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Abstract

Intraoperative adverse events (1AEs) increase rates of postoperative mortality and mor-
bidity. Identifying iAEs is important to quality assurance and postoperative care, but
requires expertise, is time consuming, and expensive. Automated or partially-automated
techniques are, therefore, desirable. Previous work showed that conventional image process-
ing has not worked well with real-world laparoscopic videos. We present a novel modular
deep learning system that can partially automate the process of iAE screening using videos
of laparoscopic procedures. The system consists of a stabilizer to reduce camera motion, a
spatiotemporal feature extractor, and a multi-stage temporal convolutional neural network
to detect adverse events. We apply a novel focal-uncertainty smoothing loss to handle
class imbalance and to address multi-task uncertainty. The system is evaluated using 5-
fold cross-validation on a large (228 hours) dataset of laparoscopic videos, and we perform
ablation studies to investigate the effects of stabilization and focal-uncertainty loss. Our
system achieves an AUROC of 0.952, an average precision (AP) of 0.626 in thermal in-
jury detection, and an AUROC of 0.823 and an AP of 0.336 in bleeding detection. Our
novel modular deep learning system outperforms conventional deep learning baselines. The
model can be used as a screening tool to search for high risk events and to provide feed-
back for operation quality improvements and postoperative care. Source code available on

GitHub: https://github.com/ICSSresearch/IAE-video.
1. Introduction

Intraoperative adverse events (1AEs) lead to substantial increases in mortality, morbidity,
and length of postoperative stay (Bohnen et al., 2017). Approximately 70% of iAEs involve
medical errors (Gawande et al., 2003), more than half of which are preventable (Gawande
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et al., 1999; Thomas et al., 1999). Indeed, iAEs caused by medical errors contribute to the
deaths of between 98,000 and 400,000 people each year (Makary and Daniel, 2016). With
15 million laparoscopic procedures annually (BIS Research, 2018), millions are at risk.
Currently, surgeons must identify iAEs and report them post hoc in patient records, relying
on the imperfect memory of the staff. We advocate for recording laparoscopic procedures
and for automatically analyzing them to address these problems.

Intraoperative adverse events account for 48% of adverse events (Leape et al., 1991),
23% of which involve bleeding (Zegers et al., 2011). In our analysis, thermal injury caused
by cautery accounts for a high proportion of remaining causes. Our aim is, therefore, to
detect both bleeding and thermal injuries. We formulate iAE detection as a temporal action
localization (TAL) problem and we identify the start- and end-time of all iAEs.

Previous studies (Jo et al., 2016; Garcia-Martinez et al., 2017; Okamoto et al., 2019) used
handcrafted features, such as colour descriptors, to detect bleeding events in laparoscopic
videos. Deep learning techniques have not been used for iAE detection in laparoscopic
videos, but a deep learning model — namely an InceptionV3 (Szegedy et al., 2016) convo-
lutional neural network (CNN) — has successfully been used for lesion detection in wireless
capsule endoscopy (WCE), outperforming traditional handcrafted feature methods (Jia and
Meng, 2016; Li et al., 2017). Both of these approaches generate frame-by-frame predictions
without considering temporal dependencies. Incorporating temporal dependencies is ex-
pected to generate smoother outputs and also improve prediction accuracy. For example,
a bleeding event may leave blood residue on tissues that frame-by-frame analysis will have
difficulty differentiating from active bleeding.

Architectures that incorporate temporal dependencies in their decision making — e.g.,
recurrent neural networks (RNNs), temporal convolutional networks (T'CNs), or 3D convo-
lutional neural networks (3DCNNs) — have produced state-of-the-art results in TAL tasks
in other domains but, as of yet, have not been used or adapted for iAE detection in laparo-
scopic videos. It was, however, unclear how such techniques will perform on long unstable
intraoperative videos, as they have primarily been used for TAL in significantly shorter and
more stable videos. For instance, in the THUMOS’15 dataset, which is one of the largest
datasets in TAL, the average action length is 4.6 seconds, and actions on average take ~20%
of video lengths (Idrees et al., 2017). By contrast, in laparoscopic videos, each iAE could
last up to a few minutes in a procedure, and the procedures are on average 1.5 hours long,
so iAEs on average occupy less than 3.5% of a procedure. This, in turn, results in a ma-
chine learning training set with a significant label imbalance. Similarly, many of the action
samples in most TAL datasets are filmed on a fixed camera, for instance, in the Breakfast
dataset (Kuehne et al., 2014), or sports broadcast videos in the THUMOS’15 dataset that
are filmed on professional stabilizing equipment. By contrast, laparoscopic videos are filmed
on hand-held laparoscopes and are highly unstable. The laparoscopic camera movements,
in most cases, are larger than the expansion of blood or burn mark on tissues.

