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Abstract

The widespread availability of high-dimensional electronic healthcare record (EHR) datasets
has led to significant interest in using such data to derive clinical insights and make risk pre-
dictions. More specifically, techniques from machine learning are being increasingly applied
to the problem of dynamic survival analysis, where updated time-to-event risk predictions
are learned as a function of the full covariate trajectory from EHR datasets. EHR data
presents unique challenges in the context of dynamic survival analysis, involving a variety
of decisions about data representation, modeling, interpretability, and clinically meaningful
evaluation. In this paper we propose a new approach to dynamic survival analysis which
addresses some of these challenges. Our modeling approach is based on learning a global
parametric distribution to represent population characteristics and then dynamically lo-
cating individuals on the time-axis of this distribution conditioned on their histories. For
evaluation we also propose a new version of the dynamic C-Index for clinically meaning-
ful evaluation of dynamic survival models. To validate our approach we conduct dynamic
risk prediction on three real-world datasets, involving COVID-19 severe outcomes, cardio-
vascular disease (CVD) onset, and primary biliary cirrhosis (PBC) time-to-transplant. We
find that our proposed modeling approach is competitive with other well-known statisti-
cal and machine learning approaches for dynamic risk prediction, while offering potential
advantages in terms of interepretability of predictions at the individual level.

1. Introduction

Survival analysis focuses on the analysis and modeling of time-to-event data. Traditional
approaches to survival modeling in statistics, such as proportional hazard models (Aalen
et al., 2008), typically construct global time-to-event distributions or make simplifying as-
sumptions about the effect of an individual’s covariates on their risk of an event. The
past few years have seen the development of a number of different machine learning meth-
ods applied to survival modeling (Ishwaran et al., 2008; Wang et al., 2019; Spooner et al.,
2020; Nemati et al., 2020). The flexibility of these methods makes it possible to relax the
parametric assumptions used in previous approaches for survival analysis.

Survival analysis models can be static or dynamic. For static models the predicted
risk of an event occurring is modeled purely as a function of baseline covariates. For
dynamic models the predicted risk can change as a function of time-varying covariates and
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predictions are made using the full history of information, from the time of the initial
patient measurement to the most recent measurement available. Thus, dynamic survival
models can, in principle, better represent changing risks over time and determine which
patients are in the greatest need of treatment at any time, instead of only at the time
of baseline measurements (Van Houwelingen and Putter, 2011). For example, in clinical
applications such as COVID-19 treatment, the current risk of an adverse event can be
valuable in determining how best to treat a patient, such as deciding whether or not to
put a patient on ventilation. For cardiovascular disease (CVD) prediction, it has also been
shown that the visit-to-visit variability of risk factors, including body weight, triglycerides,
and HDL and LDL cholesterol, predicts CVD independent of their mean values, a factor
which would be missed in static modeling (Bangalore et al., 2017).

In this paper we introduce a novel type of dynamic survival model which learns a global
density model over a continuous time-to-event and then as measurements are dynamically
updated locates an individual on the time-axis relative to this global density. This shifting
procedure acts as a natural regularization for the model since it reduces the family of possible
individualized distributions to truncated (and renormalized) versions of the global density.
This connection between global and individualized densities also allows for the interpretation
of each individualized density as the average density of individuals who have survived to the
same shifted time along the global time-axis. This shifted time then represents an ’effective
time’ for the individual, i.e. the time for which the density of the individual would look the
same as that of the average individual who had survived until then.

We also introduce a novel evaluation metric in this paper: a new form of the dynamic
C-Index that more accurately reflects a model’s expected prognostic performance in a true
clinical setting compared to the more commonly used standard dynamic C-Index. We
apply and evaluate our methods using EHR data for three real-world cohorts of patients.
The first cohort consists of patients hospitalized with COVID-19 where the problem is to
predict individualized distributions over time-to-severe outcome after COVID-19 diagnosis.
The second cohort consists of patients diagnosed with diabetes mellitus where the goal is
to predict individualized distributions over time-to-onset of CVD. For our third dataset we
use the PBC2 dataset which contains data collected over the course of a ten year period for
a randomized controlled trial of a treatment for primary biliary cirrhosis of the liver. For
this dataset the goal is to predict individualized distributions over time-to-transplant.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our experience in building different predictive risk models, ranging from traditional statis-
tical approaches to recurrent deep network models, has led to a number of generalizable
which we discuss below. Several of these insights reinforce well-known points in medical
informatics. The primary insights are:

• Evaluation metrics for machine learning methods in healthcare should mirror, to the
extent possible, how a model would be used in practice if deployed. While it is natural
for researchers to tend to use metrics adopted in earlier literature (e.g, to allow for
standardized comparison with the same metrics across different sets of results), it
is also worth taking a critical look at whether evaluation metrics used in the past
are both realistic and clinically relevant. In addition, as more complex deep learning
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approaches are applied to dynamic survival analysis, care must be taken to ensure
that standard evaluation metrics are not arbitrarily inflated by exploiting clinically
irrelevant information in ways that more standard statistical methods cannot.

