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Abstract

Probabilistic topic models, have been widely deployed for various applications such as
learning disease or tissue subtypes. Yet, learning the parameters of such models is usually
an ill-posed problem and may result in losing valuable information about disease severity.
A common approach is to add a discriminative loss term to the generative model’s loss in
order to learn a representation that is also predictive of disease severity. However, finding
a balance between these two losses is not straightforward. We propose an alternative way
in this paper. We develop a framework which allows for incorporating external covariates
into the generative model’s approximate posterior. These covariates can have more dis-
criminative power for disease severity compared to the representation that we extract from
the posterior distribution. For instance, they can be features extracted from a neural net-
work which predicts disease severity from CT images. Effectively, we enforce the generative
model’s approximate posterior to reside in the subspace of these discriminative covariates.
We illustrate our method’s application on a large-scale lung CT study of Chronic Obstruc-
tive Pulmonary Disease (COPD), a highly heterogeneous disease. We aim at identifying
tissue subtypes by using a variant of topic model as a generative model. We quantitatively
evaluate the predictive performance of the inferred subtypes and demonstrate that our
method outperforms or performs on par with some reasonable baselines. We also show
that some of the discovered subtypes are correlated with genetic measurements, suggesting
that the identified subtypes may characterize the disease’s underlying etiology.
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Incorporating External Information in Tissue Subtyping

1. Introduction

Probabilistic models have been widely used to uncover hidden phenotypes for various health-
care applications, such as inferring rates of aging (Pierson et al., 2019), survival predic-
tion (Chen and Weiss, 2017), disease subtyping (Batmanghelich et al., 2015), and many
more (Chen et al., 2020). One of the challenges of applying the generative models in med-
ical applications is to ensure that the inferred parameters reflect the disease status; for
example, the proportion of abnormal tissue subtype in each patient should be correlated
with the clinical measurements reflecting the disease severity. We develop a model that
allows for incorporating external covariates into the posterior inference. The external co-
variates can be flexibly designed such that they are correlated with the disease severity.
For instance, these covariates can be features extracted from a neural network predicting
clinical measurements.

We apply our approach in the context of Chronic Obstructive Pulmonary Disease
(COPD), which is a highly heterogeneous disease (Castaldi et al., 2017b; Chen et al., 2013).
COPD is characterized by inflammation of the airway and destruction of the air sacs (em-
physema) (Viegi et al., 2007), and is one of the leading causes of death worldwide (De-
cramer et al., 2012; World Health Organization, 2018). There are differences between risk
factors of COPD subtypes (Shapiro, 2000), and hence understanding subtypes is important.
Respirometry measurement is used for the diagnosis of COPD; however, it cannot identify
the underlying process of COPD. Hence, computed tomography (CT) imaging, which allows
direct qualitative and quantitative evaluation of tissue destruction, is routinely requested
for COPD patients. For example, phenotypic abnormality of emphysema is evident from
CT images (Park et al., 2008; Ross et al., 2016). Although there has been significant work
on defining visual subtypes of emphysema (Song et al., 2017; Ross et al., 2016; Yang et al.,
2017; Häme et al., 2015; Uppaluri et al., 1997; Sorensen et al., 2010; Depeursinge et al.,
2007; Prasad et al., 2009) from CT images, there is significant intra-reader and inter-reader
variability of visual subtypes (Binder et al., 2016; Aziz et al., 2004). In this paper, we adopt
a variant of topic modeling to formulate the subtype discovery problem.

We view the CT image of every patient as a mixture of K typical imaging patterns
that reoccur across the population. The proportion of the mixture is patient specific, but
the patterns are shared across the population. We call the typical pattern “tissue sub-
type.” This way of explaining data is reminiscent of topic models where the topics are
tissue subtypes. Hence, we use “subtype” and “topic” interchangeably. The distribution
of each patient’s tissue subtype can be viewed as the patient representation. Off-the-shelf
topic modeling is unsupervised, and it focuses on explaining the data and can easily miss
the disease-relevant information. We aim to address this issue in this paper. We enforce
the patient representation to be correlated with disease severity, and hence indirectly en-
courage subtypes to be disease-related. Instead of supervised topic modeling, we propose to
incorporate discriminative information in the form of covariates into the subtypes’ inference
model (i.e., topics).

Related Works. Various unsupervised phenotype discovery methods have been pro-
posed in the healthcare domain (e.g., Pivovarov et al. (2015); Urteaga et al. (2020)). Image-
based phenotype discovery in CT images via spatial texture patterns have been explored
in emphysema (Yang et al., 2017; Häme et al., 2015). Ross et al. (2016) propose a genera-
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tive graphical model that incorporates patient trajectories to identify disease subtypes for
COPD. Binder et al. (2016) present a generative model for unsupervised discovery of visual
subtypes for COPD along with inferring population structure. Their method identifies sub-
populations and clusters of image pattern simultaneously. One of the underlying assump-
tions of these methods is that the patient population can be divided into sub-populations,
which is disputed for COPD (Castaldi et al., 2017a). Furthermore, these methods are un-
supervised – solving a highly ill-posed problem – hence, the resulting subtypes may not
reflect disease severity.

On the other hand, many supervised methods have been proposed to characterize the
severity of lung diseases from CT images (Uppaluri et al., 1997; Depeursinge et al., 2007;
Park et al., 2008; Prasad et al., 2009; Sorensen et al., 2010; Walsh et al., 2018). These
methods study local descriptors such as local binary pattern (LBP) (Sorensen et al., 2010),
wavelet and gray-level features (Depeursinge et al., 2007) as well as various predictive meth-
ods ranging from k−nearest neighbor classifier (Sorensen et al., 2010) to Support Vector
Machine (SVM) (Park et al., 2008). However, it is not clear how these methods can inform
subtype discovery.

Our model is closely related to supervised topic models (Mcauliffe and Blei, 2008; Ko-
rshunova et al., 2019; Ren et al., 2019; Lacoste-Julien et al., 2009; Ramage et al., 2009;
Hughes et al., 2018) which generally add a discrminative loss term and predict the labels
from the topics or topic proportions. In healthcare applications other than COPD, Yang
et al. (Yang et al., 2019) proposed a supervised topic modeling to characterize Alzheimer’s
disease subtypes.

