p1pXqdX

ď log2
|Σ2|

|Σ1|
` 3Tr

“

pΣ´1
2 Σ1 ´ Iq2

‰

` 4Σ1Σ
´2
2 pµ1 ´ µ2q2 ` pµ1 ´ µ2q2

T
Σ´2

2 pµ1 ´ µ2q2.



Honggang Wang, Yun Yang, Debdeep Pati, Anirban Bhattacharya

In our model, we consider the joint distribution over the latent variables and then we can do the substitution,

p1 “ N dV
pA˚Xk,Σ

˚
V q,

p2 “ N dV
pAXk,ΣV q.

Then we get the following

V pp1}p2q ďdV

»

–dV log2 max
1ďiďdV

σV
2
i

σ˚
V
2
i

` 3 max
1ďiďdV

˜

σ˚
V
2
i

σV
2
i

´ 1

¸2
fi

fl ` 4

˜

max
1ďiďdV

σ˚
V
2
i

σV
4
i

¸

}pA ´ A˚qXk}22

`

ˆ

max
1ďiďdV

σV
´4
i

˙

}pA ´ A˚qXk}44

“I ` II ` III.

We take the expectation with respect to pk, and then we can get

Epk
II ď4

˜

max
1ďiďd

σ˚
V
2
i

σV
4
i

¸

ˆ

max
1ďiďd

σV
´4
i

˙

}A ´ A˚}2F TrpΩ˚
kq.

Also we have

}pA ´ A˚qXk}44 : “

dV
ÿ

i“1

ˆ dV
ÿ

j“1

´

Aij ´ A˚
ij

¯

Xk,j

˙4

ď

dV
ÿ

i“1

ˆ dV
ÿ

j“1

´

Aij ´ A˚
ij

¯2
˙2ˆ dV

ÿ

j“1

X2
k,j

˙2

ď d2V

ˆ dV
ÿ

i,j“1

´

Aij ´ A˚
ij

¯4
˙ˆ dV

ÿ

j“1

X4
k,j

˙

ď }A ´ A˚}4F

ˆ dV
ÿ

j“1

X4
k,j

˙

.

(S8)

The above last inequality comes from the norm inequality

} ¨ }r ď d
1
r ´ 1

p } ¨ }p, (S9)

where the norm } ¨ }r and } ¨ }p are all defined on vector space Rd.
Taking expectation over (S8), we get

Epk
III ď

ˆ

max
1ďiďdV

σV
´4
i

˙

}A ´ A˚}4F

ˆ dV
ÿ

j“1

Epk
X4

k,j

˙

. (S10)

Analysing the last term we have

dV
ÿ

j“1

Epk
X4

k,j “ 3
dV
ÿ

j“1

m2
k,pj,jq ď 3d´1

V

ˆ dV
ÿ

j“1

mk,pj,jq

˙2

(S11)

“ 3d´1
V Tr

´

Ω˚
k

¯2

ď 3dV

ˆ

max
1ďiďdV

σ˚
V
4
i

˙ˆ k´1
ÿ

i“0

t2i
˙2

. (S12)

The (S11) and (S12) uses the trick in (S9).
Combining (S10) and (S12), we get

Epk
III ď 3dV

ˆ

max
1ďiďdV

σ˚
V
4
i

˙ˆ

max
1ďiďdV

σV
´4
i

˙

}A ´ A˚}4F

ˆ k´1
ÿ

i“0

t2i
˙2

.
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Combining all above, we get

V pπ˚
Xn}πXnq ď dV

»

–dV log2 max
1ďiďdV

σV
2
i

σ˚
V
2
i

` 3 max
1ďiďdV

˜

σ˚
V
2
i

σV
2
i

´ 1

¸2
fi

fl

` 4dV

˜

max
1ďiďd

σ˚
V
2
i

σV
4
i

¸

ˆ

max
1ďiďd

σV
´4
i

˙ˆ

max
1ďiďdV

σ˚
V
2
i

˙

}A ´ A˚}2FS1pn´1qptq

` 3dV

ˆ

max
1ďiďdV

σ˚
V
4
i

˙ˆ

max
1ďiďdV

σV
´4
i

˙

}A ´ A˚}4FS2pnqptq

: “ T3n ` T2}A ´ A˚}2FS1pn´1qptq ` T4}A ´ A˚}5FS2pnqptq,

where

T3 :“ dV

»

–dV log2 max
1ďiďdV

σV
2
i

σ˚
V
2
i

` 3 max
1ďiďdV

˜

σ˚
V
2
i

σV
2
i

´ 1

¸2
fi

fl ,

T4 :“ 4dV

˜

max
1ďiďd

σ˚
V
2
i

σV
4
i

¸

ˆ

max
1ďiďd

σV
´4
i

˙ˆ

max
1ďiďdV

σ˚
V
2
i

˙

,

T5 :“ 3dV

ˆ

max
1ďiďdV

σ˚
V
4
i

˙ˆ

max
1ďiďdV

σV
´4
i

˙

.

