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Abstract

We explore how to quantify uncertainty when designing predictive models for healthcare
to provide well-calibrated results. Uncertainty quantification and calibration are critical in
medicine, as one must not only accommodate the variability of the underlying physiology,
but adjust to the uncertain data collection and reporting process. This occurs not only on
the context of electronic health records (i.e., the clinical documentation process), but on
mobile health as well (i.e., user specific self-tracking patterns must be accounted for). In
this work, we show that accurate uncertainty estimation is directly relevant to an important
health application: the prediction of menstrual cycle length, based on self-tracked informa-
tion. We take advantage of a flexible generative model that accommodates under-dispersed
distributions via two degrees of freedom to fit the mean and variance of the observed cycle
lengths. From a machine learning perspective, our work showcases how flexible generative
models can not only provide state-of-the art predictive accuracy, but enable well-calibrated
predictions. From a healthcare perspective, we demonstrate that with flexible generative
models, not only can we accommodate the idiosyncrasies of mobile health data, but we can
also adjust the predictive uncertainty to per-user cycle length patterns. We evaluate the
proposed model in real-world cycle length data collected by one of the most popular men-
strual trackers worldwide, and demonstrate how the proposed generative model provides
accurate and well-calibrated cycle length predictions. Providing meaningful, less uncertain
cycle length predictions is beneficial for menstrual health researchers, mobile health users
and developers, as it may help design more usable mobile health solutions.

© 2021 I. Urteaga, K. Li, A. Shea, V.J. Vitzthum, C.H. Wiggins & N. Elhadad.
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1. Introduction

One of the primary challenges in predictive modeling for healthcare pertains to handling
the uncertainty of both the task and the data at hand, as well as ensuring calibration of
model output (Han et al., 2011; Rogers and Walker, 2016; Chen et al., 2020). Because users
of these models make decisions —that have health and ethical implications (Gillon, 1994;
Siebert, 2003)— based on such predictive outputs, it is critical to ensure users can assess
the confidence of a model in its predictions.

In machine learning predictions, different types of uncertainty are entangled. The uncer-
tainty, given a finite amount of data, of a machine learning technique can be captured with
the statistical characterization of its predictions, i.e., via the predictive distribution
p(y|x) of the model output y given the input features x. Entangled in this predictive distri-
bution are both aleatoric and epistemic uncertainties. The former denotes the randomness
inherent in the data generating process, i.e., the observed data (e.g., collected features and
observed outcomes). The latter —also known as model uncertainty— reflects the uncer-
tainty of a model’s appropriateness to fit the underlying data generating mechanism.

A goal of statistical machine learning is to devise suitable measures of the uncertainty
associated with model predictions (Gneiting et al., 2007). Predictions are probabilistic in
nature, taking the form of probability distributions over future events of interest (Dawid,
1984). In a Bayesian view of predictive modeling, the outcome Y, the input features X, and
the parameters of a model are viewed as random variables'. The distributional assumptions
over the model class and the uncertainty over parameters can be characterized with priors
and incorporated into the predictive distribution via marginalization of such (paramet-
ric) model uncertainties, i.e., p(Y|r) = [, p(Y|z,0)p(0|D)df, where D refers to previously
observed data.

Within this probabilistic view of prediction, where the predictive distribution character-
izes all the uncertainty in the outcome of interest Y, a model’s calibration is a crucial aspect.
Calibration refers to the statistical consistency between the distributional forecasts (i.e.,
the predictive distribution) and the true observations (i.e., the data). As originally argued
by Dawid (1984) and many after (Diebold and Mariano, 2002), the predictive posterior
must be assessed on the basis of the predicted-observation pairs.

A statistical method is calibrated when, for all the observed examples = for which it
predicts an outcome Y = y with probability p(Y = y|z) = p/, the proportion (frequency)
of real examples observed for outcome y is equal to p’, across all values of P(Y = y|z).
In this sense, calibration is inherently frequentist, but Bayesian views of calibration have
also been argued for (Dawid, 1982). Essentially, calibration is concerned with measuring
the over-confidence and under-confidence of a statistical model. As such, it helps assess the
extent to which a user can trust the model’s predicted outcome probabilities.

In healthcare, the role of uncertainty estimation and model calibration is gaining mo-
mentum (Vach, 2013; Calster et al., 2016; Alba et al., 2017; Stevens and Poppe, 2020;
Goldstein et al., 2021), partly due to the increase in popularity of deep learning based ap-
proaches (Rajkomar et al., 2018). Recent evidence suggests that deep-learning approaches
lack calibrated outputs (Guo et al., 2017; Nixon et al., 2019), even if several techniques have
been proposed to assess and fix this gap (Dusenberry et al., 2020; Kwon et al., 2020).

1. We capitalize random variables, we denote their realizations in lower-case.
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Most of the healthcare model calibration work so far is on classification tasks in the
context of clinical, electronic health record data. On the contrary, the use case for this
work is menstrual cycle length prediction from mobile health data. Based on a
user’s self-tracked data from a period tracking app, we aim at forecasting their upcoming
cycle length, i.e., the date of their next period. This use case differs from previous work in
quantifying uncertainty: (i) we target regression (i.e., next cycle length prediction) rather
than classification, and (i) we leverage mobile health (mHealth) data —subject to self-
tracking artifacts, like varying adherence to tracking.

When characterizing and predicting menstrual patterns based on mHealth data, the
relevance of uncertainty quantification is two-fold. On the one hand, self-tracked data from
mHealth apps reflects both physiological menstrual patterns and user engagement dynam-
ics (Li et al., 2020). Therefore, one must disentangle the uncertainty of the physiological
process (i.e., the menstrual cycle) from the uncertainty on the observed data (i.e., whether
users track their period). On the other, uncertain predictions in mHealth often result in
non-actionable insights, e.g., “your next period will occur within the next two weeks” (Or-
chard, 2019; Fox and Epstein, 2020).

We hereby operate within a generative modeling framework, and leverage advances in
the statistical characterization of complex distributions to accommodate both self-tracking
artifacts and cycle length variability (Li et al., 2020). Precisely, we take advantage of prob-
abilistic machine learning (Chen et al., 2020) and devise a flexible generative model that
can accommodate the uncertainties of the task at hand and address predictive calibration
directly. We demonstrate how to overcome the over-dispersion of Poisson distributed pre-
dictions by proposing a Generalized Poisson based model that provides accurate and better
calibrated individualized cycle length predictions. Less uncertain cycle length predictions
are intrinsically beneficial, and we hypothesize they may also help design better menstrual
mHealth solutions, ultimately increasing their usability.

Generalizable Insights about Machine Learning in the Context of Healthcare

This work contributes to machine learning in the context of healthcare by first propos-
ing a flexible generative model to provide accurate and well-calibrated predictions. We
demonstrate that our model outperforms black-box neural network and state-of-the-art al-
ternatives, by providing interpretable, accurate and well-calibrated predictions. Armed with
well-calibrated predictions, users can trust and act upon predictions with more confidence.
Second, we argue for the use of probabilistic modeling in healthcare (Chen et al., 2020),
since interpretability, accuracy and uncertainty quantification are critical in the medical
domain. More broadly, we advocate for the machine learning in healthcare community to
not only focus on point estimate based metrics, but to incorporate the calibration tool-set
presented here into the evaluation pipeline.

2. Related Work

Calibration in Predictive Models. A key endeavor of predictive modeling is to provide
forecasts that appropriately quantify uncertainty (Gneiting et al., 2007). In healthcare,
because of the practical and ethical costs of incorrect and over-confident predictions, there
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is great value in assessing not only the predictive ability of a given model, but in measuring
its uncertainty as well (e.g., by comparing, evaluating, and ranking competing methods).

