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Abstract

Precision health monitoring is facilitated by long-term data collection that establishes a
health baseline and enables the detection of deviations from it. With the advent of the
Internet of Things, monitoring of daily excreta from a toilet is emerging as a promising
tool to achieve the long-term collection of physiological data. This paper describes a stool
image analysis approach that accurately and efficiently tracks stool form and visible blood
content using a Smart Toilet. The Smart Toilet, can discreetly image stools in toilet
plumbing outside the purview of the user. We constructed a stool image dataset with 3,275
images, spanning all seven types of the Bristol Stool Form Scale, a widely used metric for
stool classification. We used ground-truth data obtained through the labeling of our dataset
by two gastroenterologists. We addressed three limitations associated with the application
of computer-vision techniques to a smart toilet system: (i) uneven separability between
different stool form categories; (i) class imbalance in the dataset; (ii) limited computational
resources in the microcontroller integrated with the Smart Toilet. We present results on
the use of class-balanced loss, and hierarchical and compact convolutional neural network
(CNN) architectures for training a stool-form classifier. We also present results obtained
using perceptual color quantization coupled with mutual information to optimize the color-
feature space for the detection of stool images with gross (visible) blood content. For the
classification of stool-form, we achieve a balanced accuracy of 81.66% using a hierarchical
CNN based on MobileNetV2. For gross blood detection, the decision tree (DT) classifier
provides 74.64% balanced accuracy.

1. Introduction

Biomedical imaging is one of the cornerstones of medical diagnostics and it is being enhanced
by sophisticated machine-learning techniques (Halicek et al., 2017). Recent applications
of machine learning for health applications have focused on the analysis of physiological
data collected over a prolonged period of time. This analysis provides individualized risk
assessment and early warning of disease onset that can be used to trigger interventions. As
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opposed to a snapshot of the visit to a doctor’s office, such precision health monitoring is
empowered by time-dense health data that establishes a health baseline and enables the
detection of deviations from it (Collins and Varmus, 2015).

Long-term adherence to precision health monitoring is facilitated by not requiring the
user to personally collect the data. Human excreta (urine and stool) are readily available
specimens, regularly deposited in toilets. With the advent of the Internet of Things (IoT)
paradigm, the monitoring of physiological functions from a toilet during bathroom visits is
emerging as an active area of research for precision health monitoring (Park et al., 2020;
Wald, 2017; Bae and Lee, 2018; Ghosh et al., 2020; Ra et al., 2018; Kim and Allen, 2016).

Research on “smart toilet” for health monitoring has thus far mainly focused on urine
analysis (Bae and Lee, 2018; Ghosh et al., 2020); however, important health information
is also found in feces. Specifically, stool physical characteristics such as form (i.e., consis-
tency) and color contribute to the diagnosis and management of many acute and chronic
gastrointestinal (GI) conditions. Stool appearance is one of the early diagnostics indicator
for evaluation of irritable bowel syndrome (IBS), (as much as 10-15% of the world popu-
lation is estimated to suffer from IBS) (Halmos et al., 2018), inflammatory bowel disease
(IBD), malabsorption syndromes, and upper and lower GI bleeding (Tanaka et al., 2018).
The impact of GI diseases on patients and the health care system is substantial; for example
in the US, GI healthcare cost is higher than the cost associated with heart disease (Peery
et al., 2019).

In clinical practice, patient self-reporting on bowel movement is limited by subjectivity,
poor recall accuracy, and the burden of constant tracking (Halmos et al., 2018). Discrepan-
cies have been documented between patient self-reports and standardized stool descriptors
of color and frequency (Zuckerman et al., 2005), and between patient report and clinician
assessment of diarrhea (Majid et al., 2012), despite the development of paper- and digital-
based diaries (Halmos et al., 2018). Considerable variability and inconsistency has been
found in how patients describe the color of gross (i.e., visible) blood in stool, a symptom
associated with GI bleeding (Zuckerman et al., 2005). The color of blood provides infor-
mation to help ascertain the severity and the likely anatomic site of bleeding and helps
direct the initial diagnostic and therapeutic evaluation. Blood color ranges from bright red
(usually distal intestinal bleeding) to dark red/maroon (colonic bleeding or rapid upper GI
bleeding) to black, tarry stool, termed melena (usually gastric or proximal small intestinal
bleeding).

There is no approved clinical method that can reliably and consistently monitor stool
frequency, form, and color, either in the home setting or in the hospital. To address this
limitation, image capture of the content of toilet bowl either by the user (Hachuel et al.,
2019) or without user intervention (Park et al., 2020) has been proposed.