• It is important when evaluating the efficacy of complex machine learning models (such
as recurrent neural networks) to compare them to simpler traditional models (such
as linear models) to determine if the additional modeling complexity is worthwhile.
The results for the three real-world datasets in our study illustrated that off-the-shelf
deep learning methods are not necessarily going to produce better predictions than
simpler linear modeling approaches.

• While electronic health record (EHR) data is a natural target for dynamic survival
analysis, such data also presents multiple challenges in terms of interpretation and
modeling (Yadav et al., 2018; Ghassemi et al., 2020). For example, covariate mea-
surements at each patient encounter are often both irregularly sampled in time as
well as highly sparse, with only a small subset of possible measurements being taken.
The missing measurements are also often not missing at random where for example,
healthier patients may be given less extensive lab tests and monitoring. Complica-
tions in data interpretation also arise from billing and reimbursement policies, e.g.,
diagnosis codes need not necessarily reflect the underlying health state of a patient

• While both statistical and machine learning predictive models based on EHR data
show promise for dynamic risk prediction in all three of our datasets, the models’
performances (particularly for the non-hospitalized multi-year CVD data) are not
necessarily at the level where they provide enough of an improvement to augment or
displace current practices in clinical risk prediction.

2. Methods

2.1. Notation

A dataset D containing N individuals can be represented as

D = {(Hi, τi, ci), i ∈ {1, . . . , N}} (1)

where Hi represents the full history of covariate measurements for individual i, τi represents
the censored event time, and ci is the censoring indicator which takes a value of 0 if τi is the
true time until event and 1 if τi is right-censored. In more detail, Hi consists of a collection
of measurement times, measurement values, and missing indicators. Missing indicators are
needed since for many applications not all covariates will be available for each individual i
at every measurement time. The history for individual i can be represented as

Hi = {(xij , mij , tij), j ∈ {1, . . . , li}} (2)

Letting M represent the total number of different covariates, xij is an M × 1 vector repre-
senting the values for each measurement at time tij , mij is a M × 1 vector where an entry
is 0 if the value is missing and 1 otherwise, and li is the number of total measurement times
for individual i. We assume that there is a synchronizing event (such as diagnosis with
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Figure 1: The connection between the global density (left plot) and individual densities
at two different measurement times (center and right plots). For each time,
the model generates a shift ∆ij which locates the individual density along the
timeline of the global density. The individualized density is then determined by
truncating the global density at the shifted time tij + ∆ij and renormalizing as
shown in the middle and right plots. For the first measurement time ti1 = 20
the model predicts a negative shift, indicating that the individual is doing better
than average at the first measurement time. For the second time ti2 = 40 the
model predicts a positive shift indicating that the individual is doing worse than
the average individual at the second measurement time.

COVID-19) across individuals, i.e., that the first time point for each individual i is defined
as ti1 = 1. Note that the times, tij , are not restricted to discretized values; in principle
they can occur continuously in time. In this paper, however, for convenience we discretize
time (into days, or months depending on the dataset) to reduce the amount of missingness.
In training and evaluating models we only include the history for an individual up to and
including the measurement before the true event time, since for unseen new data we are
interested only in making predictions for individuals for whom the event has yet to occur.