A probabilistic view of prediction tasks takes the form of predictive posterior densities,
and the challenge in evaluating them lies in the dichotomy between comparing predictive
probability distributions with observations that are real (or discrete) valued. In general,
calibration (the statistical consistency between the distributional forecasts and the obser-
vations) and sharpness (the concentration of the predictive distributions) are two key met-
rics in evaluating predictive posteriors. Many tools for checking calibration and sharpness
have been proposed, some based on visual representations and others based on scoring
rules (Gneiting et al., 2007). Scoring rules provide summary measures for the evaluation
of probabilistic forecasts that assign a numerical score based on the predictive distribution
and on the events that materialize.

Calibration in classification tasks (e.g., assessing the risk of a discrete set of events, like
in disease prediction) implies transforming classifier scores into class membership probabili-
ties. For these categorical predictive tasks, the expected calibration error (ECE) has become
popular (Naeini et al., 2015; Guo et al., 2017; Dusenberry et al., 2020). It is a tractable way
to approximate the calibration of a model given a finite dataset, although subject to certain
limitations (Nixon et al., 2019). Characterizing probabilistic predictions of continuous vari-
ables is fundamentally different from calibrating categorical and binary variable predictions.
We refer to (Gneiting and Raftery, 2007), where a theoretically grounded review of scoring
rules for density, quantile and interval forecasts is provided.

The increase in popularity of deep learning (Goodfellow et al., 2016) has resulted in a
scrutiny of the uncertainty and calibration performance of these techniques (Malinin and
Gales, 2018; Yao et al., 2019). To capture uncertainty, existing state-of-the-art neural net-
work based approaches often make use of ensemble, batch-norm or dropout techniques,
yet have been often found to be miscalibrated (Guo et al., 2017; Nixon et al., 2019). Al-
though various post-processing calibration methods have been proposed (Niculescu-Mizil
and Caruana, 2005), calibration within deep learning is still a concern.

On the one hand, some propose to decouple training for good predictive accuracy from its
calibration (Song et al., 2019), while others address calibration within-training via alternate
loss functions (Avati et al., 2020). These approaches are not guaranteed to appropriately
balance prediction and calibration. On the other, an alternative is to consider Bayesian deep
learning (Wilson, 2020). However, there still remain many questions regarding the accuracy
of the computed Bayesian posteriors (Wenzel et al., 2020), specially so when approximate
inference is used (Foong et al., 2019).

The investigation of model uncertainty and calibration within the medical domain is
also gaining attention, partly due to the rise of deep learning in healthcare (Dusenberry
et al., 2020; Stevens and Poppe, 2020; Goldstein et al., 2021). Dusenberry et al. (2020)
examined neural network methods to capture model uncertainty in the context of electronic
health records (EHR), and acknowledged that there is still plenty of work to do on devising
methods that reduce model uncertainty at both training and prediction time. In the work
we present here, not only the healthcare context is different (mHealth data, instead of
EHR), but our predictive task distinct (regression versus classification).
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Menstrual Prediction from mHealth Data. Period tracking apps are some of the
most popular smartphone apps (Wartella et al., 2016), and prediction of next period date
is one of the most required feature from these app users (Epstein et al., 2017). Recent
research has shown that while machine learning methods show promise, predicting cycle
length is a challenging task (Pierson et al., 2018; Li et al., 2021), sometimes at the expense
of a successful user-app interaction (Fox and Epstein, 2020).

First, menstruation is a complex process with inherent variation and uncertainty within
and across individuals (Treloar et al., 1967; Chiazze et al., 1968; Ferrell et al., 2005;
Vitzthum, 2009; Harlow et al., 2012). The analysis of massive data from menstrual tracking
apps confirmed that there are indeed wide variations in cycle length across menstruators,
as well as within longitudinal cycle lengths of the same individual (Symul et al., 2018; Li
et al., 2020; Soumpasis et al., 2020). Second, self-tracking data also comprises uncertainty,
as the tracking behavior of app users is varied across individuals and in time (Urteaga et al.,
2020; Li et al., 2021).

In this work, starting from a state-of-the-art model for cycle length prediction by Li
et al. (2021), we leverage flexible generative modeling to capture the intrinsic uncertainty
of both the underlying physiological menstrual process and self-tracking data, and explore
the value of calibrated predictions.

3. Methods

We hereby propose a hierarchical, Generalized Poisson-based generative model? for cycle
lengths self-tracked via mHealth that (i) accounts for when individuals may forget to self-
track their period, (i7) pulls population-level information and learns individualized cycle
length patterns and self-tracking propensities, and (iii) enables per-individual cycle length
uncertainty quantification that results in well-calibrated predictive posteriors.

It is a generative, hierarchical model (see Figure 1 and the generative process description
in Section 3.1), in that all per-individual parameters are drawn from the same population
level distribution, which allows for the incorporation of global menstrual pattern knowl-
edge (via informative priors) and pulling cycle information across individuals (to learn
population-level hyperparameters).
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Figure 1: Probabilistic graphical model of the hierarchical Generalized Poisson model with
a latent skipped cycle s variable to accommodate self-tracking artifacts.

2. A Python implementation of the proposed model is available in the public GitHub repository
https://github.com/iurteaga/menstrual_cycle_analysis.
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We take advantage of the Generalized Poisson distribution (Consul and Famoye, 2006)
for its specific parameterization that enables us to capture the uncertainty of the observed
cycle lengths (its posterior can be under- or over- dispersed) and provide calibrated predic-
tions.

The Generalized Poisson is a distribution that belongs to the class of Lagrangian dis-
tributions over discrete, non-negative integers, with parameters A and £ that are indepen-
dent (Consul, 1989; Consul and Famoye, 2006). The probability density function (pdf) of
a Generalized Poisson, hereby denoted as GP (-) follows

AA+ €)1 e NS>0, =01,
0, for & > Tmae if € <0,

gP (zA, ) = { (1)
where limits on A and £ are imposed to ensure that there are at least five classes with nonzero

probability (Consul, 1989). The first two moments® of a GP (z|\, €) follow p, = ﬁ and
2

oL = ﬁ, where we observe how the two independent parameters provide two degrees
of freedom to fit the mean and the variance, separately. The Generalized Poisson can be
over- or under-dispersed, depending on the value of £ (when & = 0, we recover the Poisson
distribution). For £ < 0, the Generalized Poisson is under-dispersed (in comparison to a
Poisson distribution) and it can be truncated to a maximum value Z,q,; of z, requiring an
additional normalizing factor Zgp( ), see details in Section A.1 of the Appendix.

A Tman

3.1. The hierarchical, generative process for observed cycle lengths

The proposed model, depicted in Figure 1, is a generative process with the following random

(observed and unobserved) variables and parameters:

e The observed variables are the cycle lengths z;,, with ¢; = {1,--- , C;} cycle lengths for
each individual ¢ = {1,--- ,I}. We denote with s; ., the (latent) number of skipped (not-
reported) cycles, with ¢; = {1,---,C;} cycle lengths for each individual i = {1,--- ,I}.

e )\; and &; denote the Generalized Poisson parameters for each individual i = {1,--- ,I};
m; are the per-individual ¢ = {1,--- , I} probability parameters of skipping a cycle.

e x, v are the population-level hyperparameters of a Gamma distribution prior over the
Ais ag¢, B¢ the hyperparameters of a Beta distribution prior over the &; and «, 3 the
hyperparameters of a Beta distribution prior over the skipping probabilities ;.