Our group is developing a smart toilet that enables discreet imaging of stool in the toilet
plumbing, after flushing and outside the purview of the user, thereby not changing the user
experience. Stool image analysis is a key enabler of smart toilets for the monitoring of
bowel movement. In this paper, we present two functions for a smart-toilet module that
provide clinically relevant information: gross blood detection and stool-form classification.
We use color quantization, feature selection, and a decision-tree (DT) classifier framework
for gross blood detection. For stool-form classification, we use a compact architecture, such
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as MobileNetV2 as a typical example, and class-balanced softmax cross-entropy loss for
model training.
The main contributions of this paper are as follows:

1. We construct a stool image dataset containing 3,275 stool images spanning all seven
Bristol Stool Form Scale (BSFS) types.

2. We present the design of a hierarchical CNN architecture for stool-form classification
over seven BSFS values and three consolidated categories (constipated, normal, and
loose).

3. We present results for stool form classification using class-balanced softmax cross-
entropy loss based on two compact CNN models, namely MobileNetV2 and Shuf-
fleNetV2, for training the CNN classifier.

4. We present results for gross blood detection with two machine-learning techniques,
namely decision tree (DT) and k-nearest-neighbors (KNN). Perceptual color quanti-
zation coupled with mutual information are employed for optimizing the color-feature
space.

Generalizable Insights about ML in the Context of Healthcare

We demonstrate a machine learning (ML) approach for clinically relevant stool character-
istics that is both accurate and computationally efficient. The ML solution enables classifi-
cation of stool characteristics and provides objective data to inform improved clinical care.
This computational tool will be most impactful if implemented as edge computing near the
image data source. We describe an approach that addresses challenges that are commonly
faced by computer-vision techniques being applied to medical imaging. First, we utilize ap-
proaches such as hierarchical CNN architecture to overcome the issue of uneven separability
between different categories and color quantization to achieve blood detection. Second, by
training the CNN using class-balanced loss based on effective number of samples, we can
address the problem of class imbalance in the dataset. Third, by evaluating several recent
CNN designs, we select a design that enables image classification that is computationally
efficient as defined by metrics of the number of float-point operations (FLOPs) and mem-
ory requirement, so that it will be easier to deploy the ML model in a resource-constrained
environment, such as the physical smart toilet hardware. Overall, this combination of ma-
chine learning and stool specimen imaging enables a new form of physiological monitoring
that may provide early warning of disease for timely intervention and improved clinical
outcomes.

The rest of this paper is organized as follows. Section 2 describes related prior work
and provides further motivation for this research. Section 3 describes the background of
the smart toilet and our system design for stool analysis. Section 4 describes the proposed
methods for stool-form classification and blood detection. Section 5 presents experimental
results. Section 6 describes the limitation of this paper. Finally, Section 7 concludes the

paper.
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2. Related Prior Work

In this section, we describe some representative prior work on stool-form classification, and
then focus on recent work on using machine learning (ML) for stool image assessment.

2.1. Bristol Stool Form Classification

The BSFS scale (Lewis and Heaton, 1997) is a standard medical diagnostic tool for cate-
gorizing adult stool based on its physical appearance. Normal stool consistency is defined
as BSFS Type 3, 4 and 5 (Markland et al., 2013). Constipation is defined as a Type 1
(separate hard lumps, like nuts) or Type 2 (sausage-like, but lumpy). Diarrhea is defined
as a minimum of three loose stools (Type 6 and Type 7) per day. The BSFS stool chart is
shown in Figure 1.

'302. Type1  Separate hard lumps
Constipated
Lumpy and sausage like
A sausage shape with cracks in the surface
Like a smooth, soft sausage or snake Normal

Soft blobs with dlear-cut edges

Mushy consistency with ragged edges
Loose
Liquid consistency with no solid pieces

Figure 1: Illustration of the BSFS chart (adapted from http://cdn.intechopen.com/pdfs-
wm/46082.pdf)

A 2019 study validated the use of the BSFS by having participants use a printed card
tool with graphics to assess the properties of their bowel movements (Ohno et al., 2019).

2.2. Machine Learning Approaches for Stool Image Assessment

Yang et al. (Yang et al., 2019) introduced StoolNet, which combines the region of inter-
est (ROI) detection and a shallow CNN for color classification of stool images. Park et
al. (Park et al., 2020) utilized transfer learning to train a classifier on top of a trained deep
learning architecture. While these studies provide key insights into automated stool classi-
fication, three major challenges have yet to be addressed, namely, uneven separability, class
imbalance and model complexity.