2.2. Model Description

For convenience define Hij to be a partial history including measurements up until time tij :

Hij = {(xik, mik, tik), k ∈ {1, . . . , j}} (3)

We make predictions at each step of an individual i’s history using Hij , the history up until
time tij , allowing the model to update its predictions as new covariate measurements arrive.
The predictive densities at each step j in an individual’s history must be conditioned on the
event of interest occurring after the measurement time tij since the fact that a measurement
was taken implies survival until that time. Therefore, the model output for individual i at
each time step j is the predictive density f (i)(t|Hij , T > tij) over the event time. Let θg be
the parameters of a parametric global density (e.g., Rayleigh, Weibull) on time-to-event.
Then, conditioned on θg, at each time-step in an individual’s history an individualized time-
shift ∆ij is used to define an individualized predictive density. The range of ∆ij is restricted

4



Dynamic Survival Analysis for EHR Data with Personalized Parametric Distributions

to be greater than −tij to avoid shifting to a negative time. The global density, f (g)(t|θg),
and the individualized density, f (i)(t|Hij , T > tij), are then connected as follows:

f (i)(t|Hij , T > tij) = f (g)(t+ ∆ij |θg, T > tij)

=
f (g)(t+∆ij |θg)

S(g)(tij+∆ij |θg)
for t > tij ,

(4)

where S(g)(t) is the survival function for the global model (one minus the cumulative dis-
tribution function of the global density). The first equality represents shifting the time for
individual i to their effective time/age, given their covariate history. The second equality
involves truncating at time tij and renormalizing to account for t > tij as shown in Figure
1.

The ∆ij ’s are defined as a parametric function of Hij . This function in general can be
split into two (deterministic) pieces. The first function, z, maps Hij to a state hij in an
autoregressive fashion (see below). The second function, g, then maps the state hij to ∆ij .
This gives:

hij = z
(
hi(j−1), (xij ,mij ,∆tij);φ

)
(5)

∆ij = g
(
hij ;α

)
j ∈ {1, . . . , li} (6)

where ∆tij = tij − ti(j−1) and φ and α are the parameters of z and g respectively. The
function z can be thought of as a transition function taking the previous state, time elapsed
since that state, and the current measurements, to evolve the previous state to the current
one. In this work, we consider two options for z and g. One option is to parameterize z
by an recurrent neural network (RNN) and g by a feedforward network, which we will refer
to as the RNN-∆ model. The second option is to let z be the identity over the covariates,
and g simply be a linear layer, which we will refer to as the Linear-∆ model. This amounts
to ignoring the full history and only using the measurements at the current time to make
predictions. In principle any parametric functions (with g having an appropriate range for
∆ij) could be used.

This parameterization is still flexible enough for individualization since the model can
produce a different ∆ij for each individual i at step j and, thus, different risk predictions
across individuals. At the same time the constraint imposed by using a global distribution
results in the model having a stronger inductive bias than more flexible approaches such
as deep learning approaches, restricting the individualized densities to a family of para-
metric truncated distributions. This inductive bias effectively acts as a form of built-in
regularization of the model.

2.3. Loss Function and Model Training

As described above the model makes a prediction at each step in the covariate history for
an individual. The likelihood, which is a function over the unknown parameters θ, φ, and
α, therefore takes the following form for a single individual i:

L(θg, φ, α|(τi, ci)) =

li∏
j=1

f (g)(τi + ∆ij |θg, φ, α, T > tij)
1−ci

×S(g)(τi + ∆ij |θg, φ, α, T > tij)
ci

(7)
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If individual i is uncensored, each term in this loss is the predicted probability density of
the time-to-event at time tij , and if individual i is censored, it is the survival probability.
This represents that the exact time-to-event is known for uncensored individuals, while
for censored individuals it is only known that the individual has survived past τi. This
likelihood can be interpreted as adding li independent psuedo-individuals, one for each
time step in Hi. However, if the sequence lengths for some individuals are dramatically
larger than others, then the data for those individuals will bias the loss since they will have
a larger contribution. To address this, we average the log-likelihood over the li terms per
individual, yielding smoother training and gradients when parameters are being learned
by gradient descent. A similar loss was used in prior work in the context of time-series
clustering (temporal disease phenotyping) in Lee et al. (2021). An alternative option would
be to sample a single time step per individual for each step of training and only use that
term to compute the gradient (as with SGD), which would save computation time at the
cost of noisier gradients.

To train the model we first fit the parametric global density with parameter vector
θg, f

(g)(t|θg). Then we fix θg and learn at each step in an individual i’s history the time
shift ∆ij . For the results in this paper, we used a global Rayleigh distribution, although
any parametric model could be used. In principle θg could be jointly learned with the ∆ij

parameters; however, we found this makes optimization more difficult, potentially due to
the introduction of local optima. We also conjecture that learning the θg parameters jointly
with the ∆ij ’s causes non-identifiability of the parameters.