We now summarize the generative process of the proposed probabilistic model. First,
one draws individual cycle length and self-tracking probability parameters from the pop-
ulation level distributions: i.e., each individual’s A\; ~ p(Alk,v) = G(A|k,7v) and & ~
max{—1, x;’\a;} + (1 — max{—1, x:n):z )B (§|ag, Be¢) parameters, and the the probability of
each individual forgetting to track a period m; ~ p(w|a, 8) = B (rw|a, ) (all distributional
details are provided in Section A.2 of the Appendix). Given per-individual parameters \;,
&, m;, then the number of cycles a user forgets to track is drawn from a Truncated Geometric
distribution with parameter m;, i.e., s; ¢, ~ p(s|m) = %
cycle length for each user i is drawn from a Generalized Poisson distribution, conditioned
on the number of skipped cycles, i.e., z; ¢, ~ p(z|\i, &, Sic;) = GP (x](Si,er + 1)Nis &)-

Finally, the observed

3. Other moments of interest can be computed in closed form, see (Consul and Famoye, 2006) for a full
characterization of this distribution.
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3.2. The proposed model’s distributions of interest

There are two distributions that are critical for the purpose of this study: (i) the joint, over
all individuals’ marginalized data (log)-likelihood, and (ii) each individual’s cycle length
predictive posterior. As explained in the introduction, a Bayesian view of predictive mod-
eling requires the derivation of the predictive distribution via marginalization of all the
inherent (parametric) model uncertainties:

p(Y|x) = /9 p(Y |z, 6)p(6]D) a6 (2)

Here, we aim at marginalizing all the parameters of the model, based on the prior distribu-
tion assumptions described in Section 3.1. In our proposed model, the latent parameters 6
contain both the unobserved per-cycle skips s; ., and the per-individual parameters \;, &
and m;, i.e., 0 = {sj¢,, \i, &, m}. Similarly, and to reduce clutter, we denote with © all the
hyperparameters of our model: © = {k,v, ag, B¢, o, B}

We clarify our notation here, where we denote a set of cycle length observations for a
given individual ¢ with X; = (2;1,- - -, xi,(;i)—r € R and the set of cycle length observations
for all individuals i = {1,--- , I} in the population are denoted with X = (XlT, . ,XIT)T IS
RIXCr where C; = maxC;, Vi. Similarly, the set of latent skipped cycle variables for a
given individual ¢ is denoted with S; = (si1,--- ,s@Cl.)T € R%, and the set of all latent
skipped cycle variables for all individuals i = {1,--- , I} in the population are denoted with

S = (SlT,--- ,S}r)T € RI*C1 where C; = max C;, Vi.

3.2.1. MARGINALIZED JOINT DATA LIKELIHOOD

The population level data likelihood, with marginalized parameters, can not be derived in
closed form. Instead, we resort to a hybrid approach, where we analytically marginalize
per-individual skipped cycles s; ., and use Monte Carlo to marginalize the per-individual
parameters \;, & and m;. The resulting marginalized joint data likelihood follows

1

ar 2 P (3)
1 m=0

I C;
p(x10) = [ [ plaicl©) ~

1 M
i=1c;=1 =

where the per-user joint likelihood is marginalized over the skipped cycles s; ., i.e.,

Ci  Smax

pCGIAN™ M 7Y = TT . pl@ie[sico W™ 6 p(sie, ™) (4)

c;i=1 Siyc; =0

and evaluated with Monte Carlo parameters )\Z(-m) ~ p(Alk,7), fi(m) ~ p(£|)\§m), ag, Be), and
wgm) ~ p(r|a, B) drawn from their respective prior/posterior distributions (corresponding
Equations (11), (12), and (13) are provided in Section A.2 of the Appendix).

The joint data likelihood is key for our training procedure, and determines the com-
putational complexity of the fitting procedure. Given a dataset of C; cycle lengths for
i =A{1,---, 1} users, we perform hyperparameter inference via type-II maximum likelihood
estimation; that is, we find the hyperparameters O that maximize the data log-likelihood

as provided in Equation (3), i.e., © = argmaxg [In(p(X|0))].
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After the training procedure, the hyperparameters © = {x, v, a¢, B¢, o, 5} used for draw-
ing the Monte Carlo parameters in Equation (3) will be replaced with the learned population
level hyperparameters o.

We note that the hierarchical nature of the proposed model enables distributed learning,
with not only computational, but also privacy benefits: mHealth users do not need to share
their data (they can locally compute their individualized predictions), and only need to
share per-user data log-likelihood estimates for population-level hyperparameter inference
(see Section A.6 of the Appendix for a more detailed discussion).

3.2.2. CYCLE LENGTH PREDICTIVE POSTERIOR

We derive the marginalized predictive posterior of the next cycle length z;,., after ob-
serving per-user cycle lengths X,
( X..0) D e, [ P@icnen| N &y m)p (Xl N, &6 mi)p(Ni, &y il ©)dNidEd
p x‘) new i - ’
e ' I e, [ (Xl &y mi)p(Ni, &, i ©)dAdEidm
for which we need to compute p(X;|\;, &, ;) as in Equation (4). We again marginalize
per-individual skipped cycles s; .., in

Smax

p<mivcnew ‘)\'L’ €i7 ﬂ-z) = Z p(xiycnew |Siycnew ) )\l‘7 gi)p(siacnew ‘ﬂ-l) . (6)
0

Si,cnew —
One can readily compute the above via Monte Carlo, by drawing from the parameter
posterior p(A;, &, mi| X, ©) as described in Equation (17) in Section A.3 of the Appendix, or
via Importance Sampling by drawing from the prior p(\;, &;, 7;|©) and weighting samples
with p(X;|\;, &, m;) as in Equation (4). After the training procedure, the hyperparameters
© above will be replaced with the learned population level hyperparameters o.
In addition, we note that the above cycle length predictive posterior, as well as the
skipping probability predictive posterior, can be updated as subsequent days of the next
cycle pass by, which we have derived in Sections A.4 and A.5 of the Appendix, respectively.

4. Cohort

Real-world Menstrual mHealth Dataset’. We leverage a de-identified self-tracked
dataset from Clue by BioWink (Clue, 2021), comprised of 117,014, 597 self-tracking events
over 378,694 users. Clue app users input overall personal information at sign-up, such as
age and birth control type. The dataset contains information from 2015-2018 for users
worldwide, covering countries within North and South America, Europe, Asia and Africa.
In the entire dataset, the median number of tracked menstrual cycles is 11. Inclusion criteria
into the cohort were: (1) users likely to have ovulatory cycles, that is aged 21-33 with natural
cycle (i.e., no contraception); (2) users with at least 11 cycles tracked. The cohort resulted
in 186, 106 menstruators. For the experiments described in this paper, we randomly select
a subset of 50,000 users. The summary statistics of the overall and the selected cohort for
the experiments are provided in Table 1. We observe minimal differences in cycle length
and period length statistics between the full cohort and the selected cohort.

4. Researchers interested in gaining access to the data can contact Clue by BioWink GmbH and establish
a data use agreement with them.
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Table 1: Summary statistics for the overall cohort and the 50,000 random user subset. Note
that race/ethnicity information is not available from this de-identified dataset.

Summary statistic Full cohort Selected cohort
Total number of users 186,106 50,000
Total number of cycles 2,047,166 550,000
Cycle length in days: meantsd (median) | 30.7£7.9 (29) | 30.6£7.7 (29)
Period length in days: meantsd (median) | 4.1+1.8 (4) 4.1+1.8 (4)
Age in years: meantsd (median) 25.6+3.6 (25) | 25.6+3.6 (25)

Data Extraction and Feature choices. Even though Clue’s mHealth app users can
self-track multiple symptoms over time, we focus on period data only, i.e., users’ self-reports
on which days they have their period. A period is defined as sequential days of bleeding
(greater than spotting and within ten days after the first greater than spotting bleeding
event) unbroken by no more than one day on which only spotting or no bleeding occurred.
We use cycle lengths as input to our proposed model, where we define a menstrual cycle as
the span of days from the first day of a period through to and including the day before the
first day of the next period (Vitzthum, 2009). We discard any cycle a user has indicated to
be excluded from their history —e.g., if the user felt that the cycle was not representative
of their typical menstruation due to a medical procedure or changes in birth control.