Our proposed approach is different from the previous works in three ways:

1. Rather than modeling the disease cohort into sub-populations, we view it as a contin-
uum where the continuum represents the proportion of subtypes. We aim at discov-
ering subtypes across the disease cohort; each patient is a mixture of these subtypes
which we assume are manifested in the CT images. The image signature of the sub-
types and the patient-specific mixture are modeled as latent variables in a probabilistic
generative model and, more specifically, a topic model (Blei et al., 2003).

2. We assume that discriminative covariates are provided as extra information. We con-
struct such covariates based on a generic approach and without making any parametric
assumption over the model or probability distribution.

3. Unlike supervised topic modeling, our model does not require balancing the genera-
tive and discriminative losses; hence, it has fewer hyper-parameters. We propose to
incorporate the discriminative covariates into the approximate posterior distribution.

We apply our method on a large scale COPD study showing good predictive performance
and clinically interpretable subtypes. Three of the subtypes are shown to have significant
genetic heritability. Furthermore, we compare our model with variants of topics models and
demonstrate that it outperforms them in terms of predictive performance.

Generalizable Insights about Machine Learning in the Context of Healthcare

This paper makes the following contributions which are generalizable to other applications
in healthcare:
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Figure 1: The schematic of our framework for two subjects s and s′ with ts and ts′ as their cor-
responding covariates. The encoder (q(·|x)) and decoder (p(x|·)) inside the green box explain data
at the supervoxel-level (word-level) while gw explains the subject-level data (i.e., topic proportion).
θk and λk are the parameter of the likelihood function and its corresponding variational parameter.
The dashed line denotes sharing the parameters. See Table 1 for the definitions of notations used in
this paper.

• We develop a framework for generative disease subtyping that allows for incorporating
external covariates into the posterior distribution approximation. We propose an
efficient formulation for the posterior approximation that does not incur the extra
computational cost during inference and does not require a hyper-parameter to balance
supervised and unsupervised loss terms (as in supervised topic models). Although
our framework demonstrates promising results on topic models, it can be applied to
other probabilistic graphical models that benefit from supervision (e.g., latent factor
analysis (Farouni, 2017), mixture models (Hannah et al., 2011) or hidden Markov
models for predicting length of stay in ICU (Sotoodeh and Ho, 2019)).

• We apply our framework to disease subtyping based on CT images; however, its use
case is not limited to this data type and can be applied to any data type in healthcare
for which topic models have shown to be useful. Examples include, topic model
application to Electronic Health Records (EHR) (Li et al., 2020), transcriptomic data
(Valle et al., 2020), and histopathology data (Cruz-Roa et al., 2011).

• We use covariates that are predictive of disease severity; however, our framework is
naturally capable of incorporating other types of relevant side information such as
clinical, genetic, and demographic covariates.

2. Method

To represent each subject, we adopt the Bag of Words (BOW) model (Fei-Fei and Perona,
2005) and represent a subject s with a set, Xs, containing features extracted from Ns regions
covering the lung regions of the subject. This modeling choice allows us to accommodate
lungs of different sizes; the number of elements in Xs can vary depending on the size of
the lungs. The BOW model assumes that features of every subject, xsn ∈ Xs, are drawn
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Decoder

S Total number of subjects.
K Total number of subtypes.
Ns Number of supervoxels in subject s.
xs,n Image descriptor of supervoxel n in subject s.
Xs Set of all image features for subject s, (xs,n ∈ Xs).

zs,n Subject-specific subtype that generates super-voxel n in subject s.
πs Proportions of subtypes in subject s.
θk Parameters of the likelihood (e.g., mean µk and Σk

covariance matrix) of image descriptors for population-level
subtype k.

β Stick-breaking proportions for the Dirichlet Process which defines πs.
α Concentration parameters of the stick-breaking distribution

for β.
Encoder

ϕs,n Parameters of the variational posterior for zs,n
ωs Parameters of the variational posterior for πs.
λk Parameters of the variational posterior for θk.
β∗ Parameters encoding the posterior distribution of β.
ts Subject-level feature vector.
W Parameters encoding the posterior topic proportions πs.

hSB(·) Stick-breaking function.
ψs Unnormalized subject-level topic proportions.

Table 1: Summary of the notation used for the decoder (i.e., generative model) and encoder (i.e., variational
Bayes posterior approximation) in our proposed framework.

from subject-specific probability distributions, i.e., xsn ∼ ps. We assume that ps belongs to
some abstract space of distributions (i.e., ps ∈ P). Our model can be viewed as an encoder-
decoder, where the decoder formulates the topic model, and the approximate posterior
distribution is formulated by the encoder. Our goal is to approximate the topics’ posterior
distribution and not image reconstruction. Therefore, to explain features of each topic, we
use a parametric model with limited complexity whose expectations, entropy and marginal
can be computed efficiently.

In Sections 2.1 and 2.2, we explain our design for the decoder as well as the encoder
allowing arbitrary covariate information to be incorporated into inference. The schematic
of the framework is given in Fig. 1.

2.1. Decoder

We first explain the probabilistic graphical model that defines the decoder (i.e., generative
model). Our model is based on topic modeling, where the topic parameters correspond to
the population-level parameters, and document-specific topic proportions correspond to the
subject-level distribution of subtypes. In the following, we discuss the modeling assumptions
in detail.

Population-Level Model The model assumes that there areK tissue types, topics, that
are shared across subjects in the population. We use a D-dimensional Gaussian distribution
with mean vector µk ∈ R

D and covariance matrix Σk ∈ R
D × R

D to model the features of
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the topic k. For computational reasons, we also assume a conjugate prior for µk and Σk,

θk := (µk,Σk) ∼ NIW(η),

where NIW(η) is the Normal-Inverse-Wishart distribution with hyper-parameter η. Note
that µk,Σk are random variables not parameters; hence, we aim at estimating a posterior
distribution not a point estimate. For notational brevity, let θk = (µk,Σk).

Subject-Level Model For subject s, πs = [πs1, · · · , πsK ] and {zsn}
Ns

n=1 are latent random
variables denoting the proportion of topics and the allocation of the supervoxels to the topics
(i.e., zsn ∈ [1 · · ·K]) respectively:

πs|β ∼ Dir(β1, · · · , βK),

zsn|πs ∼ Cat(πs), (1)

xsn|zsn, {θk}
K
k=1 ∼ N (µzsn ,Σzsn) ;

where the πs follows the Dirichlet distribution, Cat(πs) represents a categorical distribution
with the topic proportion πs, and zsn = k indicates supervoxel n of subject s follows the
local image descriptor of topic k. The βk’s are concentration parameters. If βk’s are greater
than one, the topics distribution becomes more disperse (less sparse).