Interpretation: Joint learning of the θg and ∆ij parameters would also remove the pos-
sibility of interpreting the global density as representing the average risk at time t for the
average person. In contrast, using a fixed global density model allows interpretation of the
learned ∆ij parameters as ‘locating’ an individual along that global density. An individual
i with predicted shift ∆ij at time tij would have the same risk as the average individual at
time tij + ∆ij . For example, an individual at time 0 with learned shift of 5 days at time 0
would have similar risk to the average person 5 days after the synchronizing event.

Code Availability: Python code implementing our model can be found at the github
link: https://github.com/pjputzel/dyn_surv_global_with_shifts

3. Related Work

Common statistical approaches to dynamic survival modelling include landmarking and
joint modeling. Landmarking involves constructing a nested set of datasets at ‘landmark’
times and fitting a static survival model at each time point (Van Houwelingen, 2007; Parast
et al., 2014). It can, however, be difficult to understand and interpret the connection
between predicted risks at different landmark times. In contrast, the predictions of the
Linear-∆ version of our model at different time points are all related to a single shared
global density, and predictions are issued at every step along the covariate history of an
individual rather than only at landmark times. The RNN-∆ model shares these differences,
and differs even further with landmarking approaches by making full use of the entire
covariate history to make it’s predictions.
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In joint modeling approaches to dynamic survival modeling, the probability distribu-
tion of the covariate history H and time-to-event T are modelled with a joint distribution
(Rizopoulos et al., 2017; Wei et al., 2018). However, doing so often requires strong para-
metric assumptions about the shape of the covariate trajectories, which can be particularly
problematic with high-dimensional covariate data.

In recent years, traditional survival analysis modeling approaches have also been aug-
mented with deep learning techniques to produce individualized predictions over time. For
example, Lee et al. (2020), Ren et al. (2019), Deasy et al. (2020), and Singh et al. (2020)
all use the outputs of an RNN to make personalized risk predictions. Lee et al. (2020)
discretize time and predict the probabilities in each time window. Ren et al. (2019) predict
the hazard function (i.e., the density of the event occurring at time t given that the event
hasn’t occurred yet at time t) at each measurement time and connect the hazards together
using the probability chain rule to predict the survival function. Making the proportional
hazards assumption (that the hazard per individual can be broken down into a baseline
hazard times a covariate contribution), Singh et al. (2020) predict the hazard ratio directly.
In Deasy et al. (2020) an embedding of high-dimensional ICU data is used to predict the
probability of event in the next time window. The approach in Lee et al. (2021) focuses on
clustering time series based on the distribution of health outcomes, and could potentially
be modified in order to make dynamic survival predictions. Other deep learning approaches
for dynamic survival include using temporal convolutions as in Jarrett et al. (2020) and
transformer-based architectures as in Horn et al. (2020).

Despite being dynamic, the majority of these approaches do not make predictions at
multiple timesteps per individual during training. Instead they only make one prediction
per individual at the last available measurement in the dataset for that individual. In
addition, all but Lee et al. (2020) and Singh et al. (2020) treat survival prediction as a binary
classification problem and use a cross-entropy loss setup during training which, as shown
in Gorgi Zadeh and Schmid (2020), can produce poorly calibrated survival probabilities.
An additional issue is that these models also tend to be difficult to interpret, which is a
significant limitation when these models are being considered for use in clinical applications
(Miotto et al., 2018; Rudin, 2019).

4. Datasets

To evaluate our proposed approach we use two EHR datasets. The datasets include a variety
of dynamic categorical variables such as hospitalization status and whether or not a patient
received a particular type of medication on a certain day. The datasets also include numeric
covariates such as results of lab tests and vital measurements, as well as static demographic
information about each patient. We represent medications by their pharmacy-subclass to
reduce the number of possible types of medications. We filter out lab tests based on their
total amount of missingness across all encounters—specific lab tests which are missing in
more than 75% of encounters are dropped.

We also evaluate our approach on the publicly-available PBC2 clinical trial (non-EHR)
dataset which contains the results of various laboratory tests, both discrete and numeric,
over a ten year-period of followup after the start of study.
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At each timestep in an individual’s history we augment their vector of covariate mea-
surements xij with an additional M ×1 vector of missing indicators mij representing which
of the covariate value for individual i are missing at measurement time tij (as also imple-
mented for example in Lee et al. (2020)). The corresponding missing values in the covariate
measurements vector xij are then replaced with the means across all times and individuals
of the missing covariates.