In this work, to move beyond the aforementioned limitations, we propose to stabilize
the long unstable videos and to use a novel focal-uncertainty loss to address the highly
unbalanced class labels. We use a 3DCNN model (I3D (Carreira and Zisserman, 2017)) as a
feature extractor and propose a method to learn a fine-grained feature representation of iAE
classes by learning spatiotemporal features while preserving and sharing 2D features of more
granular sub-classes. We feed the feature vector of a full procedure into a multi-stage TCN
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model (MS-TCN) (Farha and Gall, 2019) for temporal segmentation. We conduct ablation
studies to show the significance of stabilization and focal-uncertainty loss. Finally, we
compare our system to multiple baselines: InceptionV3, I3D, and MS-TCN. Our proposed
system outperforms these baselines, and establishes the state-of-the-art for iAE detection.
To date, we are the first to detect thermal injury events, to use stabilization in feature
learning, and we increase MS-TCN performance using a focal-uncertainty loss.

Generalizable Insights about Machine Learning in the Context of Healthcare

Detecting iAEs in laparoscopic procedures is an action recognition and localization problem
with unique characteristics. While action recognition — and particularly human activity
recognition — is a widely studied problem, iAE detection requires the localization of short
event instances in very long videos filmed on unstable cameras, making it substantially
different from typical activity recognition benchmarks. Our work addresses this hereto
unstudied problem by:

e integrating video stabilization with 3DCNN feature extraction and multi-stage tem-
poral convolutional neural network to achieve best performance;

e investigating the effect of stabilization and various loss function terms (multi-task
loss, focal loss, an uncertainty loss, smoothing loss) to gain insight about models
and conditions under which state-of-the-art performance can be achieved on highly
unbalanced data and given the unique characteristics of the problem and its differences
with standard benchmarks; and

e analyzing the readability and comprehensibility of the visual detection results for
clinical use.

2. Related Work

iAE detection in laparoscopic surgery. Most studies in iAE detection in laparoscopic
videos used statistical parameters of colour descriptors (Jo et al., 2016; Garcia-Martinez
et al., 2017; Okamoto et al., 2019). These methods are not adaptive to realistic variability,
such as changes of light source, and they depend on various hyper-parameters that can be
difficult to determine. While existing literature in iAE detection in laparoscopic surgery is
sparse, more studies have been conducted in a closely related area, i.e., lesion detection in
wireless capsule endoscopy.

Wireless capsule endoscopy lesion detection. Among various TAL tasks in different
clinical imaging modalities, bleeding detection in WCE is the closest to iAE detection in
laparoscopic videos. While earlier methods in this domain used handcrafted features (Fu
et al., 2014; Ghosh et al., 2014; Usman et al., 2016), two new studies recently explored
using CNNs and achieved significantly improved performance (Jia and Meng, 2016; Li et al.,
2017). The success of deep learning in WCE motivates applying CNNs to iAE detection
in laparoscopic videos. There are, however, some important differences between WCE and
laparoscopic videos. For example, unlike WCE, it is normal to see blood or blood residue
during a laparoscopic surgery. Therefore, while bleeding detection in WCE can be translated
to a simple blood detection, the task is significantly more complicated in laparoscopic videos
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and involves differentiating between active bleeding vs. the presence of blood residue. This
necessitates the use of temporal models that can detect the expansion and the flow of a blood
pool. The same concept applies in thermal injury detection and distinguishing between the
presence of a burn mark vs. active injury.

Temporal action localization. iAE detection in laparoscopic video is analogous to TAL,
i.e. identifying the start- and end-time of an event in an untrimmed video. One approach
for TAL is to generate and classify action proposals, and regress the boundaries (Xu et al.,
2019; Zhao et al., 2020). The robustness of this method depend on the selected initial
proposal size, the number of anchors, and the anchor size. Another approach is segment-
level classification such as via and RNN, 3DCNN;, or a TCN (Montes et al., 2016; Lea et al.,
2017; Farha and Gall, 2019; Carreira and Zisserman, 2017). This approach learns frame-
level or segment-level features and feed them to an action classifier. Our work is inspired by
the success of MS-TCN (Farha and Gall, 2019) in using full temporal features of a complete
video. In contrast to the short actions filmed on a fixed camera that the original MS-TCN
used (the Breakfast dataset (Kuehne et al., 2014)), our videos are significantly longer and
filmed by a moving laparoscope.

3. Cohort

We collected 130 real laparoscopic procedure videos, a total of 228 hours of video data in
1280 x 720 resolution at 30 frames per second (fps), from the years 2016 to 2018. This
is the largest dataset of its type. It consists of 24,637,433 annotated frames, and 12,529
unique bleeding and thermal events. Each event is labelled with start- and end-time. The
data are collected in the operating room of St. Michael’s Hospital in Toronto Canada,
whose Research Ethics Board approved this study (REB# 16-243). We use the OR Black
Box® (Surgical Safety Technologies”, Toronto, Canada) to collect the data. The data are
collected in the operating room of a hospital and the Institutional Review Board approved
the study. Identifiable information such as patient information and audio was excluded
during data storage and processing. The data is reviewed and annotated by three trained
surgeons frame-by-frame with labels blood, bleeding, burn, and thermal injury.