To avoid tuning K hyper-parameters for β1 to βK , we follow the truncated Hierarchi-
cal Dirichlet Process (HDP) (Teh et al., 2006), and assume β is generated by the “stick-
breaking” construction,

τj
i.i.d.

∼ Beta(1, α),

βk := τk
∏

j<k

(1− τj), (2)

where Beta(·, ·) indicates the Beta distribution. Such construction allows for controlling
the sparseness of the topics distribution with a single hyper-parameter (i.e., α) rather than
K. Similar to the approach introduced by Bryant and Sudderth (2012), we choose a large
enough K and allow the actual number of topics to be discovered from data.

Overall Decoder Model For notational convenience, we define D = {Xs}
S
s=1 to be all

image data, S = {zsn,πs}
S
s=1 to be all subject-level latent variables, and C = {θk,β} to be

all population-level latent variables. The joint distribution of all random variables can be
written as follows,

p(D,S, C) = p(β|α)
∏

k

p(θk|η)
∏

s

p(πs|β)
∏

s,n

p(xsn|zsn, {θk})p(zsn|πs).

2.2. Encoder

We propose to incorporate external covariates into the estimation of the posterior distribu-
tion. If the covariates are highly correlated with the disease severity, the inferred subtypes
will respect the discriminative signal about the disease severity. Our proposed approach is
general and can incorporate any external covariate depending on the application. We use ts
to denote the covariate features. First, we explain the classical approach, and then explain
our method to incorporate ts.
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Variational Bayes (VB) Approximate of the Posterior We seek the true posterior
distribution of the model parameters,

p(S, C|D) =
p(D,S, C)

∫
p(D,S, C)dSdC

. (3)

Exact computation of the posterior is computationally intractable since the denominator is
hard to compute. Therefore, Variational Bayes (M. Blei et al., 2016; Jordan et al., 1999)
approximates the posterior by maximizing the Evidence Lower Bound (ELBO) with respect
to q,

max
q∈Q

L(q), L(q) , Eq [ln p(D,S, C)]− Eq [ln q(S, C)] , (4)

where q ∈ Q is an approximate distribution from the family of computationally efficient
probability densities Q. As it is common in mean-field variational inference (Peterson and
Anderson, 1987; Jordan et al., 1999; Hoffman et al., 2013; M. Blei et al., 2016), we assume
the following form for the approximate posterior, q(·),

Q : q(S, C) = q(β;β∗)
∏

s

q(πs;ωs)

︸ ︷︷ ︸

subject-level

∏

s,n

q(zsn;ϕsn)

︸ ︷︷ ︸

spatial level

∏

k

q(θk;λk)

︸ ︷︷ ︸

population-level

, (5)

where β∗, ϕsn, λk, and ωs are the variational parameters corresponding to the random
variables β, zsn, θk, and πs, respectively.

We use the variational parameters of q(S, C) to approximate the posterior distribution of
the population-level, subject-level, and spatial level variables. Specifically, we approximate
(1) the posterior distribution of θk’s as the image descriptors of each subtype (topic), (2) the
posterior distribution of πs as the proportion of subtypes per subject and (3) the posterior
distribution of zs,. that visualizes the spatial distribution of the subtypes within the lung of
patient s. The exact parametric form for each term is given in Appendix C.

Incorporating the Covariates into Posterior Approximation In the previous sec-
tions, we described the standard topic model construction and the corresponding family
of variational distributions used to approximate the posterior of the latent variables in the
model. The standard inference method for topic modeling does not allow for incorporating
the external covariates. We define a new family of approximate posterior distributions, Q′,
that allows for the external covariates without incurring an extra computational cost during
inference1.

Unlike the rest of the variables, πs is defined at the subject-level, characterizing the topic
proportions for subject s. We also have ts which is a subject-specific covariate. Hence,
we introduce ts to the posterior of the πs. To do that, we use ts, the subject-specific
representation, to encode the subject-level latent variable. In other words, we use ts to
parameterize the variational posterior for πs: q(πs|ts;W ), whereW = {Wσ,Wµ} is a new
parametrization of the latent variables πs. Note that previously we had different variational

1. Note that, depending on the covariates, there might be extra computational costs (e.g., cost of training
a neural network) for obtaining the covariates.
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parameters ωs for each subject; we now have one set of parameters W shared across all
subjects.

We model q(πs) implicitly by sampling from a Gaussian distribution and passing the
samples through a function to normalize them to a simplex (i.e.,

∑

k[πs]k = 1). Similar
to the idea of reparameterization trick in Variational Autoencoder (VAE) (Kingma and
Welling, 2013), we parameterize the mean and variance of the Gaussian by a neural network.
However, instead of inputting the original image, we use the subject-level representation,
ts, as input:

ǫ ∼ N (0, IK×K)

ψs = µ(ts;Wµ) + ǫ⊙ σ(ts;Wσ)

πs = hSB(ψs), (6)

where µ(ts;Wµ) and σ(ts;Wσ) are neural networks computing the mean and variance
vector of ψs, respectively. The hSB(·) is a function transforming the unbounded val-
ues of ψs drawn from a Gaussian distribution to a random variable on a simplex, i.e.,
hSB : RK → ∆K . Many choices are possible for hSB(·), such as the softmax function. How-
ever, computing the probability density of the transformed random variable is not always
straightforward. Here, we choose the following form that enables us to have a closed-form
probability density for πs (Linderman et al., 2015),

hSB(ψs) : πsk = σ(ψsk)(1−
∑

j<k

πsj), (7)

where σ(·) denotes the logistic function. The πs, which is the result of a change of variable,
has the following probability density,

q(πs|ts;W ) = N (ψs;µ, diag(σ
2))

∣
∣
∣
∣

{
∂[πs]i
∂[ψs]j

}∣
∣
∣
∣

−1

, (8)

where
∣
∣
∣

{
∂[πs]i
∂[ψs]j

}∣
∣
∣ is the determinant of the Jacobian which is easily computable (see Ap-

pendix C). This is a computationally appealing property for our optimization-based infer-
ence as we can easily plug it into the factorization of q(S, C).

Similar to the classical model in Section 2.2, the parameters of this model are learned
by maximizing the ELBO. All updates have a similar form as before except Wµ and Wσ,
for which we use stochastic gradient descent (see Appendix C for more details).