Uneven Separability. Visual separability between different BSFS categories is un-
even. For example, it is difficult to distinguish type 3 from type 4, while it is easy to tell
a type 1 from type 3. The traditional CNNs (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2015) use the flat structure to train a N-way classifier and do not consider such
uneven separability, which often leads to sub-optimal performance in the task of fine-grained
classification. A common strategy to address this problem is to predefine a hierarchy or
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taxonomy of classifiers so that a given testing image can be first evaluated by a coarse clas-
sifier and use the corresponding fine classifier to make the fine prediction (Murthy et al.,
2016; Yan et al., 2015).

Class Imbalance. Medical diagnostic data may have a normal distribution (bell-
shaped curve) or a skewed distribution. For instance, in the stool image dataset collected
by Park et al. (Park et al., 2020), only a few images report constipated stool while most
images indicate normal stool. A number of solutions have been proposed in the literature
to address the problem of class imbalance. The first approach is re-sampling, which aims to
alter the training data distribution, usually by random under-sampling and over-sampling
techniques (Oquab et al., 2014; Chawla et al., 2002). The second approach is cost-sensitive
learning, which assigns higher misclassification costs to the minority classes compared to
the majority classes (Wang et al., 2017; Cui et al., 2019; Zadrozny et al., 2003).

Model Complexity. In practice, state-of-the-art CNNs models (Simonyan and Zis-
serman, 2015; He et al., 2016) incur significant compute overhead, which imposes a barrier
to their deployment on devices with limited computational power, e.g., a micro-computer
(Raspberry Pi). Many approaches have been proposed to address this challenge, which can
be categorized on the basis of techniques that use either model compression or compact
architectures. Model compression techniques include parameter pruning and weight quan-
tization (Han et al., 2015; Denton et al., 2014; Cheng et al., 2017). However, these methods
require dedicated hardware or software customization for practical implementation (Han
et al., 2015). In contrast, compact architecture design methods target more efficient and
compact neural network architectures (Iandola et al., 2018; Ma et al., 2018; Howard et al.,
2017).

3. Smart Toilet System

In this section, we provide an overview of the smart toilet system and formulate stool
analysis as a real-time computer-vision problem.

Smart-toilet approaches have been proposed to obtain health-related information from
different configurations, e.g., devices snapped on the toilet bowl (Hall et al., 2020) or inte-
grated in the toilet seat (Park et al., 2020; Conn et al., 2019). Notably, Park et al. (Park
et al., 2020) introduced a defecation-monitoring module that uses sensors and computer
vision to acquire basic properties of human excreta from sensors integrated in a commer-
cially available electronic bidet. The acquired images are fed offline to machine-learning
algorithms for analysis. However, cameras and illumination device in the toilet seat create
an uncomfortable environment for the user, as highlighted by the results of a user survey
regarding the technology (Park et al., 2020).

An alternative approach, which avoids the adoption barrier due to user discomfort, is
a technology that integrates sensors in the toilet plumbing where they are not visible to
users. A toilet manufacturer reported such a configuration for urine analysis (T'sang et al.,
2017).

We have developed a novel approach to image feces in the plumbing at the outlet of
the toilet, after the user has flushed. Our design offers a unique opportunity for real-
time inline sensing approach specific to feces without engendering user discomfort. Using
fingerprint recognition on the toilet flush button, users within a residential setting can
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Figure 2: (a) The set-up for stool image analysis. (b) Cross-section view of the plumbing
with surrogate specimen.
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Figure 3: Framework for stool image analysis in a smart toilet system. (a) Images are
captured when the stool is immobilized. (b) Images are processed by the controller and fed
to machine-learning algorithms for gross blood detection and stool-form classification.

be individually tracked. The hardware setup used for stool image analysis is shown in
Figure 2(a). The endoscope featuring six illuminating LEDs is installed in a viewing port in
the toilet plumbing and connected to a micro-computer (Raspberry Pi 3B+) for real-time
image collection and analysis. Figure 2(b) is a cross-sectional view of the immobilization
region in the plumbing.

The image analysis approach reported in this paper enables real-time categorization of
bowel movements according to two dimensions: stool form classification and blood detection.
Figure 3 provides an illustration of the overall system.