Synthetic Datasets®. To assess the ability of our model to recover ground truth (only
possible with simulated data), we leverage two alternative generative processes. A Poisson
generative model of cycle lengths, where the observed cycle lengths are drawn from the gen-
erative model by Li et al. (2021); i.e., cycle length data follows a Poisson distribution (see
model and parameterization details in Appendix B.1). A Generalized Poisson generative
model of cycle lengths, where the observed data are drawn from the generative model as
proposed in Section 3; i.e., cycle length data is drawn from a Generalized Poisson distribu-
tion (full details are provided in Appendix B.2). For each of the simulated scenarios, we
draw cycle length data for 50,000 users, with C; = 11 cycles for each user.

5. Evaluation

5.1. Evaluation Approach: Real and Synthetic Study Designs

Our objective is to accurately predict the next cycle length of a mHealth menstrual app
user, based on their previously-tracked cycle lengths. To that end, we train the proposed
generative model (as described in Section 3) and several baselines (described in Section 5.1.1)
on the cycle length information from each of the datasets described in Section 4.

We train on the first 10 cycle lengths of each user (C; = 10,V1) and, given the hyperpa-
rameters © learned via the training procedure, we predict the next cycle length (i.e., each
user’s 11th cycle) via the predictive posterior in Section 3.2.2. Consequently, the train-test
split is within, and not across, individuals: we train personalized models with each individ-
ual’s first 10 cycles, and evaluate our individualized predictions with respect to each user’s
next cycle length.

5. The synthetic dataset can be generated with the Python codebase publicly available in
https://github.com/iurteaga/menstrual_cycle_analysis.
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We average our results (and provide standard deviations) over k = 5 realizations to
aggregate over the inherent uncertainties of the training and testing procedure: e.g., ro-
bustness to random number generator seeds, Monte Carlo sampling and the optimization
procedure.

We note that the learned predictive posterior p(z; c,..., = | Xi, (:)) provides per-user fully
probabilistic predictions, i.e., it computes the probability of the next cycle length z;., ..
being of length z € N for each user ¢. Therefore, we are enabled to provide both point
estimate predictions (e.g., the mean or mode of the predictive distribution), as well as to
evaluate how well-calibrated the predicted cycle length posterior is.

5.1.1. BASELINES

We compare the performance of our model to the following baselines®:

e CNN: a 2-layer convolutional neural network with a 3-dimensional kernel.
e RNN: a 2-layer bidirectional recurrent neural network with a 3-dimensional hidden state.

e LSTM: a 2-layer Long Short-Term Memory neural network with a 3-dimensional hidden
state.

e Poisson model: the Poisson-based predictive model proposed by Li et al. (2021).

5.1.2. PREDICTION METRICS

We use several accuracy metrics for the evaluation of next cycle length point estimates
Ticnon With respect to true cycle lengths z;,., for all I users in the cohort. The root-

I — \2
1 (%, cnew —Tioc . .
Zizi( e — ) ; the median squared error, MedianSE =

mean squared error, RMSE =

o —

Median [(x@cnew - :1;1-7%81”)2] (which is less sensitive to outliers than the RMSE); the mean

I _—
i1 % enew —Tie . .
Tzt [Ficncw ””e“’|; and the median absolute error, MedianAE =

5.1.3. CALIBRATION METRICS

absolute error, MAE =

Median Hxi’CHW — Ti crew

We leverage a diverse set of calibration metrics and scoring rules, both visual and numeric,
to evaluate the uncertainty quantification of the generative models’ predictive posteriors.
On one hand, we consider the following, most often visually presented, calibration metrics:

The probability integral transform (PIT), defined as the value that the cumula-
tive density function (CDF) of a predictive model F(-) attains at the observation, i.e.,
pi = F(x;), where z; ~ g(-) is drawn from the true (yet unknown) generating mechanism,
with CDF G(-). For continuous true G(-) and predictive F'(-), p; has a uniform distribu-
tion if the predictions are ideal, i.e., if F(-) = G(:). PITs are most often reported as a
histogram over the set of observed instances x;, Vi; and for the ideal case, the histogram of
the PIT values is (asymptotically) uniform. The uniformity of the PIT is a necessary, but
not sufficient, condition for the predictive distribution to be ideal —Gneiting et al. (2007)
provides a detailed explanation of PIT’s limitations. Visual assessment of PIT histograms

6. Similar to what is reported in Li et al. (2021), we don’t observe any significant performance difference
with other architectures that incorporate higher kernel or hidden state dimensionalities.
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provides insights into the calibration deficiencies of a predictive posterior: hump-shaped
histograms indicate over-dispersion (i.e., prediction intervals are too wide), while U-shaped
histograms correspond to under-dispersion (i.e., too narrow predictive distributions). Note
that triangle-shaped histograms indicate biased predictive distributions. Since its proposal
by Rosenblatt (1952), many authors have extended and studied PIT’s advantages and dis-
advantages —see Section 3 in (Gneiting et al., 2007).

The marginal calibration plot (MCP), defined as the difference between the predic-
tive CDF F(-) and the empirical CDF of the observed data G(-) (Gneiting et al., 2007), i.e.,
F(z;) — G(x;), Yx;. The most straightforward approach is to visualize the above difference
over all observed instances, towards assessing the marginal calibration of the predictive dis-
tribution. The marginal calibration is concerned with the closeness between the predictive
outcomes (i.e., predictive distribution) and the actual, observed outcomes (i.e., the data).
The interested reader can find in Gneiting et al. (2007) a rigorous study of how, under
mild regularity conditions, marginal calibration is a necessary and sufficient condition for
the asymptotic equality between the average predictive CDF and the empirical CDF of the
observations. Visually, one expects minor fluctuations under the hypothesis of marginal
calibration (i.e., the MCP is almost flat), while major excursions from the origin indicate a
lack of marginal calibration.

On the other hand, to quantify with a single numerical score how closely a model’s pre-
dictive distribution matches each user’s observed cycle lengths, we consider several scoring
rules. The selected scores presented below form a comprehensive set of summary measures
of predictive performance, as they address calibration and sharpness simultaneously (Gneit-
ing et al., 2007). We note that all these are proper scoring rules’ in general, and strictly
proper® under quite general conditions —a detailed, theoretically grounded review of the
above and other scoring rules is provided in (Gneiting and Raftery, 2007). We define them
here for predictive distributions on the natural line € N, but they are scoring rules that

can readily accommodate continuous variables.

The quadratic or Brier score, defined as BrierS(p,z;) = — > om4*(§(z — ;) — p(w))2.
p(ﬂ?i)a_l

. ) Iplla~"
more common Spherical score when o = 2, used in our results.

which reduces to the

The pseudo-spherical score, defined as PseudoS(p, x;) =

The logarithmic score, defined as the log-likelihood of the observation x; under the
predicted posterior p(-): LogS(p,x;) = logp(z;), which relates directly to the negative
Shannon entropy and the commonly used log-likelihood metric. Interestingly, this score
emerges as a limiting case of the pseudospherical score with a@ — 1 when it is suitably
scaled.

The continuous ranked probability score (CRPS), defined in terms of the CDF F(-)
of the predictive posterior, i.e., CRPS(F, z;) = — [*_(F(z) — 1 [23])% dzz, and corresponds to
the integral of the Brier scores for the associated binary probability forecasts at all real-
valued thresholds —note that when dealing with integers in the natural line, the thresholds
are countable, resulting in a sum over a finite number of bins. The motivation for the CRPS is
to overcome several limitations regarding other metrics on continuous variables. If Lebesgue

7. S(P,P) > S(P,Q), VP,Q € P.
8. S(P,P) = S(P,Q), if and only if P = Q.

11
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densities on the real line are used to predict discrete observations, then the logarithmic
score encourages the placement of artificially high density ordinates on the target values,
and no credit is given for assigning high probabilities to values near but not identical to the
one materializing. As such, defining scoring rules in terms of predictive CDFs (instead of
probability density functions) has bee argued for by Gneiting et al. (2007).