Bleeding leaves residual blood, stained tissues, and blood clots in laparoscopic proce-
dures. These can resemble an active bleeding event if the detector only detects blood pixels.
Similarly, an active thermal injury event can resemble a burn scar if temporal dependencies
are not considered. As such, we consider four distinct types of event, namely,

e blood: when blood is visible, including bleeding, blood residue, and blood clots,
e burn: when tissue discolouration (e.g., a burn mark) is visible,
e bleeding: when blood is actively flowing, and

e thermal injury: when a thermal device is actively damaging tissues.

Labels can appear simultaneously in the same frame. The bleeding and the thermal
injury labels subsume the blood and the burn labels respectively. That is, if bleeding is
present, blood is also present, but not vice versa. A frame without labels indicates no adverse
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event.

problem. Fig. 1A shows examples of these events.

Assigning these labels to video frames is modelled as a multi-task classification

Table 1: Distribution of events, frames, and windows in each task: a highly unbalanced
dataset. The number of windows indicates the number of 10-second (50 frames)

sliding windows.

Task # Frames % Frames | # Events % Events
Blood 13,940,462 51.8% N/A  N/A
Bleeding 203,809 0.8% 1,450  11.6%
Burn 1723831 6.4% N/A  N/A
Thermal Injury | 938,583 3.5% 11,079 88.4%
Background 10,118,163 37.6% N/A N/A

Table 1 shows the distribution of each label. Blood labels dominate the distribution,
accounting for 51.8% of all frames, whereas bleeding, burn, and thermal injuries combined
for less than 11%. Among individual active events, thermal injury events are the most
common (88.4%).

Rather than train separate classifiers for each event type, we train one system for all
event types, thereby learning fine-grained shared properties and distinctive features of each
event. For example, an active flow of bright red blood provides an indication of an active
bleeding event, and a spread of yellow-white burn marks is a visual indication of an active
thermal injury event. The model can also explicitly learn dependencies between events.

4. Methods

Our proposed iAFE detection system is a 4-stage stabilized temporal convolutional network
(“4-stage Stab-TCN”). This system is evaluated on the largest laparoscopic iAE dataset,
which has 130 laparoscopic procedures.The system identifies bleeding and thermal injury
event predictions in laparoscopic videos based on extracted features on stabilized frames.

We use a bundled camera path estimation algorithm (Liu et al., 2013) to stabilize camera
motion in laparoscopic views. We extract 1024 latent features using 13D, a 3D CNN, on a
sliding window of 50 frames. As a result, the input size to the next module (i.e., MS-TCN)
is N x 1024, where N is the number of sliding windows in each video. The MS-TCN module
determines if an event happens in a given window, and produces N predictions for each
video.

In what follows we provide details about the model architectures, loss functions, exper-
imental setup, and evaluation metrics.

4.1. The 4-stage Stab-TCN

Our 4-stage Stab-TCN consists of three modules: a stabilizer, a spatiotemporal feature
extractor, and a multi-task event classifier. Fig. 1B shows the workflow of these modules,
and Fig. 1C shows a typical case with the ground truth provided by human experts,
compared with our model’s predictions. The vertical axis represents a detection of a bleeding
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(in blue), and/or a thermal injury event (in orange), and the length of the bars are different
only to showcase event overlap. Additional event plots of different cases are in Appendix
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Figure 1: System overview: Our system takes as input a video containing frames such as
those shown in A that share strong similarities among events. It consists of three
modules shown in B, and detects iAEs accurately and precisely as shown in C, in
which each of the vertical bars represents a detection of bleeding and/or thermal
injury.
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In the first module, we stabilize a window of consecutive frames to reduce camera motion.
The camera in laparoscopy is controlled by an operating surgeon. The stabilizer, based on
bundled-camera path stabilization (Liu et al., 2013), reduces jitter, and smooths camera
paths so that features can be accumulated over several frames. The algorithm warps images
to align each frame’s camera view via a homography, and it does not require training a
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model. The stabilizer is applied to every 10-second window at 5 fps with a stride of 1
second.

The second module, a 3D convolutional neural network based on InceptionV1 (I3D)
(Carreira and Zisserman, 2017), extracts a vector of 1024 latent features from each sliding
window. Each sliding window is a 10-second stabilized clip (i.e., 50 stabilized frames). The
spatiotemporal feature vector is therefore a representation of its corresponding frames. We
minimize a binary cross-entropy loss function to train the multi-task classifier.

The final module is a multi-stage temporal convolutional network (MS-TCN) (Farha
and Gall, 2019) that takes the extracted features of a whole video as input. As bleeding
and thermal injuries are not causally related, we use the MS-TCN as a task-specific layer
and evaluate bleeding, and thermal injury detection separately.