4. Stool Image Analysis

In this section, we describe the data set used for analysis, as well as the machine learning
techniques used for classification.
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4.1. Stool Image Data Set Preparation

No publicly available stool image dataset exists, thus we developed our own image dataset.
Of note, the stool image dataset used in (Yang et al., 2019) for their StoolNet model only
contained 110 images (each rotated and used four times) and, furthermore, those images
are not publicly available.

Our work leverages a dataset of 3,629 stool images spanning all seven BSFS types ob-
tained from two sources: the web and anonymous image uploads from the general public.
A total of 2,720 online unique images were obtained through search engines such as Google
and platforms such as Reddit with keywords such as ‘feces in toilet’ and ‘bristol’). Addi-
tionally, to collect images representing a wide range of bowl movement, we developed an
institutional review board (IRB) approved protocol (Duke University IRB 2020-0569) to
request the general public to take images of stool in their toilet and upload anonymously to
a secure repository site. We created a website, then advertised on social media and lever-
aged the physician collaborators’ professional networks. Potential personally identifying
information unintentionally contained in images metadata, such as GPS coordinates, were
removed from the images uploaded to the depository prior to further analysis. We obtained
909 public-uploaded images. A total of 256 online images and 98 public-uploaded images
were rejected because the image quality did not allow accurate annotation; therefore, the
study used a total of 3,275 images.

A total of 552 images were annotated by two gastroenterologists and an additional
2723 were rated by one of them. We used the online platform Labelbox (Labelbox, 2019)
and assigned to each image a BSFS score from 1 through 7 and, importantly, indicating
the presence/absence of blood. Despite being a clinical standard, the BSFS score does not
capture the full variety of stool forms and does not account for the presence of stools of more
than one BSFS category in the same image. From a clinical point of view, the important
information is whether the bowel movement is normal (types 3,4,5) or abnormal, which
is further classified as constipated (types 1,2) and diarrhea (types 6,7). The correlation
between the labels assigned by the two gastroenterologists was measured using Cohen’s
Kappa statistic (Banerjee et al., 1999), which ranges from 1 (perfect classification) to -
1 (extreme misclassification). The Cohen’s Kappa statistic metric was calculated to be
k = 0.435 for BSFS and k = 0.540 for the consolidated categories. These values show a
satisfactory agreement between the two gastroenterologists. Due to heterogeneity of feces,
large inter-rater variability is not surprising and our k = 0.540 is similar to k = 0.584
reported by (Hachuel et al., 2019).

4.2. Stool Form Classification

The first part of our classification problem is to determine the bowel movement type based
on the stool form.

4.2.1. HIERARCHICAL ARCHITECTURE

Visual separability between different BSF'S categories is uneven. For example, it is difficult
to distinguish type 3 from type 4, while it is easy to tell a type 1 from type 3. As introduced
in Section 2.1, type 3 and 4 are defined as the same consolidated category ‘normal’. To
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leverage the hierarchical structure of stool-form categories, we deploy a tree-like hierarchical
architecture (Yan et al., 2015; Seo and Shin, 2019), as shown in Figure 4.
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Figure 4: Hierarchical architecture for stool-form classification.

The main components in our architecture include the base CNN, a coarse-grained classi-
fier, and three fine-grained classifiers. For an input image, the base CNN extracts low-level
features. The extracted features are fed to the coarse-grained classifier and which pro-
duces a consolidated prediction over three categories (‘loose’, ‘normal’, and ‘constipation’).
The consolidated prediction enables the corresponding fine-grained classifier to reuse the
extracted features and make the prediction over the seven BSFS types. For example, the
consolidated prediction ‘constipated’ triggers the fine-grained classifier F to make the pre-
diction over BSFS type 1 and type 2. In the proposed architecture, both coarse-grained
classifier and fine-grained classifiers are configured with a two-layer CNN, as described in
Table 1. The depth for Layer-2 is three for coarse-grained classifier and fine-grained classifier
classifier F5, and is two for fine-grained classifier F} and classifier Fj.

Table 1: Configurations used in the fine-grained classifiers.

’ Layer \ Type \ Depth \ Activation \ Stride \ Padding ‘
1 Convolution 320 ReLU 3 1
2 Fully-Connected | 2 or 3 | N/A N/A | N/A

4.2.2. BASE CNN DESIGN

Various CNN designs have been proposed over the past few years for a wide range of
applications (Simonyan and Zisserman, 2015; Howard et al., 2017; Gatys et al., 2015). As
introduced in Section 3, we consider a single-board computer, i.e., Raspberry Pi, to load our
CNN models. The computational resources available on Raspberry Pi is limited compared
to a server, therefore deep CNNs such as VGG16 are not feasible in this application scenario.
In this paper, we explore two compact CNN designs, namely MobileNetV2 (Sandler et al.,
2018) and ShuffleNetV2 (Ma et al., 2018).