3. Experiments

In this section, we evaluate the proposed method for lung tissue subtyping on a large-scale
dataset from the COPDGene study (Regan et al., 2011). In Section 3.1, first we describe
the dataset we use for evaluation. Next, we explain our feature extraction pipeline and the
clinical measurements that we use for evaluation.

In Section 3.2, we demonstrate that the extracted features are informative by compar-
ing them with a set of reasonable baselines in terms of being able to predict the clinical
measurements. Next we compare the predictive performance of our framework, with that
of a topic model and a supervised variant of it.
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(a) (b)

Figure 2: (a) Odd Rows: Pearson correlation between proportion of subtype and FEV1. The x-
and y-axis are the subtype proportion and FEV1 respectively. Even Rows: Visualization of spatial
average of the learned subtypes across the population shown on a coronal slice of a lung atlas. (b)
Subtypes 1, 2, and 8 depicted on a set of nine patients. Subtypes 1 and 2 are correlated with increase
in severity of COPD (negatively correlated with FEV1), whereas subtype 8 appears to be healthy
tissue (positively correlated with FEV1).

Finally, in Section 3.3, we visualize the subtypes on the subject and population levels
and explain the clinical interpretation of each subtype. We further justify the discovered
subtypes by studying the genetic heritability of each subtype.

3.1. Setup

Feature Extraction Pipeline We apply our method to lung CT inspiratory images
of 7,292 subjects from the COPDGene study (Regan et al., 2011). We first segment the
lung volume into spatially homogeneous regions that align with image boundaries using
the SLIC superpixel segmentation algorithm (Holzer and Donner, 2014). Then for each 3D
superpixel, we extract three different types of imaging features that previously have been
shown to be important in characterizing emphysema (Shaker et al., 2010; Sorensen et al.,
2012): (1) 32-bin intensity histogram features (Hist) following Sorensen et al. (2012), (2)
Haralick features (Hara) that encode image texture but also incorporate intensity (Vogl
et al., 2014), and (3) a rotationally invariant descriptor (sHOG) proposed by Liu et al.
(2014) which computes the histogram of gradients of pixels on a unit sphere using spherical
harmonics.

To construct a subject-level representation from the superpixel features, we assume the
local features of subject s are samples drawn from a probability distribution ps. To compute
the distribution embedding for each subject as our subject-level representation, we estimate
pairwise similarity between subjects’ distributions using KL-divergence. However, to avoid
imposing any kind of parametric assumptions for KL estimation, we use the nonparametric
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KL estimation approach proposed by Schabdach et al. (2017). Our distribution embedding
pipeline is described in detail in Appendix A.

Clinical Measurements To evaluate our subject-level representation, we use the rep-
resentation to predict a few clinical variables that are indicative of disease severity. More
specifically, we use the following measurements:

• Percent Predicted Forced Expiratory Volume in one second (FEV1 PP): A measure
of lung function which is the percentage of normal predicted values of FEV1 for
individuals in the population with similar age, height, weight, gender and ethnicity.
Lower values indicate more severe disease.

• Ratio of FEV1 to Forced Vital Capacity (FEV1/FVC): Forced Vital Capacity (FVC)
is the total amount of air an individual can exhale forcefully after taking the deepest
breath possible. This ratio represents the proportion of an individual’s vital capacity
that they can breathe out in one second.

• Global Initiative for Obstructive Lung Disease (GOLD): GOLD is a discrete value
between zero and four, which is derived from two Spirometry measurements. Zero is
used for people at risk (Normal Spirometry but Chronic Symptoms), and 1-4 denote
Mild to Very Severe COPD. In this paper, a score of -1 is used for subjects who
have Preserved Ratio Impaired Spirometry (PRISm), which indicates that they have
reduced FEV1 while having preserved FEV1/FVC.

• Distance Walked: The distance walked in 6 minutes that has been shown to be a good
indicator of disease severity in COPD patients (Dajczman et al., 2015).

We report R2 when evaluating the performance with respect to our continuous measure-
ments (i.e., FEV1 PP, FEV1/FVC, and Distance Walked). For GOLD, which is a discrete
but ordered measurement, we report accuracy and also the percentage of cases whose clas-
sification lay within one class of the true value (one-off) as well as exact value.

3.2. Quantitative Evaluation of the Subtypes

In this section, we first show that our extracted features are informative by comparing
their predictive performance with that of a set of baselines. Next, we show incorporating
these features in our variational posterior approximation can improve the performance of
generative models. For the details of hyper-parameter setting and additional experiments,
including the sensitivity analysis with respect to the number of topics K see Appendix D.

Baselines For each task mentioned above we have a set of baselines. For evaluating
the predictive performance of our extracted features, we compare our method with two
baselines:

1. Low Attenuation Area below Hounsfield Unit of−950 on Inspiration CT image (%LAA-
950Insp) which is commonly used as a clinical measure of emphysema.

2. A subject-level representation learned by a traditional bag-of-words (BOW) model
which is the K−means algorithm.
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We compare the discriminative performances of the three local image descriptors (i.e.,
Hara, Hist, Hist+sHOG) along with two methods of building the subject-level representation
(i.e., K−means and our Distribution Distance (KL) method). We separately train linear
regression models (via Ridge Regression) to predict FEV1 PP and FEV1/FVC from the
subject-level features (ts). We use the predicted values to compute the GOLD score2.

To evaluate the effect of incorporating these features in a generative model via our
encoder-decoder framework, we compare our method with two baselines:

1. Topic model with Gaussian observations: Note that the supervised topic models dis-
cussed in Section 1 are proposed for documents with discrete observations; hence, we
need to devise a topic model baseline that can handle gaussian likelihood and is com-
parable to our model. We choose Gaussian LDA (G-LDA) model (Das et al. (2015))
as our unsupervised topic model baseline.

2. Supervised topic model with Gaussian observations: We modify G-LDA model (Das
et al. (2015)) in a way that it can generate the disease severity ys given the per-subject
subtype proportions πs. More concretely, we assume ys ∼ N (µ(πs), σ

2) where µ is a
learnable function and σ2 is a hyperparameter.

After training the models, we compute the posterior mean of the subtype proportion
(i.e., Eq[πs|D]) on the test data for evaluation. These values are used to train linear
regression models predicting the disease severity measures.