5.2. Validation on the synthetic cycle length dataset

We first showcase the added flexibility of our proposed method by leveraging the synthetic
datasets described in Section 4. Our synthetic data results (presented in Section B) demon-
strate that the proposed model provides better uncertainty quantification capabilities than
the alternative proposed by Li et al. (2021), both in terms of predictive accuracy and
calibration metrics. Specifically, when the cycle length data is Poisson distributed, both
models can accurately fit the data and provide well-calibrated predictions: all scoring rules
are identical for both models, see Section B.1.

On the contrary, when the observed cycle length data is drawn from a Generalized Pois-
son that is under-dispersed, we observe that the Proposed model clearly outperforms the
Poisson model both in terms of predictive accuracy and calibration metrics. Specifically,
we note (see Figures in Section B.2) that the PIT of the Poisson model is hump-shaped,
i.e., it is clearly over-dispersed, while the Proposed model’s PIT histogram is close to a uni-
form distribution. In addition, the MCP plot for the Proposed model hardly deviates from
the origin, while the Poisson model showcases a calibration mismatch around z., , = 20.
Overall, these results validate that a Generalized Poisson based model is able to more flexibly
adjust to the uncertainty of observed cycle lengths and provide well-calibrated predictions.

5.3. Results on the real-world mHealth dataset

We now present results for all the considered models (generative and neural network based,
as described in Section 5.1.1) in the real-world cycle length dataset presented in Section 4.
We provide in Table 2 point estimate results for all the models at the next day of the last
observed cycle length (i.e., day 0 of the next cycle), as per the metrics in Section 5.1.2.

First, we conclude that in our use case, black-box neural network architectures do not
provide any prediction accuracy advantage, which aligns with results presented by Li et al.
(2021). Results showcasing the calibration shortcomings of the studied neural network
architectures are presented in Appendix B.3. Second, we notice that our model’s predictive
accuracy is as good as the Poisson-based alternative of Li et al. (2021) when the mode of
each model’s predictive posterior is used as the predicted cycle length point estimate.

Third, as both the Poisson model and our Proposed model provide a full predictive
posterior density over the set of natural integers z;,.,, € N, we compare their performance
when considering the mean and the mode of the predictive posterior as point estimates. We
observe a slightly better performance of our Proposed model, both in cohort-level average
results as well as in their variability, specially so for the metrics most robust to outliers
(i.e., MedianSE, MAE and MedianAE). This performance difference suggests that the mean
and the mode do not coincide in each model’s predictive distributions, which we hypothesize
is explained by the dispersion of such densities, i.e., the shape and width of their posterior
densities around the mode.

12
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Table 2: Real-world dataset: Point estimate results for all models

. Model ]

CNN 7.243 (£ 0.000) | 11.089 (= 0.341) | 4.379 (£ 0.016) | 3.330 (£ 0.051)
LSTM 6.730 (£ 0.017) | 4.303 (£ 0.515) | 3.626 (£ 0.082) | 2.071 (£ 0.123)
RNN 6.820 (£ 0.062) | 5.606 (£ 0.783) | 3.846 (£ 0.071) | 2.362 (£ 0.166)
Poisson model (mode) | 6.856 (+ 0.023) | 4.000 (£ 0.000) | 3.451 (£ 0.006) | 2.000 (£ 0.000)
( ) ( ) (
( ) ( ) (
( ) ( ) (

(
(
(
Proposed model (mode) | 6.790 (£ 0.007) | 4.000 (£ 0.000) | 3.459 (£ 0.003) | 2.000 (£ 0.000)
(
(

Poisson model (mean) | 6.690 (+ 0.002) | 4.818 (£ 0.292) | 3.639 (£ 0.042) | 2.194 (£ 0.066)
Proposed model (mean) | 6.691

=+ 0.005) | 4.237 (£ 0.064) | 3.592 (£ 0.009) | 2.058 (+ 0.015)

To elucidate the added flexibility of the Proposed model to capture cycle length uncer-
tainty, we first visualize in Figure 2 the scatter plot of per-user true cycle length average
(x-axis) versus each model’s per-user expected cycle length (y-axis). Each dot in Figure 2
represents a user, colored by the cycle length variability of each user: i.e., lighter color
for users with low cycle length variability, darker color for users with high cycle length
variability.

7
@ Poisson model, R = 0.803 2 25 @ Generalized Poisson model, R = 0.873 ] "l 25
4

50 1

50 -

45 -

401 40 1
- 15
35 A 35 1

10 30 1

Estimated data mean
Estimated data mean

30 A
25 A 25 1

204 20 A

20 25 30 35 40 45 50 20 25 30 35 40 45 50

Observed data average Observed data average
(a) Poisson model (b) Proposed model

Figure 2: Real-world dataset: Fitting sufficient statistics of observed cycle length data,
colored by user cycle length variability. The colorbar indicates the standard deviation of
observed per-user cycle lengths.

We observe that the Poisson model struggles to find the right mean-variance balance:
note how skewed the scatter plot in Figure 2(a)subfigure is, with most of the users (irre-
spective of their variability) situated below and to the right side of the = y line.

We hypothesize that this skewness is due to the rigid parameterization of a Poisson
distribution: there is only one degree of freedom (i.e., A;) that determines both the mean and
the variance of each user’s cycle lengths. On the contrary, the two-parameter Generalized
Poisson can adjust, via \; and &;, both the mean and the variance of per-user cycle lengths.
As shown in Figure 2(b)subfigure, this ability to quantify the data uncertainty allows the
Proposed model to fit the data better (R? = 0.873) than the Poisson model (R? = 0.803).

We now turn our attention to the full posterior predictive distribution of each of the
models, to investigate their uncertainty quantification capabilities.
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In Figure 3, we illustrate the cycle length predictive posterior of each generative model
for a randomly selected user, as days of the subsequent cycle proceed (the form of this
per-day cycle length posterior is described in Section A.4 of the Appendix). Note how the
Proposed model consistently provides less uncertain (i.e., under-dispersed) predictions.

N

(a) At day 0.

4

A

(b) At day 15.

\

(¢) At day 20.

\

(d) At day 25.

Figure 3: Real-world dataset: Predictive posteriors for a random user at different days of

the next cycle.

Table 3: Real-world dataset: Posterior predictive width at day 0 of next cycle.

Poisson

model

2.925 (+ 0.005)

7.835 (& 0.026)

15.248 (+ 0.074)

Proposed

model

1.846 (£ 0.014)

4.940 (+ 0.038)

9.692 (+ 0.089)

We showcase in Table 3 that the under-dispersed predic-
tive posterior of the Proposed model occurs for all users in the o
dataset, by providing the average posterior predictive width oo
at level a. The values provided in the table indicate the width o
(in days) of the (1-«) centered probability mass, i.e., the width ...
of the posterior predictive distribution between quantiles a/2
and 1 — «/2, as illustrated in Figure 4, for the Proposed
model’s posterior of Figure 3 with e = 0.5 at day 0. Note that
the posterior predictive width in Table 3 for the 20% poste-
rior mass of our Proposed model is less that 2 days, while it’s

At a=0.5
I predictive width is 4 days

Figure 4. Posterior predic-
tive width at day 0.

almost 3 for the Poisson model. Besides, the 50% posterior mass width of the Poisson
model is almost 8 days (i.e., the next period is predicted to occur within an interval longer
than a week), raising the question on how useful such prediction is for mHealth users.