MobileNetV2. To reduce computation cost, MobileNetV1 (Howard et al., 2017) re-
places the standard convolutional filters by two layers: depthwise convolution and 1 x 1
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pointwise convolution, where depthwise convolution only extracts spatial features for each
independent channel and pointwise convolution extracts channel-wise information. Fur-
thermore, MobileNetV2 uses an inverted bottleneck structure to increase representational
power.

ShuffleNetV2. ShuffleNet (Zhang et al., 2018) employs group convolution, which splits
the input into different groups and processes each with regular convolution. The outputs
from different groups are concatenated. ShuffleNet also introduces channel shuffle to enable
cross talks between channels from different group. ShuffleNetV2 further increases the model
efficiency by introducing channel-split operator which split feature channels into branches
and concatenate them after convolution.

The base CNN is used for feature extraction. We utlize these two compact CNN designs
as the base CNN by removing their last classification layers. Specifically, we remove the last
two layers (one dropout layer and one fully-connected layer) for MobileNetV2, and remove
the last one layer (fully-connected layer) for ShuffleNetV2.

4.2.3. Loss FUNCTION

The softmax cross-entropy loss has been commonly used for CNN training (Goodfellow
et al., 2016; Murphy, 2012). For an input sample z with class label y, assuming that the
predicted output from the model for all classes is z = [z1, 29, ..., 2¢], where C' is the total
number of classes. The softmax cross-entropy (CE) loss for this sample is defined as:

CE(z, ) = —log(—2®)_ 1)
> j=1 eXp(Zj)

Considering the problem of class imbalance in the training data, the network is trained
with a class-balanced softmax cross-entropy loss (Cui et al., 2019), which re-weights loss
inversely with the effective number of samples per class. The class-balanced softmax cross-
entropy (CB) loss for this sample is defined as:

” _ 1-p5 o eXP(Zy)
CBy) = 1y R, ) )

where n, is the number of training samples in class y and % is the weighting term for
the loss function, with hyperparameter 8 € [0, 1).

4.3. Gross Blood Detection

We use perceptual color quantization to address the challenge of detecting blood in stool
and classifying blood color (which ranges from bright red to black) in images with different
size and illumination. In preliminary study we evaluated color thresholding to classify
images containing blood, but this approach was found non-selective. This may be due to
two reasons: first, blood presence in stool has a heterogeneous presentation, from mixed
with brown stool, to blood clot, or in stool colors which are dark red or black; Second,
healthy stools of reddish-brown uniform have a red color component. We therefore adopted
machine-learning techniques and propose a blood detection approach that consists of 3
steps: 1) color quantization; (2) color feature selection; (3) blood detection by machine
learning algorithm.
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4.3.1. PERCEPTUAL COLOR QUANTIZATION

We use perceptual color quantization (Crandall and Luo, 2004), which employs the CIE
LAB color space (Giorgianni and Madden, 1997) and the standard ISCC-NBS Color Names
Dictionary (Kelly and Judd, 1976). The CIE LAB color space was designed to approximate
human vision. The ISCC-NBS system defines 267 standard color partitions. Each color
partition has a standard color name and a centroid color. The color names are designed as
basic colors with one or more adjectives, such as “Vivid Red” and “Light Grayish Yellowish
Brown”. For an input image I, each pixel is assigned the closest ISCC-NBS centroid color
based on the FEuclidean distance in CIE LAB space.

4.3.2. COLOR FEATURE SELECTION

The purpose of color feature selection is to carefully select most representative features for
comparing the blood-stool images to normal-stool images. This choice can significantly af-
fect the performance of the subsequent steps in gross blood detection. We use the frequency
of ‘red’ and ‘black’ colors as the features. Here, ‘red’ and ‘black’ colors can be defined as
the ISCC-NBS names that contain the strings ‘red’ and ‘black’.

We use Mutual Information (MI) for feature selection because MI is able to capture
both linear and non-linear dependencies and is invariant under invertible and differentiable
transformations in the feature space (Beraha et al., 2019). Let F' be the full set of features
and Y be the target variable. The mutual information M1 between a single feature input
and the target is defined as:

MI(F;Y) = K(p(fi; v)llp(fi)p(y)) (3)

where p(f;;y) is the joint probability density function and p(f;) and p(y) are marginal
density functions of feature f; and label y. Note that K(p(x)||q(z)) = >, p(x) log%
refers to the K-L divergence of two probability distributions p and q. A greedy search is

performed to select the desired numbers of features, as shown in Algorithm 1.