4.2. Stabilization

The bundled camera path algorithm divides a frame into several meshes. At each mesh,
the algorithm estimates localized camera motion by computing local homography for each
mesh. This homography is constrained by a shape-preserving term so that the final warp of
the image is not strongly distorted (Liu et al., 2013). The amount of shape regularization
is controlled by a factor . In the original implementation, « is an adaptive threshold that
is determined empirically by computing the fitting error using a range of « from 0.3 to
3. This process is too computationally costly in our context. Instead, we use a = 3 to
ensure smooth camera paths between cells because occlusion and camera depth variation
happen very often in the procedure. We use ORB features (Rublee et al., 2011) for model
estimation instead of SURF features.

Once camera paths are estimated, we optimize the camera paths so that the camera
motion is smooth. We use a discontinuity-preserving term (‘smoothing term’) to preserve
motion discontinuity (G,). This prevents cropping for a quickly panning scene, and is
originally computed as the sum of transition in camera position. After a few experiments,
we find that computing the Gaussian distribution (62 = 800) of the sum produces smoother
stabilized frames, and more consistent frames without the need for large cropping. This
discontinuity-preserving term is controlled by an adaptive parameter A. Cropping and
distortion ratios, as a measure of the stabilization quality, are computed at each A until the
ratios are both below the thresholds. Instead of using this adaptive method, we empirically
select A = 3. This speeds up our stabilization process by a factor of 3.

We divide each frame into an 8 x 8 mesh grid for stabilization. During camera opti-
mization, we consider all 50 frames used in feature extraction in the smoothing term.

4.3. Loss Function

We use a combination of a multi-task loss, a focal loss term (Lin et al., 2017), an uncertainty
loss term (Cipolla et al., 2018), and a smoothing loss (Farha and Gall, 2019). The multi-task
loss is a sigmoid binary cross entropy, and the smoothing loss is a truncated mean-square
error (T-MSE) between log-probabilities of the current frame and the previous frame. The
smoothing loss is only used in TCN training where the full video is used as an input.

For the multi-task loss, we use a binary cross entropy loss

LBCEw = Yten 108(Upen) + (1= vt.,) log(1 — yp,,. ), (1)
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Lpcrp = CLN > Lees.,, (2)

where yp,,, is prediction probability and y;,, is the true label of label ¢ and sample n (1
for positive, and 0 for negative).
The smoothing loss is in the form of its original implementation (Farha and Gall, 2019)

1
Lr-mse = &y >0 max(r, [1ogYp., —10gYp., 1), (3)

where 7 is a hyper-parameter. The normal loss in the experiment is a weighted sum of the
two losses

Lrormal = LBcE + A LT—MSE, (4)

where A is a hyper-parameter. Focal loss scales Lpop for each sample so that the model
will focus on learning harder examples.

1
Lr=con ; Zn:(l — pen) LBCE., (5)
where
when =1
pcn — ypcn ytcn (6)
1 - ypcn When ytcn = O

is the prediction confidence, and LpcEg,, is binary cross-entropy loss of label ¢ at sample n.

Task-dependent uncertainty depends on each task’s representation or measurement
units. In adverse event detection, each event has different representation and measure-
ment scales. In order to model this task-dependent uncertainty that captures uncertainty
embedded in each task, we used the multi-task likelihoods, and scale it by a factor %,
where o can be interpreted as the temperature term in a Gibbs distribution (Cipolla et al.,
2018). The derivation of such model is done on classification and regression tasks (Cipolla
et al., 2018). For our problem, we derive the multi-task loss function based on negative
log-likelihood of sigmoid activation £ = —log (Sigmoid(f*(z)). For a single task, we have

—log(p(ylf*(x), 7)) (7)
= —log (Sigmoid(%fw(@)) (8)
—tog 1+ exp (- 3 2 (0) ) )
= %[, + log ( Lo (—012fw(:n)2> (10)

7 (1 +exp (—fu(z)))-?
~ %L‘ +log (o) (11)

In (10), we let (1 + exp(—fw(x))fT12 = %(1 +exp(—f"(z))). To generalize to multi-task
tasks, each label ¢ has a scalar 0., and is embedded in the loss function

1 1
L, = (C']V Zc:zn: O_—g,CBCEm + logac> . (12)

8
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Focal and uncertainty loss functions are used with the smoothing loss. We take a
weighted sum of the loss, over all samples and labels, plus the smoothing loss

Liocatl = Ly + X Lr_psE (13)
Euncertainty = Lu + A ET—MSE (14)
[:focalfuncertainty = Ef + Eu + A ET—MSE: (15)

where A is a constant. In all experiments, we use v =2, A = 0.15, and 7 = 16.