Predictive Power of the Representation Table 2 demonstrates our approach outper-
forms the threshold-based approach (%LAA-950Insp) as well as BOW across all choices of
local image descriptors. While all three choices of local image descriptors perform equally
well when used by our method, there is significant variation in performances when BOW is
used. In the rest of the experiments, we opt to use Hist+sHOG as the local image features
for computing the subject-level representation due to the slight advantage in performance.

Evaluation of our encoder-decoder framework The results in Table 3 show that our
subject-level features, ts, outperform or perform on par with the baselines. The G-LDA,
without subject-level features ts, learns subtypes that are not predictive of disease severity.
Furthermore, the supervised G-LDA, improves the results but still does not perform as well
as our approach. Our method and G-LDA baseline converge to ELBO values of 363.95±0.63
and 364.64 ± 0.35 correspondingly. That is, despite outperforming G-LDA in terms of
predictive performance, the ELBO in our method is not significantly worse than that of
G-LDA. ELBO is computed on the holdout set and is averaged over 5 runs.

3.3. Clinical interpretation

Population-Level Interpretation To summarize the results of the topic model, we
compute the posterior distribution of zsn. The P (zsn = k|D) represents the posterior prob-
ability of supervoxel n of subject s being assigned to subtype k which can be visualized as a
label mask. Examples of such masks are shown in Fig. 2(b) for a few subjects and subtypes.

2. We pass the predicted values for these two quantities to a learned decision tree classifier to compute
GOLD score.
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Local Image Feature Subject-level Descriptor Exact Acc (Std dev) One-off Acc (Std dev)

Baseline %Low Attenuation Level (-950) 0.56 (0.03) 0.76 (0.02)

Hara
BOW (K-means) 0.47 (0.02) 0.71 (0.02)
Distribution Distance (KL) 0.58 (0.03) 0.83 (0.02)

Hist
BOW (K-means) 0.54 (0.04) 0.79 (0.01)
Distribution Distance (KL) 0.57 (0.03) 0.82 (0.01)

Hist+sHOG
BOW (K-means) 0.57 (0.03) 0.82 (0.01)
Distribution Distance (KL) 0.59 (0.03) 0.84 (0.01)

Table 2: Average classification accuracy of predicting GOLD 5 classes from subject-level descriptors.
Subject-level descriptors are computed from corresponding local image features in each row. Hara,
Hist, Hist+sHOG denote Haralick, Histogram, Histogram combined with Spherical Histogram of
Gradient descriptors respectively. Results are averaged across 5 cross-validation folds. One-off Acc
is the percentage of times the predictor was at most one-off in predicting GOLD score. We use
Distribution Distance (KL) with Hist+ sHOG features as our subject-level descriptor for the rest of
experiments.

R2

Subject-Level Descriptor FEV1 PP FEV1/FVC FVC Distance Walked

%Low Attenuation Level (-950) 0.44 0.61 0.03 0.07
BOW (K-means) 0.55 0.66 0.48 0.19
G-LDA (Das et al. (2015)) 0.35 0.49 0.13 0.12
Supervised G-LDA 0.34 0.51 0.13 0.21
Proposed Method (ts) 0.58 0.69 0.38 0.20

Subject2vec (Singla et al., 2018) 0.68 0.71 - -

Table 3: Performance of predicting FEV1 PP, FEV1/FVC, FVC, and distance walked compared
across BOW, G-LDA, supervised G-LDA, our method (ts), and % Low Attenuation Level (-950)
(classic) subject-level descriptors using ridge regression. Our method outperforms the G-LDA and
Supervised G-LDA in almost all metrics. For G-LDA, we use topic proportions inferred by the topic
model (Das et al., 2015). Supervised G-LDA is a supervised variant of the model proposed by Das
et al. (2015) which assumes the disease severity ys depends on the subtype proportions πs of subject
s. Subject2Vec (Singla et al., 2018) is added as a powerful supervised model for reference and an
upper bound of performance. The results for FVC and distance walked are not reported by Singla
et al. (2018).

We register the label masks of all the subtypes to a common space to compute the average
distribution of each subtype across the population. Fig. 2(a) shows these average distri-
butions for each subtype along with corresponding scatter plots denoting the correlation
between the proportion of the subtype and FEV1 PP. Each dot in the scatter plot denotes
one subject where y−axis corresponds to FEV1 PP and x−axis is the average of the prob-
abilities of that subtype over all supervoxels of the subject. A positive correlation suggests
that tissue type is healthy and negative correlation suggests a disease-related subtype.

We also study the average distributions of the subtypes and their variations among pa-
tients with different GOLD scores. The result is shown in Fig. 3. Each bar represents a
sub-population of patients with a particular GOLD score and colors within the bar repre-
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Figure 3: Subtype proportions averaged over subsets of the population with GOLD score values
PRISm, 0, 1, 2, 3, and 4.

sent the average proportion of a subtype within that sub-population. All bars have equal
sizes but the proportion of subtypes varies. The proportion of subtype 1 and 2 increase
as we move from PRISm to GOLD score 4 (indicating severely diseased). Subtype 8, in
contrast, decreases with increased severity. Subtype 5 is notable because even though it is
not significantly correlated with disease, it is prevalent in PRISm sub-population relative
to other GOLD scores.

Patient-Level Interpretation To have a better understanding of subtypes, we visual-
ize P (zsn = k|D) on lung CT’s of nine subjects for k = 1, 2, 8 which have the strongest
correlation with FEV1. Fig. 2(b) shows that subtype 1 is found primarily on pulmonary
bullae and subtype 2 captures patients with peripheral bronchiolitis in patients with severe
pulmonary disease (i.e., Gold score ≥ 3). On the other hand subtype 8 is very pronounced
on the rind of three subjects with healthy lungs.

To get a clinical understanding of these subtypes we asked a clinical expert to inspect all
subtypes showing average and subject-level representation. Tissue subtypes 1, 2, 3, 4, and 10
are negatively correlated with FEV1 PP. Thus these subtypes are correlated with increased
disease severity. Tissue subtype 1 tends to characterize paraseptal emphysema and is often
found in regions containing pulmonary bullae. Subtype 1 tends to pick up low attenuation
areas on the surface. Subtype 2 is often indicative of peripheral bronchiolitis, picking up
peripheral rind linear opacities in the lung, in some cases blood vessels or lymphatics, as well
as tree-in-bud opacities. Subtype 3 predominantly captures different pathological features.
It is associated mostly with large high attenuation areas like scarring and vessels as well as
airways. Subtype 4 picks up on more preserved (i.e., less destruction) areas in patients with
emphysema. Subtype 10 is mostly related to the unexplained image statistics associated
with large high attenuation areas.