In order to settle our claim that the Generalized Poisson based model provides better
calibrated predictions, we provide in Table 4 the average results for all the considered
scoring rules described in Section 5.1.3, along with PIT and MCP plots in Figure 5: note how
over-dispersed (hump-shaped) the Poisson model is in Figure 5(a)subfigure, and how, in
Figure 5(b)subfigure, we observe a lack of posterior sharpness for the Poisson model. The
calibration shortcomings of neural network based models are showcased in Appendix B.3.

Table 4: Real-world dataset: Calibration results for the generative models, higher is better.

Poisson model

-0.931 (£ 0.000)

0.266 (£ 0.000)

-3.022 (£ 0.001)

-2.922 (+ 0.003)

Proposed model

-0.910 (£ 0.000)

0.299 (& 0.000)

~2.855 (£ 0.002)

-2.740 (£ 0.001)
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25 .
B Poisson Model —— Poisson ‘model.
B Generalized Poisson Model 0.104 —— Generalized Poisson model

0.05

PIT

—0.05

0.4 0.6 . 1.0 0 10 20 30 40 50 60
P X

(a) PIT (b) MCP
Figure 5: Real-world dataset: Calibration plots for a realization of each generative model.

As demonstrated across the variety of considered metrics, we can conclude that the
Proposed model provides better calibrated results. However, as shown in Figure 5, the
Proposed model is still not ideal: it does not result in a fully uniform PIT and its MCP
slightly fluctuates away from 0 around the median cycle length (29 days) of the cohort.

To conclude, we emphasize that the Proposed model —
provides under-dispersed (i.e., less uncertain) and better 7| — cwaismsonnoe
calibrated cycle length predictions than the state-of-the-
art alternative of Li et al. (2021), both as demonstrated
at the user and population level. In addition, we showcase
in Figure 6 how the under-dispersed predictive posterior
of our Proposed model provides additional (across popu-
lation and point estimate-based) predictive benefits: the |,
predictive accuracy of the Proposed model is better than T Qe T
that of the Poisson model as days of the next cycle pro- Figure 6. Real-world dataset:
ceed. This is especially evident about a week before the Prediction accuracy at different
median cycle length of the studied cohort. In other words, days of the next cycle.
the Proposed model outperforms other models’ predictive accuracy 6 to 8 days before the
next cycle length starts.

mean_absolute_error
»
o

6. Discussion

We proposed a flexible generative model that provides accurate, well-calibrated predictions
of menstrual cycle lengths based on self-tracked mobile health data. Specifically, we in-
vestigated how to overcome certain limitations of a Poisson regression-based cycle length
model by making use of a more flexible distribution, namely the Generalized Poisson. Our
proposed model allows for accurate uncertainty quantification: it provides two degrees of
freedom to fit the mean and variance of the observed cycle lengths. The model’s £ param-
eter allows for controlling the dispersion of its predictive posterior, which enables better
calibrated predictive posteriors, as demonstrated by our results.

Due to the well-calibrated predictions, the model not only yields improved predictive
accuracy as the cycle days proceed (see Figure 6), but provides more meaningful (i.e., less
uncertain) cycle length predictions (see Figure 3).
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We argue that more certain cycle length predictions, like the ones provided by our
proposed model, may benefit mHealth users: they help increase trust in the model and may
mitigate user notification fatigue, a well-known phenomenon where users ignore prediction
notifications if they occur too often and with low sensitivity.

More broadly, we argue that uncertainty quantification and calibration are critical in
the domain of health and healthcare. One must account for the variability of the studied
physiology, and adjust to the uncertainties of the data collection and reporting process.
To that end, we have presented a diverse tool-set of calibration metrics that are of use
in assessing the predictions of our proposed model, and argue that they should be readily
incorporated into the practice of machine learning in healthcare.

We acknowledge several limitations of our work: (i) while we argue that less uncertain
cycle length predictions may reduce mHealth user notification fatigue, we leave to future
work to validate such a hypothesis; and (i7) our model includes features of the menstrual
cycle only related to its length. While it is a minimal feature that we know will be present
across many app users, there might be additional features like signs and symptoms of the
menstrual cycle that may improve our predictive model.

Overall, our work showcases that generative models can accommodate the idiosyncrasies
of mHealth data to provide well-calibrated, accurate predictions. Less uncertain cycle length
predictions are beneficial for menstrual health researchers, mHealth users and developers.
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Appendix A. Methods
A.1. The Generalized Poisson

The Generalized Poisson is a distribution that belongs to the class of Lagrangian distri-
butions over discrete, non-negative integers, with parameters A and £ that are indepen-
dent (Consul, 1989; Consul and Famoye, 2006).

The probability density function (pdf) of a Generalized Poisson, hereby denoted as
GP (-), follows

z—le &= _
(x)\7§):{)\()\+§x) — )\>O,x—0,‘1,---, -

0, for x > Tya, if € <0,
where limits on A and £ are imposed to ensure that there are at least five classes with
nonzero probability (Consul, 1989).

The first two moments of a GP (x|, ) follow

he= g (s0)
0926 = (1_>\§)3 ) (8b)

and other moments of interest can be computed in closed form, see (Consul and Famoye,
2006) for a full characterization of this distribution.

The Generalized Poisson can be over- or under-dispersed, depending on the value of &:
when & = 0, we recover the Poisson distribution. Specifically, for £ < 0, the Generalized
Poisson is under-dispersed (in comparison to a Poisson distribution) and it can be truncated
to a maximum value x4, of x, requiring an additional normalizing factor ng( A \@mas)

O s
£ , L= 07 ]-a T,
x~GP (xA§) =q  ZaP0geman) (9)
0, for & > Tpqe if € <0,
with
Tmazx —>\ fIE

ZGP(\& wmaz) = Z AN+ €2)” (10)

A.2. The hierarchical, generative process for observed cycle lengths
The proposed model, depicted in Figure 1, is a generative process with the following random
(observed and unobserved) variables and parameters:

e The observed variables are the cycle lengths z;,, with ¢; = {1,--- , C;} cycle lengths for
each individual ¢ = {1,--- | I}.

e We denote with s;., the (latent) number of skipped (not-reported) cycles, with ¢; =
{1,---,C;} cycle lengths for each individual ¢ = {1,--- ,I}.

e )\; and ¢; denote the Generalized Poisson parameters for each individual ¢ = {1,--- , I}.
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e 7; are the parameters defining the per-individual ¢ = {1,--- , I'} probability of skipping a
cycle.

e k, vy are the population-level hyperparameters of a Gamma distribution prior over the \;.

® ag, 3¢ are the population-level hyperparameters of a Beta distribution prior over the §;.

e «, (3 are the population-level hyperparameters of a Beta distribution prior over the skip-
ping probabilities ;.

We now describe in detail the generative process of the proposed probabilistic model.
First, one draws individual cycle length and self-tracking probability parameters from the
population level distributions:

1. The parameter A; of each individual’s Generalized Poisson is drawn from a population-
level Gamma distribution with hyperparameters x and -~y

Ai ~ p(A[K,7) = G (MK, ) = %/\”’16’” , forA>0and k,v>0. (11)

2. The parameter &; of each individual’s Generalized Poisson is drawn, conditioned on each
i, from a shifted and scaled population-level Beta distribution with hyperparameters

ag and f¢, so that & € [max{—l, x::;; } 1}:

&~ rnax{—l, x_Ai } + <1 — max{—l, —h }) B(&lag, Be) ,  for £ €[0,1], (12)
(o +5§)
()T (Be)

3. The probability m; of each individual forgetting to track a period is drawn from a
population-level Beta distribution with hyperparameters o and S,

m; ~ p(r|a, B) = B(m|a, B) = Mﬂo‘_l(l — )71 for m € ]0,1] and a, 8 > 0.

INCHING) (13)

where B (&|ag, fe) = gt (1—¢% ", for £€0,1] and ag, B¢ > 0.