E.3 Bound w.r.t. µ

Combining with the result from Lemma 3 and Lemma 4, if we assume that

p1 “ N dH
pB˚Xk,ΣH

˚
q,

p2 “ N dH
pBXk,ΣHq,

then we have

Ep˚
k

pDpp1}p2qq ď T
1

1 ` T
1

2}B ´ B˚}2F

ˆ k´1
ÿ

i“0

t2i
˙

,

and

Ep˚
k

pV pp1}p2qq ď T
1

1 ` T
1

2}B ´ B˚}2F

ˆ k´1
ÿ

i“0

t2i
˙

` T
1

3}B ´ B˚}4F

ˆ k´1
ÿ

i“0

t2i
˙2

, (S13)

where

T
1

1 :“
dH
2

˜

log max
1ďiďdH

σH
2
i

σ˚
H

2
i

` max
1ďiďdH

σ˚
H

2
i

σH
2
i

´ 1

¸

,

T
1

2 :“ dV

ˆ

max
1ďiďdH

σH
´2
i

˙ˆ

max
1ďiďdV

σV
2
i

˙

,

T
1

3 :“ dH

»

–dH log2 max
1ďiďdH

σH
2
i

σ˚
H

2
i

` 3 max
1ďiďdH

˜

σ˚
H

2
i

σH
2
i

´ 1

¸2
fi

fl ,

T
1

4 :“ 4dV

˜

max
1ďiďdH

σ˚
H

2
i

σH
4
i

¸

ˆ

max
1ďiďdH

σH
´4
i

˙ˆ

max
1ďiďdV

σ˚
V
2
i

˙

,

T
1

5 :“ 3dV

ˆ

max
1ďiďdH

σ˚
H

4
i

˙ˆ

max
1ďiďdV

σV
´4
i

˙

.

Here we still use t “ max
1ďiďdV

|λA˚ |.
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E.4 Proof of Corollary 2:

Proof: Without loss of generality, we can define

Apc0, C0q :“

"

c0 ď σV
2
i , σH

2
j ď C0, @ i P rdV s, j P rdH s

*

for some C0 ą c0 ą 0. Combining all the bounds, we pick

fλpnq “

#

n t ă 1

n3 t “ 1,

and

fµpnq “

#

n t ă 1

n2 t “ 1.

For some C1, C2 ą 0, we have (S14) holds on Apc0, C0q and find out dλ “ d2V , dµ “ dV dH . Using the result from

Lemma 5,we can show there exists β,C,D ě 0, such that with Ppnq

θ˚ probability at least 1 ´ D´2plog nq´β , it
holds that

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď CD

ˆ

plog nqβ

n
_

pd2V _ dV dHq log n

n

˙

.

Then the Corollary 2 gets proved.

F Proof of Corollary 3

Proof: The assumptions given in the corollary 3 is as follow,

max

"

D pπ˚
Xn }πXnq , V pπ˚

Xn }πXnq

*

ď C1fλpnq}λ ´ λ˚}2,

max max
1ďkďn

"

EXn|θ˚ Dkpµ˚, µq,EXn|θ˚ Vkpµ˚, µq

*

ď C2fµpnq}µ ´ µ˚}2,

(S14)

where C1, C2 ą 0, and fλpnq and fµpnq are two non-decreasing functions w.r.t. n. When these conditions are
satisfied, we have the two neigbhourhoods constructed as

Bn pπ˚
Xn , ελq “

"

D pπ˚
Xn }πXnq ď fλpnq ε2λ, V pπ˚

Xn }πXnq ď fλpnq ε2λ

*

,

Bn pµ˚, εµq “

"

max
1ďiďn

EXn|θ˚ Dipµ
˚, µq ď fµpnq ε2µ, max

1ďiďn
EXn|θ˚ Vipµ

˚, µq ď fµpnq ε2µ

*

,

The constants C1, C2 are included into the blow-up factors fλ, fµ. Then we pick

fλpnq ε2nλ
n

“ fµpnq ε2nµ “
plog nqβ

n
(S15)

for some β ą 0. When (S14) are satisfied, the following inclusion relation holds constantly with any n,

" dλ
č

i“1

"