Algorithm 1: MI-based feature selection
Input: F: set of features;

y: labels;

n: number of features to select;
Output: S: set of selected features;

S = (;
while n > 0 do
fur = argmaXfieFfs(MHfi; y))5

F=F— fur;
S =S+ fur;
n=n-—1;

10
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4.3.3. BLOOD DETECTION

For blood detection, we investigate two machine-learning techniques, namely DT and k-
nearest neighbors (KNN). An advantage of using DT and KNN is that the analysis results
are easy to interpret and explain, which facilitates interactions with the medical team.

A DT is a tree-like model that consists of two types of nodes, leaf (terminal) nodes and
decision (internal) nodes (Quinlan, 1986). Leaf nodes refer to the nodes that do not branch
and contain prediction information and each leaf node holds a class label. Decision nodes
refer to the nodes that can branch to multiple child nodes or leaf nodes. Class labels are
denoted by the elements of the set Y = {Y{, Y1}, where Y| indicate images of healthy stool,
and Yj indicate images containing blood content. These class labels are the leaf nodes in
the decision tree. Our selected color features C' = {Cp, C1, ...C;} are encoded in the decision
nodes.

KNN is a distance-based technique (Altman, 1992). Assuming that the training dataset
is Cirain and the test dataset is Ci.st. Then for each instance Ctjest in Ciest, we calculate
its distance to all instances Ctimm in Cirqin. The list of distances obtained in this manner
is sorted in ascending order, and the most common label among the first £ elements in the
J

sorted distance list is assigned to instance Cj,,

5. Experiments and Results

Experiments were conducted to evaluate the effectiveness of the proposed approach for
classifying stool form and detecting images of stool that contains blood. We preprocessed
the stool images by cropping them to remove noise, e.g., due to the toilet seat.

5.1. Results on Stool Form Classification

The balanced accuracy (BA) metric was utilized to evaluate different model architectures
trained with various loss functions. The B A metric is defined as the average recall obtained
on each class Brodersen et al. (2010), as shown in Equation (4).

1 tpi
BA = Ez el 100% (4)

i=1
where n is the number of classes, and tp; and fn; are the number of true positive and false
negative predictions for class i, respectively.

5.1.1. HIERARCHICAL ARCHITECTURE

The training process for the hierarchical CNN includes three steps. We first initialize the
base CNN with pretraining on ImageNet (Deng et al., 2009). After initialization, we train
the coarse-grained classifier and the base CNN together over three consolidated categories.
In the last step, the base CNN is kept fixed and fine-grained classifiers are trained over
seven BSFE'S scales. We utilized 552 images annotated by two gastroenterologists for testing
and 2,723 images rated by one of them for training. We resized the images to 224 x 224
pixels.

11
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We used Pytorch (Paszke et al., 2019) to implement and train the CNN using stochastic
gradient descent with momentum. Experiments were executed on a Linux platform in-
tegrated with a 11 GB-memory GPU (Nvidia GeForce RTX 2080 Ti). The training was
performed with mini-batches of size 14. In each batch, the numbers of samples for each
class were restricted to be the same. We used the best BA during the training process as
the quality metric.

We consider two compact CNN designs described in Section 4.2 and two traditional CNN
designs, namely, VGG16 (Simonyan and Zisserman, 2015), ResNet50 (He et al., 2016) as the
base CNN in the hierarchical architecture. Furthermore, we train the models with flat and
hierarchical architectures and with both cross-entropy loss and class-balanced cross-entropy
loss for comparisons. We evaluate the performance of coarse-grained classification over three
consolidated categories (constipated, normal, and loose) and fine-grained classification over
the BSFS scale with seven values. The results are shown in Table 2 and summarized as
follows:

1. For all models except ShuffleNetV2, CB loss improves the performance in terms of the
BA metric. One possible explanation of the performance decrease in ShuffleNetV2
with CB loss is that its more complex architecture and small size lead sensitivity to
the re-weighting strategy in CB loss.

2. Hierarchical architectures improve the performance of both coarse-grained and fine-
grained classification in terms of the BA metric for ResNet50 as well as for Mo-
bileNetV2. The hierarchical architecture brings slight increase in required memory
and F'LOPs for inferencing, because it has three more classifiers than the flat archi-
tecture.