Given per-individual parameters A;, &;, m;, then:

4. The number of cycles a user forgets to track s; ., is drawn from a Truncated Geometric
distribution with parameter m;, i.e.,
P (1 —m;) s P (1 —m;)

S” i p(S‘ﬂ') = mazx = mazx = y for S € N (14)
v ' 22:0 7T1,8(1 - 7T’L) ZZ:O 7‘1’;9 (1 _ ﬂ.l(smaz‘l’l))

5. Each true (unobserved) cycle length z is drawn from a Generalized Poisson distribution
parameterized with per-individual A; and &;, i.e.,
_1eNi—&im
)\z()\l"{'glx)x le ! ) 1'20,1,"',
0, for & > Ty if & < 0.
(15)

z ~p(x|Xi, &) = GP (2| \i, &) = {
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6. Finally, the observed cycle length xz; ., for user ¢ is drawn from a Generalized Poisson

distribution, conditioned on the number of skipped cycles s; ., i.e.,

Si,c;

Tier ~ P(&]Sico Min &) = Y p(a]s, iy &) = GP (#[(si.e, + DAis &) -
s=0

(16)

Note that this distribution results from the property of Generalized Poissons that the sum
of two independent Generalized Poisson variables X ~ GP (A1,€) and Y ~ GP (Ao, €)
follows another Generalized Poisson: X +Y ~ GP (A1 + A\2,&), (Consul and Famoye,

2006).

A.3. The model’s posterior parameter distributions

In a similar approach to the joint data likelihood, we can analytically marginalize the
skipped cycles and compute a MC approximation to each parameter posterior, as described

below:
p(Xi, X, &, mil©) p(Xi, Ai, &is mi|©)
p(Xi[©) D e, [r (X, A &, mi|©)dAidEid
_ p(Xil i, &y mi)p(Ni, i Ti|©)
fAi f{i fmp(Xl’)‘ugz: Z)p(/\i,fi,m‘@)d)\-d&dm
p(Xi| i, &, mi)p(Nilk, v)p (5@’/\17046 56 p(mila, B)
f>\ fgl fmp (XilNi, &y mi)p(Nil s, y)p (fz‘)‘lvaiaﬁi) (mila, B)dA;d&;d;

p(Ni, &, mi| X5, 0) =

(mw))

M)\ My (m/\) (mg)
~ 3 Z 3 p(Xa[A €
(max 76(7”5 (mﬂ))

my=1me=1mz=1 ka IZmE 1Zmﬂ_1p(X’/\

with p(X; A glme) lmo)y — H @i e, A™ €™ 7))
c;i=1

Ci  Smax

(17a)
(17b)

(17¢)

(17d)

(17e)

N H Z xlcllslcl’ zm)agm)) (Si,ci‘ﬂ—i(m))a

¢;i=154,,=0

)‘EmA) Np(>‘l|"'/”'77) , M)\ = 1; e 7M>\ 3
and é:(mé) Np(éz‘)\gmA)OZg?ﬁﬁ) , Mg = 17 e 7M7T ’

7

(mx)

T, Np(ﬂ-i|aﬂaﬁﬂ')7m7r:17'”7M7T'

23

(17f)



GENERATIVE MODELING FOR CALIBRATED PREDICTIONS

A.4. The model’s predictive cycle length posterior by day

Our model allows for updating next cycle length predictions as each day of the next cycle
passes. To that end, we compute the cycle length predictive posterior conditioned on x, the
day of the cycle the user is currently on:

p(xiycnew ) xiycnew > x’XU @)
p(xiycnew > x‘XZ? 6)
p(xiycnew |X’L7 @)I(xiacnew > JJ)

= 18b
p(xi7cneuf > x’X“ @) ( )

p($iycnew|a’:i70new > Z" Xl" 6) = (18&)

since p(Zicpns Ticpew > €| Xi,0) = 0 if 24, < x. Note that the key term above is
P(Ticnew | Xis ©), which follows the expression in (5).

A.5. The model’s predictive skipping probability posterior by day

Our model allows for updating per individual next cycle’s skipping probability predictions
as each day of the next cycle passes. To that end, we compute the predictive posterior of
skipping probabilities conditioned on x, the day of the cycle the user is currently on:

p(8i70n6w7 xi,cnew > $|X’L’ @)
p(xi,cnew > x‘X“ 6)

_ p(xi,cnew > $|Siycnew ) Xi’ @>p(siycnew |XZ7 @) (19b)
B Zsi cnew p(wivcnew > x’8i7cnew ) Xi’ G)p(si7cnew ’X“ @)
o f>\z fé’l fﬂ-i p(xi,cnew > ':U|S7:;Cnew? /\i7 gi)p(si,cnew |7T2)p()\747 5’&’7 Tr’L‘XZ) G)d/\zd&dﬂﬁ

I e [ 22 P(Tiscpenw > TlSicnews Ais §)P(Siscpen |Ti)P(Nis &, Ti| Xi, ©)dA;dEidm

(19¢)

B Da e, [ 220 P(@icnen = TlSicnens Ais §)P(Sienen [Ti)P(Ni, & il X3, ©)dNidEsdrm;

S Je Jr 22 > P(Tispen = TlSicpens Nis §)P(Siscnen |T1)P(Niy &iy | X, ©)dN;dE;dm
(194)

p(si,cnew ‘$iycnew > z, Xi? 6) = (19&)

Si,cnew

Si,cnew

) = Y (1)
v o 7risl(1—7ri)
observing per-individual data X;. We can compute the above via Monte Carlo —by drawing
from the parameter posterior p(\;, &;, m;|X;,©) as in Equation (17)— or via Importance
Sampling —by drawing from the prior p(A;, &, m;|©) and weighting them with p(X;|\;, &, ;)
as in Equation (4).

where p(Si cpen T and p(A;, &, mi| X, ©) is the parameter posterior after

A.6. The model’s computational complexity and distributed training

The complexity of the training procedure of the proposed Generalized Poisson-based model
is determined by the type-II maximum likelihood estimation of model hyperparameters.
Specifically, it requires (i) the computation of the marginalized joint data likelihood in
Equation (3), and (77) finding the hyperparameters © that maximize Equation (3).
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To that end, we leverage Monte Carlo integration and automatic differentiation. The
fitting procedure is implemented and executed using stochastic gradient descent methods
(as provided by most modern software packages). This same procedure is used for fitting
the Poisson and Generalized Poisson-based alternatives.

For the underdispersed Generalized Poisson model (when £ < 0), one must numerically
compute the normalizing constant in Equation (10), which adds computational complexity.
As a result, the per-epoch computational cost depends on the number of Monte Carlo
samples used (M) in Equation (3), the accuracy on marginalizing out the skipped cycle
probability (Smae.) in Equation (4), and the computation of the per-user and parameter
normalizing constant in Equation (10), dependent on the maximum cycle length (z4z)-

We note that the hierarchical nature of the proposed model provides distributed learning
opportunities: mHealth users do not need to share their data (they can locally compute their
individualized predictions), and only need to share per-user data log-likelihood estimates
for population-level hyperparameter inference.

When finding population-level hyperparameters, each user must only share its marginal-
ized data likelihood in Equation (4), averaged over local parameter Monte Carlo samples,
for which each user only needs access to the population-level hyperparameters ©.

This training process can be executed in a distributed and iterative fashion, separating
(on-device) per-user computations from global (centralized) hyperparameter searches, with
not only computational, but privacy benefits too.
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Appendix B. Results

We showcase the added flexibility of our proposed method, by leveraging the datasets de-
scribed in Section 4 and detailed here.

Our goal is to demonstrate that the proposed model provides, both in synthetic and real
datasets, better uncertainty quantification capabilities than the alternative proposed in Li
et al. (2021) and other neural network based baselines.