For all datasets, the measurement times are discretized. This is in order to have more
dense inputs for all of the models we evaluate, and avoid using mostly empty covariate
vectors for many timepoints, which could negatively affect training.

COVID-19 Severe Outcome Dataset The COVID-19 dataset consists of 6,999 indi-
viduals diagnosed with COVID-19 at New York University Langone Hospital (NYULH)
during March to July 2020. We synchronize the covariate trajectories for each individual to
time of COVID-19 diagnosis, and define the event of interest as time until severe outcome
after diagnosis, where severe outcomes are the first occurrence of any of five severe health
events: ICU admission, stroke, dialysis, death, and ventilation. In total 882 (12%) individ-
uals have a severe health outcome while the rest were censored at the end of followup. In
total we used 345 dynamic covariates (212 lab tests and vitals, and 123 medication types)
and 11 static covariates (including age, sex, race, ethnicity, body mass index, and tobacco
usage). We discretize the measurement times to days, although we allow arbitrary gaps
in units of days between measurements, and represent the time-to-event itself in units of
minutes.

Diabetes Mellitus Cardiovascular Disease Dataset This dataset consists of 16,335
individuals diagnosed with diabetes mellitus at NYULH during January 2010 to December
2019. We synchronize the covariate trajectories for each individual to time of diabetes
mellitus diagnosis, and define the event of interest as time until onset of cardiovascular
disease. To identify CVD onset we use a list of 155 ICD-9 codes corresponding to CVD
diagnosis or a health event associated with CVD such as heart attack. In total 29% of
individuals experienced the onset of CVD during observation while the rest were censored
at the end of followup. We used 185 dynamic covariates (124 lab tests and vitals, and 61
medications types) and 5 static covariates (age, sex, race, ethnicity, and smoking status). As
with the COVID-19 data we discretize the measurement times (this time to months instead
of days), allow arbitrary gaps between between measurement months, and represent the
time-to-event in days.

PBC2 Dataset We also evaluate our approach on a non-EHR publicly-available dataset
which was collected during a ten year period from 1974-1984 for a randomized control trial
of a treatment for PBC. For this dataset we define the event of interest as time to liver
transplant with about 45% of individuals having a transplant. The dataset includes the
three static covariates of sex, age at start-of-study, and whether or not the patient received
placebo or treatment. We use a total of 12 dynamic covariates including 7 labtests such as
albumin and serum bilirubin, and 5 categorical diagnostic evaluations such as the presence
of an enlarged liver (hepatomegaly). We discretize measurement times to months, while
representing the time-to-event itself in days. We used the (lightly) preprocessed version of
this dataset contained in the code base for Lee et al. (2020).
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5. Evaluation

For evaluating dynamic model performance we introduce a modified dynamic form of the C-
Index, which we call the at-risk dynamic C-Index to differentiate it from the standard
dynamic C-Index, which is evaluated over all individuals, at risk or not (Harrell et al.,
1982; Antolini et al., 2005). Unlike the standard dynamic C-Index used in Lee et al. (2020),
the at-risk dynamic C-Index is strictly prognostic, i.e., when making predictions at time
t, the model’s rankings are only evaluated going forwards in time from t, rather than also
evaluating model performance before t. Furthermore, the model’s rankings are evaluated
only for individuals who are still at risk for the event to occur after time t. Intuitively this
evaluates how well the model’s rankings made at t for at-risk individuals will hold up in
the future, which is a more relevant metric for clinical practice than the approach of the
standard C-Index. We follow the derivation in Van Houwelingen and Putter (2011) which
derives the C-Index as a weighted average of incident dynamic AUC at each event time,
and we modify it for dynamic predictions by replacing the time-varying covariates with the
time-varying risk predictions from the model. More precisely, we define a set of valid pairs
Pv(t) and concordant pairs Pc(t) at time t as follows:

Pv(t) =
{

(i, k) : τi ≤ τk, τi ∈ [t,∞), ci = 0
}
, (8)

Pc(t) =
{

(i, k) : (i, k) ∈ Pv(t), F (τi|Hi(t)) > F (τi|Hk(t))
}
, (9)

where Hi(t) is the most recent partial history of individual i available at time t. Intuitively
the valid pairs represent the pairs for which we know the correct ordering, and the concor-
dant pairs are those for which the model gets that ordering correct. The at-risk dynamic
C-Index is the ratio of the number of concordant pairs to the valid pairs, which estimates
the probability of a random valid pair being ordered correctly. Modifying the derivation
in Van Houwelingen and Putter (2011) for time-varying risks, we compute the probability
that the event occurs from time t to time τi using the most recent predicted densities at
time t for each individual (appropriately re-normalized for survival until time t), for any
pair (i, k). This probability is then used to rank individuals as shown in equation 9. Unlike
the standard dynamic C-Index, the at-risk dynamic C-Index does not require specification
of a prediction window, and instead represents the model’s averaged performance over all
future times for the current set of at-risk individuals.