3. Hierarchical architectures with MobileNetV2 as the base CNN achieve the best per-
formance (81.66% BA in coarse-grained classification and 54.58% in fine-grained clas-
sification). Moreover, MobileNetV2 only requires 0.35 GF LOPs for inferencing and
the memory requirement is only 15.6 MB .

Table 2: Balanced accuracy of flat and hierarchical architectures with various base CNN
designs on the stool image dataset.

Models | Architecture | o Scoofifflz fjagfffmax B SEE:IE f}fa‘msej&max FLOPs | Memory Required
VGGl | Hierarchical | 73.50% | 65.78% | 50.03% | 37.58% | 15.39 G 61.5 MB
Flat 75.17% | 65.83% | 43.41% | 39.70% | 15.38 G 59.5 MB
ResNegso | Hierarchical | 80.15% | 74.66% | 5182% | 44.75% | 416G 104.8 MB
Flat 71.92% | 62.95% | 41.33% | 39.36% | 4.13G 96.9 MB
MobileNetvg | Hierarchical | 8LG6% | 69.61% | 5458% | 4210% | 035G 15.6 MB
Flat 74.55% | 61.45% | 44.25% | 41.01% | 0.33 G 10.7 MB
ShuffloNepyy | Hierarchical | 3333% | 7412% | 2286% | 4359% | 017G 10.4 MB
Flat 47.60% | 64.22% | 26.53% | 36.59% | 0.16 G 6.5 MB

5.1.2. PREDICTION ANALYSIS

As illustrated in section 5.1.1, MobileNet V2 outperforms ShuffleNetV2, VGG16 and ResNet50
in terms of the metrics of BA and computational costs (FLOPs and required memory).

12



STOOL IMAGE ANALYSIS

We first analyze the performance of MobileNetV2 for the task of coarse-grained classifica-
tion over three consolidated categories. Figure 5 shows the receiver operating characteristic
(ROC) analysis. Here, ROCs were reduced to a dichotomous classification based on the one
versus rest approach, treating the corresponding class as positive and all of the other classes
as negative. Table 3 shows the analysis based on the metrics of sensitivity and specificity
and MobileNetV2 achieves satisfactory performance in coarse-grained classification.

Our model for stool form coarse classification achieves 81.7% BA, superior to values
(73.9%) reported by (Hachuel et al., 2019), which was trained on a smaller dataset and
also did not correct for class imbalance resulting in the inability to predict abnormal classes.
Our model accuracy as measured by AUC=0.91 is comparable with AUC ranging from 0.89
to 0.98 obtained by (Park et al., 2020) using computationally heavy GoogleNet Inception
v3 CNN architecture while we achieve this accuracy with a very efficient model suitable for
deployment in a microcomputer.
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Figure 5: ROC analysis for the prediction results of our hierarchical architecture with
MobileNetV2 as the base CNN. Using the labels assigned by the first gastroenterologist
(A) as the ground truth, all AUCs are greater than 0.91 and comparable with the second
gastroenterologist (B)

Table 3: Sensitivity and specificity of our hierarchical architecture with MobileNetV2 as
the base CNN. C, N and L stand for Constipated, Normal and Loose respectively.

Coarse-grained Fine-grained

C[IN]J]L 1 [ 2 [ 3] 4[5 6 |7
Sensitivity | 0.77 | 0.81 | 0.87 || 0.33 | 0.70 | 0.62 | 0.48 | 0.27 | 0.74 | 0.68
Specificity | 0.98 | 0.87 | 0.84 || 1.00 | 0.97 | 0.80 | 0.91 | 0.91 | 0.85 | 0.97

We further analyze the performance of our model for the task of fine-grained classifica-
tion over the BSFS scale with seven values. Figure 6 shows the confusion matrices, which
describe the classification conformance among our CNN model and the two gastroenterolo-
gists regarding the BSF'S. The agreement between our CNN model and Gastroenterologist
A is measured by Cohen’s Kappa statistical metric and has the value of £ = 0.388, which
is close to the agreement between the two gastroenterologists (k = 0.435, as discussed in
Section 4.1). The agreement between the CNN and Gastroenterologist B has & = 0.263,

13
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and this can be explained by the fact that in 2,723 training images, 1,928 were annotated
by Gastroenterologist A and only 248 were annotated by Gastroenterologist B. The analysis
based on the metrics of sensitivity and specificity is shown in Table 3. For BSFS 1, the
metric is not meaningful because we have only three examples for BSFS 1. The reason be-
hind the poor performance for BSFS 4 and 5 is that these two scales are often misclassified
with each other, as shown in Figure 6.