B.1. Poisson generative model of cycle lengths

Data generating process. The observed cycle lengths are drawn from the generative
model as in (Li et al., 2021), where cycle length data is assumed to obey a Poisson distribu-
tion. The specific hyperparameters used are © = {k = 180,7 = 6,« = 2, § = 20}, resulting
in parameter priors and per-individual sample draws as illustrated in Figure 7.

mes Gamma pdf wems Beta pdf
0.16 4 —%_ Mode 74 _¥%_ Mode

& rA samples _%_ rmsamples
0.14 4 6l

0.08 q

0.06 1

0.04 4

=il l-

0.00 g ¥ T T 0 F T
o] 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0

(a) Prior over \; (b) Prior over m;

Figure 7: Synthetic Poisson: Ground truth parameter priors and per-individual drawn
samples.

Predictive accuracy and calibration. Figures 8 and 9 demonstrate how our Proposed
model is equivalent to the alternative Poisson model, when the data generating mechanism
is indeed Poisson. The PIT of both models is almost uniform, and the MCP plots hardly
deviate from the origin. Besides, note how the interval width for both models is identical
in Table 6. This behavior demonstrates that, when the cycle length data is indeed Poisson,
both models can accurately fit the data and provide well-calibrated predictions —all scoring
rules in Table 5 are identical for both models.

Table 5: Synthetic Poisson: Calibration results for the generative models, higher is better

Poisson model | -0.958 (£ 0.000) | 0.204 (£ 0.000) -3.482 (£ 0.000) | -5.381 (= 0.000)
Proposed model | -0.958 (£ 0.000) | 0.204 (£ 0.000) ~3.482 (£ 0.000) | -5.382 (£ 0.001)
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Figure 8: Synthetic Poisson: Prediction accuracy of the generative models at different days
of the next cycle.
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Figure 9: Synthetic Poisson: Calibration plots for a realization of each model.

Table 6: Posterior predictive width at day 0 of next cycle.

Poisson model | 3.208 (£ 0.006) | 8.757 (£ 0.027) | 21.060 (£ 0.167)
Proposed model | 3.211 (£ 0.010) | 8.786 (% 0.030) | 21.182 (£ 0.392)

B.2. Generalized Poisson generative model of cycle lengths

Data generating process. The observed cycle lengths are drawn from the generative
model as proposed in Section 3, where cycle length data is drawn from a Generalized Poisson
distribution. The specific hyperparameters used for our simulation are © = {x = 160,y =
4,06 = 2,0 = 20,0 = 2, f = 20}, resulting in parameter priors and per-individual sample
draws as illustrated in Figure 10.
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Figure 10: Synthetic Generalized Poisson: Ground truth parameter priors and per-
individual drawn samples.

Predictive accuracy and calibration. Figures 11 and 12 demonstrate the limitations
of the Poisson model when the data generating mechanism is not Poisson distributed: the
generated cycle length data in these experiments is drawn from a Generalized Poisson that
is under-dispersed (see specific hyperparameters above).

We observe that the Proposed model clearly outperforms the Poisson model both in
terms of predictive accuracy (reduced MAE and RMSE in Figure 11) and calibration metrics
(Figure 12 and Table 7).
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Figure 11: Synthetic Generalized Poisson: Prediction accuracy of the generative models at
different days of the next cycle.

In Figure 12, note how the PIT of the Poisson model is hump-shaped, i.e., it is clearly
over-dispersed, while the Proposed model’s PIT histogram is close to a uniform distribution.
In addition, the MCP plot for the Proposed model hardly deviates from the origin, while
the Poisson model showcases a calibration mismatch around z.,., = 20.

Overall, these results validate our claim that a Generalized Poisson based model is able to
more flexibly adjust to the uncertainty of observed cycle lengths and provide well-calibrated
predictions—all scoring rule results in Table 5 are better for the Proposed model, and their
posterior predictive interval width much smaller, see Table 8.
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Figure 12: Synthetic Generalized Poisson: Calibration plots for a realization of each model.

Table 7: Synthetic Generalized Poisson: Calibration results for the generative models,
higher is better

Poisson model | -0.930 (£ 0.000) | 0.269 (£ 0.000) -2.835 (£ 0.001) -3.553 (£ 0.003)
Proposed model | -0.912 (£ 0.000) 0.295 (£ 0.000) -2.785 (£ 0.001) -3.385 (£ 0.002)

Table 8: Posterior predictive width at day 0 of next cycle.

Poisson model | 2.761 (& 0.010) | 7.558 (& 0.034) | 17.569 (& 0.157)
Proposed model | 1.511 (£ 0.005) | 4.141 (£ 0.019) | 12.379 (£ 0.199)

B.3. Real-world Menstrual mHealth Data

We present predictive results for the models as described in Section 5.1.1 in the real-world
cycle length dataset presented in Section 4.

Predictive accuracy and calibration. Since we have provided evidence in the main
manuscript (see Table 2) on the point estimate accuracy of the neural network based alter-
natives, we hereby focus on their calibration limitations.

Table 9: Real-world dataset: Calibration results for the studied models, higher is better

CNN ~1.816 (% 0.000) | 0.092 (£ 0.000) N/A -4.274 (£ 0.000)
LSTM 1790 (£ 0.036) | 0.105 (£ 0.018) N/A 3.867 (£ 0.163)
RN 1786 (£ 0.028) | 0.107 (£ 0.014) N/A 3.914 (£ 0.179)
Poisson model | -0.931 (4 0.000) 0.267 (£ 0.000) -3.022 (£ 0.000) -2.921 (£ 0.001)
Proposed model | -0.910 (& 0.000) | 0.298 (£ 0.000) -2.854 (£ 0.000) -2.740 (£ 0.001)
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Figure 13: Real-world dataset: Calibration plots for a realization of each model.

Results in Table 9 and Figure 13 show very poor calibration performance of all the
neural network based approaches, in alignment with the existing literature on the calibration
limitations of these techniques in other applications as well (Guo et al., 2017; Nixon et al.,
2019). Note that these results are computed based on the deterministic outputs of these
models, i.e., the outputs of the CNN, LSTM and RNN models are point estimates, hence the
extreme-valued PIT results in Figure 13(a)subfigure.

We acknowledge that this behavior could be avoided with Bayesian or ensemble-based
neural network models that provide probabilistic outputs. However, implementing those
alternative models was out of the scope of this work, and we reiterate that there is a
growing literature on the calibration shortcomings of these approaches (Wenzel et al., 2020),
specially so when approximate inference is used (Foong et al., 2019).

As demonstrated across the variety of considered metrics, we conclude that the Proposed
model provides better calibrated results.

Computational complexity. As explained in Section A.6, the complexity of the training
procedure of the proposed Generalized Poisson-based model is determined by the type-I1
maximum likelihood estimation of model hyperparameters.

We provide in Table 10 details on the number of training epochs (and their corresponding
execution times) as executed in an HP Enterprise XL170r E5-2650v4 CPU with 128 GB of
RAM memory.

We observe that all models reach convergence within a few number of training epochs
(average of 11 epochs for the proposed model). The execution-time overhead incurred by the
proposed model results from the aforementioned computation of the normalizing constant
in Equation (10). Based on our vectorized implementation, we did not find significant
accuracy /execution-time benefits beyond M = 500, Spq: = 10, and 4, = 1000 in the
presented real-data experiments.

Improving or boosting the implementation of the proposed model, both via optimized
numerical computation of the normalizing constant and its parallelized/distributed training,
was out of the scope of this work.
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Table 10: Real-world dataset: Training procedure comparison for the studied models.

CNN 4.600 (% 0.800) 6.642 (% 1.660)

LSTM 42.400 (£ 13.094) | 295.732 (£ 104.709)

RN 95.400 (£ 13.336) 74.296 (£ 35.354)
Poisson model 5.000 (£ 0.632) 393.072 (£ 69.404)
Proposed model 11.000 (% 1.265) | 36093.951 (£ 3804.733)
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