5. Results on Real Data
5.1. Experimental Setup

We train all models with stochastic gradient descent with an initial learning rate of 0.001,
after which the learning rate decays by a factor of 0.95 after each epoch. We use 5-fold
cross-validation to select the best epoch and threshold, which are then used for testing.
All models use a sigmoid function as their final activation function as opposed to softmax
function since the classes are not mutually exclusive. We resize frames from 1280 x 720
to 256 x 256, and apply data augmentation such as random flip and random contrast
adjustment for all training.

We pre-train the 13D network on ImageNet (Russakovsky et al., 2015) and Kinetics
(Kay et al., 2017) with a mini-batch size of 8 windows. Each sample windows of duration
10 seconds at 5 fps, with a stride of 1 frame. To balance the training data, we randomly
sample windows by combined labels. The data has 12 possible combinations of labels, or
‘classes’. For example, class [1 1 1 0] has positive blood, positive bleeding, positive burn,
and no thermal injury. Impossible combinations are discarded (e.g., a frame with no blood,
but positive bleeding is not possible). We over-sample classes with fewer frames using
random over-sampling, randomly selecting samples for augmentation, and under-sampling
remaining classes so all classes have the same number of frames (150,000 frames). We show
the data distribution by class in Appendix B. We take the label of the last frame as the
label for the window.

SS-TCN and MS-TCN are trained with a batch size of 1 with no pre-trained weights.
Sampling does not balance the dataset because a training sample is a full procedure with a
varying numbers of events. We add focal and uncertainty loss terms to address the effects
of dta imbalance, improving model performance. SS-TCN has one layer of TCN with 10
layers of dilated residuals, whereas MS-TCN has four layers of TCN with 10 layers of dilated
residuals. Each layer has 64 filters with a filter width of 3.

As no previous work used deep learning in detecting iAEs in laparoscopic videos, we
evaluate a baseline model — InceptionV3 (Szegedy et al., 2016), a popular 2D convolutional
neural network for image classification. We fine-tune InceptionV3 with pre-trained weights
on the ImageNet dataset (Russakovsky et al., 2015). Although images in ImageNet are very
different from laparoscopic images, the large data volume and diversity of ImageNet helps
the model learn general features. We use a mini-batch of 64 samples, randomly sampling
classes from the data so different classes are balanced in each mini-batch. Training converges
at 100 epochs.
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We use an ablation study on different combinations of each term of the loss functions
to study their influence on model performance. The different losses are 1) the normal loss
Lyormal, 2) the combined focal and T-MSE loss L ¢ocqi, 3) the combined uncertainty and T-
MSE loss Luncertainty, 4) the combined focal, uncertainty and T-MSE loss L focal—uncertainty
and 5) the combined focal and uncertainty 10ss £ tocai—uncertainty—notmse-

We ran another ablation study on I3D and MS-TCN with and without stabilization to
study the effect of stabilization. The threshold is chosen at maximum segmental recall.

Finally, we analyze all model performance including InceptionV3, 13D, a single-stage
TCN with stabilization (1-stage Stab-TCN), and a 4-stage Stab-TCN with the four labels
(i.e., 4-label 4-stage Stab-TCN) to study the combined effect of loss function, stabilization,
and other parameters. The 4-stage Stab-TCN, and the 1-stage Stab-TCN are trained on
bleeding and thermal injury separately.

5.2. Evaluation Metrics

Frame-wise metrics consider correctly detected events in each frame as true positives. Event-
wise metrics count individual (multi-frame) events as true positives if the intersection over
union (IOU) of the true and detected frames is larger than a selected threshold.

Frame-wise metrics are commonly used to evaluate detector performance. In our analy-
sis, we use area under ROC curves (AUROC), average precision (AP), precision, and recall.
However, these metrics do not represent model performance when a majority class domi-
nates the number of frames. For example, when a model detects a very long event correctly
and misses many events of short duration, its frame-wise performance could be high, even
though the event-wise performance may be weak.

Therefore, we adapt event-wise metrics—segmental AP at IOUs of k£ =0.1, and 0.25
(APQkF), segmental precision, and segmental recall (Richard and Gall, 2016). If there are
multiple correct detections for a true event, only the first is marked as a true positive.
This way this metric encourages a continuous true positive segment, and penalizes over-
segmentation error by marking the rest of the multiple detections as false positives (Richard
and Gall, 2016), even if its IOU is above threshold.

The SS-TCN study finds segmental F1 more robust than segmental AP (Lea et al., 2017)
in solving the multi-class action recognition problem. On the contrary, our result shows it
is more robust to use segmental AP in the multi-task problem.

Additionally, to show the significance of our comparison, we plotted metrics in bar graphs
with confidence intervals (CIs) marked in red lines with the measurements above each bar.
Model name with its loss function name is used in the legend, where focal-uncertainty-
notmse is a loss combining focal and uncertainty loss without truncated mean-square error,
and focal-uncertainty is the combined focal and uncertainty loss with truncated mean-square
error. We used the Holm-Bonferroni method to test all comparisons. The blue numbers
on the bars indicates the significance group the proportion is in. When the results show
significance between multiple proportions, we ranked them starting from 1. If they are in
the same group, they will have the same rank. If a comparison shows no significance to any
other group, it will be grouped into group 0.