}λi ´ λ˚
i }2 ď

ε2nλ
dλ

**

Ď

"

}λ ´ λ˚}2 ď ε2nλ

*

Ď Bn pπ˚
Xn , εnλq ,

" dµ
č

i“1

"

}µi ´ µ˚
i }2 ď

ε2nµ
dµ

**

Ď

"

}µ ´ µ˚}2 ď ε2nµ

*

Ď Bn pµ˚, εnµq .
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Becasue of the neighborhoods construction and the condition that Pλ and Pµ are reimann integrable over the
euclidean parameter space, we have the probability inequality as

Pλ

ˆ

Bn pπ˚
Xn , εnλq

˙

ě Pλ

ˆ

max
1ďiďdλ

}λi ´ λ˚
i }2 ď

ε2nλ
dλ

˙dλ

ě C
1

ˆ

plog nqβ

dλfλpnq

˙

dλ
2

, (S16)

Pµ

ˆ

Bn pµ˚, εµq

˙

ě Pµ

ˆ

max
1ďiďdµ

}µi ´ µ˚
i }2 ď

ε2nµ
dµ

˙dµ

ě C
1

ˆ

plog nqβ

dµfµpnq

˙

dµ
2

, (S17)

where C
1

ą 0 is a constant.
Then we analysing the upper bound in Theorem 1. It is composed as two part

Dαε2λnfλpnq

p1 ´ αqn
`

"

´
1

np1 ´ αq
logPλ rBn pπ˚

Xn , ελnqs

*

,

and

Dαε2µnfµpnq

1 ´ α
`

"

´
1

np1 ´ αq
logPµ rBn pµ˚, εµnqs

*

.

Plugging all the picked fλ, fµ, ε
2
nλ, ε

2
nµ and (S16), (S17) back into the Theorem 1, we can get the following

bound. Since pfλpnq ε2λ ` fµpnqnε2µq “ 2plog nqβ and (S15), with appropriately picking the constant C, we have

the bound with Ppnq

θ˚ probability at least 1 ´ D´2plog nq´β that

ż

Dpnq
α pθ, θ˚q pqθ,αpdθq ď CD

ˆ

plog nqβ

n
_

dλ log fλpnq

n
_

dµ logpnfµpnqq

n

˙

. (S18)

The proof for corollary 3 is then completed.

F.1 Extension of Corollary 3:

Lemma 5. S3 When the condition (S14) holds on a set A and the multivariate prior densities pλ and pµ are
Riemann integrable, there exist β,D,C ą 0 s.t. (S18) holds.

Proof: According to the condition, we have

Bn pπ˚
Xn , ελq X A Ď Bn pπ˚

Xn , ελq

Bn pµ˚, εµq X A Ď Bn pµ˚, εµq .

Based on this, we similarly have

Pλ

ˆ

Bn pπ˚
Xn , εnλq

˙

ě Pλ

ˆ

Bn pπ˚
Xn , εnλ X Aq

˙

Pλ

ˆ

max
1ďiďdλ

}λi ´ λ˚
i }2 ď

ε2nλ
dλ

˙dλ

ě C
1

ˆ

plog nqβ

dλfλpnq

˙

dλ
2

,

Pµ

ˆ

Bn pµ˚, εµq

˙

ě Pµ

ˆ

Bn pµ˚, εµ X Aq

˙

ě Pµ

ˆ

max
1ďiďdµ

}µi ´ µ˚
i }2 ď

ε2nµ
dµ

˙dµ

ě C
1

ˆ

plog nqβ

dµfµpnq

˙

dµ
2

,

(S19)

for some C
1

ą 0. Then from (S19), we have (S18) hold.



Honggang Wang, Yun Yang, Debdeep Pati, Anirban Bhattacharya

G Simulation study

In this section, we conduct a small-scale simulation study to study the behavior of the Bayes risk for different
values of a in a scalar LGSSM. The top panel of Figure 1 plots the Bayes risk versus the number of CAVI iterates
for different values of the fractional parameter α. For each choice of α, we consider four different values of the
true transmission parameter a P t0.8, 0.9, 0.95, 0.97u. It is evident that the convergence is slower for larger a.
We also provide the RMSE in the bottom panel.

Figure 1: Plot of Bayes risk versus number of CAVI iterates.

In Figure 2, we repeat the same analysis for values of the true transmission parameter close to (and possibly
exceeding) 1. The convergence slows down substantially, which is expected given the increased difficulty of the
estimation problem as explained in Lemma 1.
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Figure 2: Plot of Bayes risk versus number of CAVI iterates when the true transmission parameter is close to 1.
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