In contrast subtypes 5, 6, 7, 8, and 9 are negatively correlated with increased dis-
ease severity. Subtype 5 captures regions that are more relatively hyperattenuated than
surrounding regions. Subtype 6 picks up on some dimensional feature of the thorax, main-
taining a distance on structure – though it is not clear what it is picking up. This is also
true for subtype 7, which was difficult for the clinical expert to characterize. Subtypes 5,
6, and 7 tend to be attenuation agnostic. Subtype 8 is associated with more normal and
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Subtype h2 (%) SE (%) p-value

1 23.69 8.42 2.3e-03
2 23.37 8.29 1.8e-03
3 5.83 7.92 2.2e-01
4 9.96 8.26 1.1e-01
5 ≈ 0 8.17 5e-01
6 ≈ 0 8.38 5e-01
7 8.37 8.48 1.7e-01
8 18.74 8.34 1.1e-02
9 1.46 8.00 4.3e-01
10 2.16 8.00 3.9e-01

Table 4: Heritability of tissue subtypes. h2 measures the fraction of phenotypic variance (i.e.,
variance in subject subtype proportion) explained by the total genetic variance. We denote standard
error by SE.

blotchy regions on the rind of the lung. Subtype 9 is characteristic of thicker peripheral
opacities and lines on the apex of the lung which might be indicative of higher diffusing
capacity.

Genetic Heritability To understand the genetic etiology of each subtype, we perform the
genetic heritability analysis. In brief, the genetic heritability analysis studies the correlation
between a quantitive trait and genetic data by estimating the proportion of the variance
explained by genetic random effects. The variance ratio (h2) is estimated under a linear
mixed effect model where the fixed effects are nuisance variables, and the random effect
is the linear effect of the genotyped variants. The higher the h2, the stronger the genetic
contribution to the trait. For each subtype, we view the proportion as a quantitive trait
and estimate h2 using the Restricted Maximum Likelihood (REML) method using GCTA
software (Yang et al., 2010). We use age, gender, number of smoking packs per year, and the
first six principal components of the genetic kinship matrix as nuisance parameters (fixed
effect). The results are shown in Table 4. Subtype 1, 2, and 8 show significant heritability
of approximately 18 − 24%, providing strong evidence that these subtypes are biologically
driven. While subtypes 1, 2 have the strongest negative correlation with FEV1, subtype 8
has the strongest positive correlation with the FEV1.

4. Discussion and Conclusion

In this paper, we proposed an approach which lets the practitioner incorporate the predictive
features into the posterior approximation of a generative model which is more amenable to
interpretation. We showed an application of our method to COPD, which is a highly
heterogeneous disease. We viewed every patient as a mixture of different subtypes; hence,
a topic model is a proper generative model.

We showed that one could incorporate the discriminative information into the space of
the posterior distributions to avoid loss of predictive performance. The idea is that the pre-
dictive model shares covariates relevant to prediction (ts) with the generative model. There-
fore, they have similar predictive performance. We incorporate ts into the approximation of
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the latent variable’s posterior distribution. To make the inference computationally efficient,
we presented a specific transformation of ts that results in a closed-form parameterization
of the posterior distribution of the subtype proportion.

We apply our model on CT images of the COPDGene dataset. We first demonstrate
that our predictive features are more effective for disease severity prediction compared to the
standard K-means method. Table 2 shows that our approach achieves the best predictive
performance regardless of the input local image descriptor while there is significant variation
in the performance of K-means. Furthermore, we show that our framework can outperform
unsupervised and supervised topic models. Table 3 shows that the vanilla topic modeling,
which is fully unsupervised, completely loses discriminative power. Making the topic model
supervised by incorporating the disease severity metrics directly into the generative model,
improves the performance but this supervised topic model still underperforms compared to
our approach.

The posterior probability of the different latent random variables in our model provides
insight into the disease. Figs. 2(a) and 2(b) visualize the population-level and subject-
level distributions of the subtypes. However, not all inferred subtypes are aligned with the
current clinical understanding of the disease (e.g., subtypes six, seven, and ten). The fact
that subtype ten is positively correlated with FEV1 suggests that it represents healthy tissue.
We observed that the proportion of subtype five is higher in the PRISm sub-population than
the rest of the population (Fig. 3). This is a promising area for further investigation since
the PRISm patients are difficult to characterize. However, this subtype does not show a
significant correlation with the genetic data. Interestingly, the most significant subtypes in
term of genetic heritability are the ones with the strongest correlation with FEV1. Note
that in a truncated HDP model there is no guarantee that we find all the subtypes and all
subtypes are interpretable (Miller and Harrison, 2014). One of the main motivations for our
work was using an informative covariate to ensure the discriminative information is not lost
and implicitly having more ”relevant” subtypes. Understanding the biological etiology of
these subtypes requires further causal analysis, which is another avenue for future research.
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Appendix A: Pipeline for Constructing the Subject-level Features

In this section, we provide an overview of our feature-extraction pipeline for a disease
severity prediction task. Consider a discriminative model for predicting disease severity
ys from a subject’s lung CT image Is. We define this model as a composition of two
functions: (1) f(·) which is a function that extracts local descriptors from image Is, hence
Xs = f(Is), and (2) an aggregation function, g(·) which we use to construct subject-level
features relating the subject to the rest of the population. We minimize

ℓ(ys;h(

ts︷ ︸︸ ︷
g(f(Is)))), (1)

where h is a regressor or a classifier, depending on y being continuous or discrete and ℓ(·; ·)
is a loss function that is chosen accordingly. We define ts , g(Xs) to be the features
relating the subject to the rest of the population. Each of the functions can either be hand
engineered or learned; for example f(·), g(·), and h(·) can consist of different layers of a
CNN, or a combination of hand engineered feature functions with aggregation performed
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Figure 1: Construction of the subject-level features (ts) has the following steps: approximating
pairwise divergence matrix, exponentiating the matrix, projecting it on the PSD cone, and reducing
the dimensionality.

by summation, followed by prediction via a regression model. In this paper, f(·), is a hand-
crafted feature extractor but the same machinery applies to deep learning based features.