10
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5.3. Results

The 4-stage Stab-TCN significantly outperforms other models. When compared to Incep-
tionV3, our system increases AUROC from 0.740 to 0.803 in bleeding detection, and from
0.829 to 0.930 in thermal injury detection; our system increases the average precision (AP)
from 0.237 to 0.356, and 0.375 to 0.560 in bleeding and thermal injury detection, respec-
tively. We discuss use cases such as using 4-stage Stab-TCN as a screening tool in this
section. We provide demo videos of stabilization, and detection in the supporting materials
(see Appendix C for more details).
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Figure 2: Comparison of different loss function effects on Stab-TCN: Loss functions focal-
uncertainty-notmse and focal-uncertainty improves detection of shorter events.
The vertical axis shows the frame-wise AUROC and AP, and segmental AP at
IOU of 0.1, and 0.25 of each model
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Figure 3: Effect of stabilization on segmental results: Stabilization improves model perfor-
mance in segmental recall in bleeding detection of 4-stage TCN. The vertical axis
shows the segmental precision, and recall of each model at IOU of 0.1, and 0.25.

5.4. Effect of Focal and Uncertainty Loss

The effect of the losses on 4-stage Stab-TCN is shown in Fig. 2. The ranking of losses
performance in thermal injury detection is L focai—uncertainty—notmse > L focal—uncertainty >
L tocal > Lnormal > Luncertainty- There is no clear trend in bleeding detection.

For thermal injury detection, the model trained with L focai—uncertainty—notmse 10ss per-
form significantly better than those with the other losses in all metrics, shown in the bottom
figure of Fig. 2. The differences in frame-wise metric values between the best loss and the
worst loss are 0.025 in AUROC (lower bound CI: 0.938-0.963) and 0.055 in AP (lower
bound CI: 0.562-0.617), the L tocai—uncertainty—notmse l0ss improves AP@0.1 and AP@0.25
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of the second best 10ss, L focal—uncertainty, by 8.62% (0.429-0.466) and 3.78% (lower bound
CI: 0.344-0.357) respectively.

For bleeding detection, shown in the top figure of Fig. 2, the effect of £ tocai—uncertainty—notmse
loss in event-wise metrics are not as evident as in thermal injury detection. Its AP@O0.1,
and its AP@0.25 performance are 0.001, and 0.003 lower than the highest ones in the two
metrics respectively.

Due to large gains in performance in thermal injury detection using the £ tocal—uncertainty—notmse
loss, we ignorel the minor decrease in performance in bleeding detection, and choose the
L tocal—uncertainty—notmse 10ss for further analysis.

5.5. Effect of Stabilization

Stabilization has very different effects on different models. Fig. 3 illustrates a comparison
of model performance with and without stabilization.

Stabilization increases 13D precision in thermal injury detection by 2.65% and 3.81% in
precision@0.1 and precision@0.25 respectively. Its recall@0.1, and recall@0.25 increase by
8.85% and 10.15% to 0.384 and 0.266 respectively. Despite of a significant improvement in
thermal injury detection, improvements in bleeding detection by I3D are not significant.

By contrast, the 4-stage Stab-TCN has better segmental recall than the 4-stage TCN
in bleeding detection. Its segmental recall increases from 0.376 to 0.406 for recall@(.1, and
from 0.246 to 0.254 for recall@0.25.

5.6. Comparison to Baseline Models

The 4-stage Stab-TCN systems outperform the InceptionV3, and the Stab-I3D in AUROC,
AP, and AP@k. The comparison results are shown in Fig. 4, and the precision-recall curves
of all cross-validation results are in Appendix D.

The 4-label 4-stage Stab-TCN has similar bleeding detection performance as the 4-
stage Stab-TCN at the range around 0.121-0.156 in AP@O0.1. However, the 4-label 4-stage
Stab-TCN has significantly lower AP@F in thermal injury detection at around 0.466-0.485
comparing to 0.531-0.550 for 4-stage Stab-TCN in AP@O0.1. This suggests that the focal-
uncertainty loss does not fully address class imbalance, and we need task-specific classifier.
The 4-stage Stab-TCN, which is a task-specific classifier trained only on one class, has the
best overall performance among the four models.