1172 0 0 0 0 0 1172 0 0 0 0 o0 101 0 0 0 0 0

00 5 2 02 10 0 7 110 10 ©5/1 6 134 0 1 1

(%2} wn (%]
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Figure 6: Confusion matrices for comparison between the stool classifications made by (a)
the two gastroenterologists, (b) Gastroenterologist A and and the CNN, (c) Gastroenterol-
ogist B and and the CNN. The values on the axes indicate the BSFS.

5.2. Results on Detecting Stool Images with Blood Content

Experiments were performed on two datasets, namely Dataset A with 1798 online images
and Dataset B with 561 crowdsourcing images. Relevant information about the datasets is
provided in Table 4. We used a m-fold (m = 5) cross validation method to evaluate the
performance of the MI-based feature-selection method and the DT classifier. A m-fold cross
validation method randomly partitions experimental dataset into m groups. In each round
of an experiment, one group is regarded as the test dataset while all the other groups are
used for training.

Table 4: Class distribution in the two datasets used for gross blood detection.

‘ Dataset A ‘ Dataset B

Blood Content 70 29
Healthy Stool 1728 527
Total 1798 556

Table 5 shows the balanced accuracy for the two different classifiers. The DT classifier
provides 74.64% BA on Dataset B and 62.82% BA on Dataset A. The relatively low per-
formance on Dataset A can be explained by the fact that the collected online images tend
to have lower resolution and this can introduce undesirable noise in the training process.
Also, DT consistently outperforms KNN on both two datasets. One possible explanation is
that KNN is more sensitive to class imbalance. Prior work on classification of stool color
images (StoolNet (Yang et al., 2019))) used a shallow (2-layers only) convolutional neural
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network but did not report on blood detection nor red color accuracy so we are unable to
benchmark our results.

Table 5: Balanced accuracy of two classifiers for blood detection on two stool image datasets.

‘ Dataset A ‘ Dataset B

KNN 58.45% 73.00%
DT 62.82% 74.64%

6. Limitations and Discussion

The development of an ML-AI program to automatically classify stool images for form
(Bristol scale) and the presence of gross blood requires a large number of annotated photos
of stool in a toilet. There was no publicly available database available to us, therefore, we
developed our own with over 3000 images. A limitation of this approach is that the photos
had no clinical data associated with them, and, while they spanned the full spectrum of
the Bristol scale, the representation of associated gastrointestinal conditions or symptoms
unknown. Additionally, while the use of the Bristol scale helps standardize stool evalua-
tion, there remains some variability in assessment even among gastrointestinal specialists.
However, the agreement between the two gastroenterologists in this study was satisfactory.

We envision that with the future deployment of the Smart Toilet hardware prototype for
use by human subjects, we will be able to collect time-series data from individual subjects.
We expect that stool image data collection from the controlled environment will result in
more consistent lighting and even background that will enhance the model accuracy. A
smart toilet with machine-learning image analysis capability to determine stool frequency,
form, presence of visible blood will provide important diagnostic data that can help identify
specific food intolerance (e.g., foods that exacerbate IBS or chronic diarrhea) and effects
of medication (e.g., medications taken for diarrhea or constipation), and can trigger timely
evaluation (e.g., IBD flare with bloody diarrhea). Additionally, ongoing development of
the technology include stool specimen sampling for biochemical marker analysis that will
provide highly specific disease data. We envision that the Smart Toilet time-series data
collected from individuals will be integrated with machine learning predictive models and
provide a valuable diagnostic and surveillance tool for GI, infectious disease, and other
specialties.

7. Conclusion

We have described an automated technique for stool classification and gross blood detection
using a combination of a Smart Toilet and machine learning. We have developed a com-
prehensive stool image dataset for assessing the classification approach. We have utilized
hierarchical and compact CNN architectures that can be used for stool image analysis in a
resource-limited computational environment. Specifically, we showed that the hierarchical
CNN based on MobileNetV2, trained with class-balanced softmax entropy loss, can achieve
a balanced accuracy of 81.66% in coarse-grained classification and 54.58% in fine-grained
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classification, with the memory requirement of only 15.6 MB and 0.35 GF LOPs for infer-
encing. For detecting stool images with blood content, we obtained a balanced accuracy of
74.64% using perceptual color quantization coupled with mutual information to optimize
color-feature space and using DT as the classifier. Our results open up an interesting new re-
search direction on privacy-preserving and real-time stool classification for single time-point
and longitudinal health assessment.
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