We model local features of subject s as samples drawn from its probability distribution
ps. The aggregator maps the probability density to a vector ts relating the subject to the rest
of the population. To do that, we take the following steps. First, we estimate the Kullback-
Leibler (KL) divergence between every pair of probability distributions. Second, we convert
the distribution distance to a proper similarity kernel. Finally, we use a dimensionality
reduction method to estimate ts from the similarity kernel. The pipeline is shown in Fig. 1.

Estimating KL divergence The KL divergence has the following form,

KL(pi‖pj) =

∫

Rd

log
pi(x)

pj(x)
pi(x)dx. (2)

In this section, we do not assume any explicit parametric form for pi. Even with a parametric
form, estimating the KL divergence is not straightforward. Instead of assuming an explicit
parametrization, we use a non-parametric estimator for KL divergence that is consistent
and unbiased (Poczos and Schneider, 2011). The estimator is scalable for high-dimensional
features and it only requires the nearest neighbor graph that can be approximated using a
hashing method (Schabdach et al., 2017). We use K̂L(pi‖pj) to denote the estimator for
the KL divergence.

Computing the Similarity Kernel Matrix The similarity kernel matrix is a Positive
Semi-Definite (PSD) matrix. For example, exponentiating the ℓ2-distance between features
results in a proper similarity kernel matrix known as an RBF kernel. However, the KL
divergence is neither symmetric nor a proper metric. First, we compute an S × S matrix
where the entry in row i and column j is

[Lσ]ij = exp

(
−

1

σ2

(
K̂L(pi‖pj) + K̂L(pj‖pi)

))
. (3)

The variable σ is set to the median of KL divergences (so-called median trick (Song et al.,
2010)). Then, we project this matrix onto the PSD cone to construct the kernel,

Kσ = ProjPSD(Lσ), (4)

where ProjPSD computes the Singular Value Decomposition of the input matrix and sets
the negative singular values to zero.
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Computing Subject Representation (ts) Since Kσ is a PSD matrix, one can compute
Kσ = BBT and view columns of B as an implicit characterization of the subjects. However,
the columns of B are high dimensional (as many as the number of patients in the dataset).
We use Locally Linear Embedding (LLE) to reduce the dimensionality (Zhang and Wang,
2006). Other dimensionality reduction methods can be applied as well.

Appendix B: Non-parametric inference of the divergence

The Kullback-Leibler (KL) divergence between probability densities pi and qj is defined as
follows:

KL(pi‖pj) =

∫

Rd

log
pi(x)

pj(x)
pi(x)dx.

Poczos et al. (2011) proposed to estimate the divergences without assuming a parametric
form for the probability densities. To avoid making a global parametric assumption for pi
and pj , they parameterize them locally and use the local log-likelihood method (Loader,
1996) to estimate the local parameters.

Let us assume that Si = {xi1, · · · , xiN} and Sj = {xj1, · · · , xjM} are collections of sam-
ples drawn from pi and pj respectively. With mild assumptions on the probability density,
pi can be represented as pi(x) = p̃i(x)/Zp̃i , where p̃i(x) is an unknown positive function
and Zp̃i is the corresponding normalizer (i.e., Zp̃i =

∫
p̃i(x)dx; if p̃i(x) is a probability

density, Zp̃i = 1). The log p̃i(x) can be approximated using a polynomial expansion around
x, namely

log p̃i(u)|x ≈ a0 + (u− x)Ta1 + (u− x)Ta2(u− x), (5)

where a0, a1, a2 are scalar, vector and matrix parameters, respectively, and vary depending
on x. The local log-likelihood of the function p̃i at point x is:

Lx(p̃i) =
∑

v∈Si

w

(
x− v

h

)
log p̃i(v)− |Si|

∫
w

(
y − x

h

)
p̃i(y)dy, (6)

where w(x) = I(‖x‖ ≤ 1) is a window function and h is a bandwidth. Since the approxima-
tion of log p̃i(x) is locally valid, it is reasonable to keep h small; if h goes to infinity, Eq. (6)
amounts to the ordinary likelihood estimation and the last term converges to |Si|Zp̃i . Poczos
et al. (2011) and others (e.g., Gao et al. (2016)) proposed to use local and adaptive band-
width, i.e., h is a function of x. A popular choice for h is to set it to the 1−NN distance from
x; h(x) ≡ ρk,Si

(x) , minv∈Si
‖v − x‖2 similar to Poczos et al. (2011). Optimizing Eq. (6),

we get the following form for p̃i Loader (1996),

dLx(p̃i)

da0
=

∑

v∈Si

w

(
x− ψ(v)

h

)
− |Si|

∫
w

(
y − x

h

)
ea0dy = 0, (7)

p̃i(x) =
1

|Si|h
∫
w(x)dx

∑

v∈Si

w(v) =
k

|Si|Cdρ
d
k,Si

(x)
, Cd ≡

πd/2

Γ(d/2 + 1)
. (8)
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The Cdρ
d
k,Si

(x) are the volumes of d-dimensional balls with radius of one and Γ(·) is the
Gamma function. Using the re-substitution, we estimate the KL divergences as follows:

̂KL(pi‖pj) =
d

|Si|

∑

v∈Si

log
ρk,Si

(v)

ρk,Sj
(v)

+ log
|Sj |

|Si| − 1
,

The estimators are unbiased and consistent (Poczos et al., 2011). In other words, as the
number of patches in Si and Sj increases, the estimations converge to the true value.

Appendix C: Variational Inference

Update Equations for Variational Parameters of Explainer Model

Recall that the joint likelihood is of the form:

p(D,S, C) = p(β|α)
∏

k

p(θk|η)
∏

s

p(πs|β)
∏

s,n

p(xsn|zsn, {θk})p(zsn|πs), (9)

and we assume the following form for the approximate posterior, q(·),

Q′ : q(S, C) = q(β;β∗)
∏

s

q(πs|ts;W )

︸ ︷︷ ︸
subject-level

∏

s,n

q(zsn;ϕsn)

︸ ︷︷ ︸
local descriptor

∏

k

q(θk;λk)

︸ ︷︷ ︸
population-level

, (10)

where β∗, ϕsn, W , and λk are the variational parameters corresponding to the random
variables β, zsn, πs, and θk respectively. We used empirical Bayes for β meaning that
q(β;β∗) is modeled as a delta function. The q(πs|ts;W ) was explained in the main text.
The θk and β are the population-level random variables. As mentioned, we assume a
conjugate prior for θk; hence, the optimal variational distribution q(θk;λk) is also in the
same family.