Comparing to the 1-stage Stab-TCN, the 4-stage Stab-TCN’s event-wise performance
are 2 to 3 times higher in bleeding detection, despite they share similar performance in
frame-wise metrics. In thermal injury, 1-stage Stab-TCN has better performance that im-
proves 4-stage Stab-TCN’s AP@0.1 from 0.531-0.550 to 0.566—0.584, which is an increase
of 6.60%. Although 1-stage Stab-TCN provide decent improvement in thermal injury de-
tection, its event-wise performance in bleeding detection is the worst among all models.
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Figure 4: Baseline comparison: Stab-TCN models outperforms InceptionV3 and 13D with
more than 10% difference in most metrics, and 4-stage Stab-TCN has the best
overall performance. The vertical axis shows the frame-wise AUROC and AP,
and segmental AP at IOU of 0.1, and 0.25 of each model.

To further study the performance of each model for high recall and low precision, we
evaluate model performance using frame-wise precision, recall, and specificity, and event-
wise precision, and recall at thresholds chosen at the best validation segmental recall. Using
the selected thresholds, we ‘event plot’ the detection of a randomly selected full procedure
in Fig. 5. We use two types of lines with different lengths and colours indicating multiple
tasks in one frame. The longer blue line indicates a bleeding event occurs at the time, and
the shorter orange one indicates the occurrence of a thermal injury event.

The event plot of Stab-TCN (Fig. 5) has the best readability and usability with fewer
incorrect transitions, and more correctly and precisely detected events comparing to I3D
and InceptionV3.
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Figure 5: Event plots: the results of the 4-stage TCN with or without stabilization has less
false positives, and are more readable and useful for a clinical to identify region

of interests in a long procedure.

5.7. Use Case Analysis
Due to trade-offs between recall and precision, we computed the 4-stage Stab-TCN perfor-
mance in the high-recall and low-precision scenario, and in the high-precision and low-recall
scenario, as shown in Table 2. In the former scenario, our system has a segmental recall@0.1
of 0.694 and a segmental precision@0.1 of 0.575 for thermal injury detection, and 0.432 and

0.114 for bleeding detection.

Table 2: Performance of 4-stage Stab-TCN with L focai—uncertainty—notmse 10ss in different
use case scenarios (*"R.” as recall, P"P.” as precision.).

bleeding thermal injury
High R.* High P. | High R. High P.
Low P.> LowR. | Low P. Low R.

Precision @0.1 0.114 0.324 0.575 0.702
Recall @0.1 0.432 0.223 0.694 0.558
Precision @0.25 | 0.076 0.302 0.531 0.657
Recall @0.25 0.277 0.113 0.641 0.522
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6. Discussion

In an ablation study of loss functions, our approach of integrating focal and uncertainty
losses outperforms other losses. The combined loss assigns more weights to samples that
are harder to learn, as well as learn task uncertainty in a separate term to force the model
weight to be more precise. Therefore, the model trained on the focal and uncertainty loss
better addresses the unbalanced dataset and multi-label problem.

We also found that, contrary to Farha and Gall (2019), removing the T-MSE loss from
L focal—uncertainty improves model performance in thermal injury. The T-MSE loss acts as
a smoothing filter that corrects over-segmentation errors by forcing the model to minimize
generated transitions between events. Although it reduces short false positives in event
transition, it also removes short positive event segments. Unlike previously studied action
recognition tasks, which produce a long series of actions, our TAL task has long empty gaps
between the short instances (e.g., the orange events in Fig. 1C). Using the T-MSE loss
eliminates short instances along with the false positives. As the MS-TCN model corrects
over-segmentation errors over each stage, the T-MSE over-corrects the errors and lowers
performance. Therefore, the model with L focqi—uncertainty—notmse Performs better than the
one with Efocalfuncertainty-

In an ablation study of stabilization algorithms, we found that the trade-off of using
stabilization in both of I3D and MS-TCN is that the increase in thermal injury performance
will lead to a decrease in bleeding detection performance. We found the same behaviour in
recall, and precision — stabilization improves recall, and leads to decrease in precision. This
is because small distortions and cropping are inevitable in bundled-camera path estimation,
and it becomes more visible in the longer bleeding event. Due to this trade-off, stabilization
is more useful in detection of events that have more motion, and when we prefer higher
recall to precision.

The model comparison shows MS-TCN based model has higher segmental precision and
recall than I3D or InceptionV3 model. It extracts longer temporal features, as it performs
multiple dilated convolution in the time domain of a full procedure. In accordance with
Farha and Gall (2019), the 4-stage Stab-TCN has better performance than single-stage
Stab-TCN because multi-stage model corrects more over-segmentation errors over multiple
stages of temporal convolution. For our suggested clinical use case as a screening tool,
the detection of 4-stage Stab-TCN shown in Fig. 5 has better readability with less false
positives.

Fig. 5 also shows strongly relying on frame-wise metrics, such as AUROC and AP only,
will result in a wrong model selection, such as 1-stage Stab-TCN. Due to its low precision, 1-
stage Stab-TCN would complicate efficiently identifying probable iAEs, especially bleeding
events. For temporal action localization problem, segmental metrics are more reliable in
model selection, and performance evaluation.

Clinically, using our system as a screening tool, with segmental precision of 0.575 (ther-
mal injury) and 0.114 (bleeding), human annotators would only need to filter out approx-
imately 40% of identified false-positive thermal injury events, and approximately 90% of
identified false-positive bleeding events. Note that this system only highlights an average
of 13.45 thermal injury events and an average of 13.74 bleeding events per 1.5-hour pro-
cedure. Reviewing these events (in less than 10 minutes) to remove false positives is less
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laborious than reviewing an entire video (average 1.5 hour per video). In the high-precision
and low-recall scenario, the system would miss many true events, but each detection has a
high probability to be a true positive. Our system has a segmental precision@0.1 of 0.702
and a segmental recall@(.1 of 0.558 for thermal injury detection, and 0.324 and 0.223 for
bleeding detection. With some assistance from human experts to filter out false positives,
this system can be used as a data mining tool to collect an intraoperative adverse event
database.

Our proposed system integrates stabilization with multi-stage temporal convolutional
neural network with a focal-uncertainty loss. This system addresses problems including
highly unbalanced dataset, multi-label detection task, and temporal localization of short and
rare event in long videos. This unique temporal action localization problem is more common
in clinical event detection than the well-studied human activity recognition problem. Our
analysis shows the effect of each module contribution to the state-of-the-art performance.
This method can be applied to other event detection in long surgical videos.

Limitations Our system recognizes adverse events of all levels including less serious ad-
verse events. Clinicians that are only interested in highly severe adverse events would need
to filter them out. This system does not support real time processing as stabilization is
time consuming. For a video with a resolution of 1280 x 720, our stabilizer reaches a speed
of 7 FPS. Using resolution of 224 x 400 increases the speed from 7 FPS to 11 FPS. However,
the speed of stabilization is still a bottleneck for real time processing.
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Appendix A. Generalization to Different Cases

Fig. 6 shows the quality of our system in comparison to the others in generalizing to different cases.

Appendix B. Data Distribution by Classes

The data distribution by task is highly unbalanced. This is true for distribution of each class. Table.
3 shows a highly unbalanced distribution of each class.
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Figure 6: Event plots of three cases where the horizontal axis represents time. FEach of
the vertical bars represents a detection of bleeding and/or thermal injury. The
lines are in different lengths and colours indicating multiple tasks in one frame.
The longer blue line represents bleeding, and the shorter orange one represents
thermal injury.
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Table 3: Distribution of frames in each class shows the dataset is highly unbalanced. Each
class represents a unique combination of tasks. For example, 1 1 0 0 represents a
class that has blood, active bleeding, but not burn and not active thermal injury.

Class
0000
0001
0010
0011
1000
1001
1010
1011
1100
1101
1110
1111

Blood Bleeding Burn Thermal Injury

Oft
Oft
Oft
Oft

Off
Off
Off
Off
Off
Off
Off

Off
Off
On
On
Off
Off
On
On
Off
Off
On
On
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Off
On
Off
On
Off
On
Off
On
Off
On
Off
On

Total

# Frames
10,118,163
277,806
272,719
28,283
10,941,450
445,355
1,203,348
127,454
1,080,771
50,057
82,399
9,628
24,637,433
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Appendix C. Demo Videos

Demo videos of stabilization, and intra-operative adverse event detection are provided in supporting
files. The detection demo includes bleeding detection with zooming, and with occlusion, as well as
thermal injury detection with and without smoke in the scene. Before and after the events, we leave
some period with no-event to demonstrates the detection of true negatives. You can download
the demo videos here https://drive.google.com/drive/folders/1ypiXuk9vaAiM7eMc1ilEL3_
23x-A2iij7usp=sharing.

Appendix D. Precision-Recall Curves

InceptionV3 4-label 4-stage Stab-TCN w/ focal-uncertainty-notmse
b|eeding Stab-13D 1-stage Stab-TCN w/ focal-uncertainty-notmse thermal injury
4-stage Stab-TCN w/ focal-uncertainty-notmse
1.0 1

Precision
Precision

0.2/

0.0:

0.0 0.2 0.4 0.6 08 1.0

Recall Recall

Figure 7: Precision-recall curves of each task. Model name with its loss function name
is used in the legend, where focal-uncertainty-notmse is a loss combining focal
and uncertainty loss without truncated mean-square error. Each model has 5
corresponding lines from 5-fold cross-validation. The region with colour is an
indication of the range of the precision-recall curves.

We plot a precision-recall curve of each model on cross-validation results at each fold. Each
model has 5 curves that forms an area in between shown in Fig. 7. Model with stabilization and
temporal convolutional neural networks are on top of the curves of InceptionV3, and Stab-I13D, and
the area between the curves are narrower than those of InceptionV3, and Stab-I3D. This provides
empirical evidences of the performance improvements using stabilization and temporal convolutional
network in comparison to 2D or 3D convolutional neural network.
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