In the following, we provide the update equations for each of the variational parameters.

Update of λk in q(θk;λk) We model the θk with Normal-inverse-Wishart (NIW) dis-
tribution which is an exponential family of distributions. The probability densities of the
exponential families can be written as follows,

p(θ;λ) = hNIW(θ) exp
(
λT tNIW(θ)−ANIW(λ)

)
,

where tNIW(θ) is called sufficient statistics of the NIW distribution,

ANIW(λ) = log

∫
exp

(
λT tNIW(θ)

)
dh(θ)

is the log partition function and hNIW(θ) : Rd → R is called the base measure of the NIW
distribution. All ANIW(·), tNIW(·), and hNIW(·) are known functions.

λk ← (1− ρ)λk + ρ(ηk +m · t̃kx),

t̃kx
∆
=

∑

s

∑

n

Eq(zsn) [1[zsn = k]] tkN (xsn), (11)
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where ρ is the stepsize, m is minibatch scaling, and t̃kN is the expected sufficient statistics of
the Gaussian distribution. 1[·] is 1 if its argument is true and 0 otherwise; Eq(zsn) [1[zsn = k]]
is the posterior expectation of zsn being k. For the detailed derivation of the update equa-
tion for the Normal-Inverse-Wishart distribution see for instance Guan et al. (2010).

Update of β∗ in q(β;β∗) We model the p(β; γ) as a beta distribution. Similar to
Johnson and Willsky (2014), we use a point estimate for q(β): q(β) = δβ∗(β). We use
gradient descent to find β∗. The gradient of β is computed as follows,

∇β∗L = ∇β∗

{
Eq(πs|ts;W )

[
ln

p(β, π)

q(β)q(π)

]}
= ∇β∗

{
ln p(β∗; γ) +

∑

s

Eq(πs|ts;W ) [ln p(πs|β
∗)]

}
.

We use Monte Carlo sampling to estimate Eq(πs|ts;W ) [ln p(πs|β
∗)] by generating samples

from q(πs|ts;W ). Note that β∗ needs to satisfy β∗ ≥ 0 after each update.

Update of ϕsn in q(zsn;ϕsn) Here we derive the variational parameters ϕsn correspond-
ing to zsn, which is the variable holding the topic assignment to supervoxel n of lung CT
of subject s. We follow the standard mean-field approach for the update of this parameter,

[ϕsn]k ∝ exp
[
Eq[log[πs]k] + Eq[logN (xsn;θk)]

]
,

where [·]k indexes the kth element of the vector. The second term, Eq[logN (xsn;θk)], is
a standard term that can be find in textbooks about variational inference (Bishop, 2006).
However, we need to derive the quantity Eq[log[πs]k], which can be expanded using the
stick-breaking construction (Eq. 5 in the main text),

Eq[log[πs]k] = Eq

[
log σ([ψs]k) +

∑

j<k

log σ(−[ψs]j)
]
, (12)

We can expand the first expectation in Eq. 12,

Eq[log σ([ψs]k)] = Eπs [log σ([ψs]k)] = Eψs∼N (·;µ(ts;Wµ),diag(σ(ts;Wσ)2)

[
log σ([ψs]k)

∣∣∣∣
∂[πs]i
∂[ψs]j

∣∣∣∣
−1

]

= E[ψs]k

[
log σ([ψs]k)

∣∣∣∣
∂[πs]i
∂[ψs]j

∣∣∣∣
−1

]

= E[ψs]k


log σ([ψs]k)




K∏

k=1

σ([ψs]k)
∏

j<k

σ(−[ψs]j)




−1
 , (13)

where the expectation can be computed using a Monte Carlo method by sampling from
[ψs]k. The second term in Eq. 12 can be written analogously.

The update to W , the parameters of the subject specific topic proportions, cannot be
written in closed form but the gradient of L(·) with respect to them is,

∇Wi
L(q) =

S,K+1∑

s=1,k=1

∇Wi
Eq[log[πs]k]

(
([αβ]k − 1) +

Ns∑

n

[ϕsn]k

)
−

S∑

s=1

∇Wi
Eq[log q(πs|ts;W )],(14)

where we have assumedW is rearranged in vector form for simplified indexing. The expec-
tation in the first term is derived above.
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Appendix D: Hyperparameters and additional experiments

Hyperparameters In this section, we provide the initialization setup and the set of hy-
perparameters used in our experiments. To initialize the parameters of the NIW distribu-
tion, {θk}

K
k=1, for inference in the topic model, we run unsupervised hierarchical clustering

(Campello et al., 2013) on local image features extracted from supervoxels of the training
set. The hierarchical clustering cut-off threshold was set to match the number of tissue sub-
typesK. Each subtype distribution was subsequently initialized with the sufficient statistics
computed from the corresponding cluster.

Hyperparameter Values

α {1.0, 10.0, 100.0}
γ {2.0, 10.0, 100.0}
K {2, 3, 5, 10, 15, 20, 30, 40, 50}

SGD minibatch size {16, 128}
l2 regularization {0, 10−5}

Table 1: Hyperparameters used in our experiments.

Predictive power of features learned via our encoder-decoder framework Since
our model uses ts for inference, our prediction performance is the same. Our inference
algorithm transforms ts to compute Eq[πs|D]. If this transformed value is used for the
prediction, R2 of predicting FEV1 PP and FEV1/FVC are 0.42 and 0.58 respectively. The
gap between these values and the performance of ts is the cost we pay to gain interpretation,
which is much better than the fully unsupervised method. This confirms that our model
learns tissue subtypes that are relevant to disease prediction, and not simply capturing
irrelevant image statistics in the subject CT’s.

Sensitivity to K We investigate the sensitivity of our method to the choice of the number
of subtypes, K, which is the most important one amongst the hyperparameters. Fig. 2 shows
the results of running the inference for the topic model for varying values of parameter K.
We measure the model’s ability to explain the observed data (i.e., image features of the lung)
on the test set by computing the log-likelihood of the data under the model. Each point is
an average over two separate inference runs of the topic model with random initialization.
When the assumed number of subtypes is less than 10 the model’s performance suffers but
for values ≥ 10 we see relatively stable performance. This suggests that our choice of 10
subtypes is a reasonable approximation of the number of image feature clusters.
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Figure 2: Log-likelihood (LL) of the topic model (with discriminative feature injection) on the held
out set for different values of K. Each point is an average over two separate training runs of the
model with random initialization.
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