Following the same notation used before, we can define valid and concordant pairs at
time t with prediction window ∆t for the standard dynamic C-Index as follows:

Pv(t,∆t) =
{

(i, k) : τi ≤ τk, τi ∈ [0, t+ ∆t], ci = 0
}
, (10)

Pc(t,∆t) =
{

(i, k) : (i, k) ∈ Pv(t,∆t), F (t+ ∆t|Hi(t)) > F (t+ ∆t|Hk(t))
}
. (11)

Here the risks from the previous equations are replaced with the cumulative densities eval-
uated at time t+∆t conditioned on survival until time t. Notice that the standard dynamic
C-Index requires specification of a prediction time t and window ∆t.

Since the standard dynamic C-Index is calculated for all individuals with τi ≤ t + ∆t,
it includes evaluation over individuals who have already had the event at the prediction
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Figure 2: Risk prediction for simulated individuals evaluated using both (a) standard C-
Index (dotted lines), and (b) proposed at-risk dynamic C-Index (solid lines), as a
function of prediction time. Individuals are ranked using the 1/(N-Days) ranking
approach (see text). The evaluation metric (y-axis) should indicate no predictive
power (C-Index at 0.5). The results confirm that the standard dynamic C-Index
(upper curves) can be inflated by inclusion of individuals who have already had
events (τi < t). On the other hand, the ranking using 1/(N-Days) (lower curves)
is centered around 0.5, i.e., is no better (as it should be) than random guessing
for at-risk individuals.

time t, i.e., it includes individuals who are not currently at-risk. This presents an issue
for evaluating models that use time-since-synchronization as a predictor. To illustrate this
particular issue, consider ranking by 1/(N-Days) (instead of the CDF in equations 9 and
11), where N-Days represents the time since synchronization. Given a valid pair of not at-
risk individuals (i, j), with τi < τj < t, the pair is not a concordant pair only if individual
j does not have an encounter between tili and τj . The probability of this occurring is
P (tjlj < tili) and if we assume for example that each individual’s frequency of encounters

follow a Poisson(λ) distribution, the probability of occurrence is approximately 1−e−(τj−τi)λ.
Thus, as the frequency of encounters increases (larger λ), the concordance probability for
not at-risk individuals becomes higher using the 1/(N-Days) ranking. On the other hand,
for the set of at-risk individuals with τi > t, the time since synchronization is not strongly
correlated with τi and thus we expect the 1/(N-Days) ranking not to produce any predictive
performance above random chance.

To illustrate this issue, we generated simulated data and evaluated the performance
when ranking by 1/(N-Days). For the evaluation of the ranking we used both versions of
the dynamic C-Index: the standard dynamic C-Index and our proposed at-risk dynamic
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C-Index Results from Ranking with 1/(N-Days)

COVID-19 DM-CVD PBC2

At-Risk Dynamic C-Index 0.50 0.49 0.49
Standard Dynamic C-Index 0.58 0.67 0.69

Table 1: Averaged performance of ranking by 1/(N-Days) across different prediction win-
dows on the three real-world datasets used in the paper. For the at-risk version,
performance is near random (as it should be), while the standard dynamic C-Index
is well above chance for all three, i.e., it significantly inflates performance as it did
on the simulated data.

C-Index. The simulated data has Poisson-distributed encounter times, with time-to-events
drawn from an exponential distribution, and censoring applied randomly. We show the
results of evaluating rankings for different prediction times in Figure 2, using both the
standard dynamic C-Index and the at-risk dynamic C-Index. As expected, as the Poisson
parameter increases, the probability of a valid pair for not at-risk patients decreases, and the
performance of the standard dynamic C-Index drops. In contrast, the performance of the
at-risk dynamic C-Index remains near chance on average across all settings of the Poisson
parameter. These results are in agreement with our hypothesis that the standard dynamic
C-Index can have a significant optimistic bias in estimating true predictive performance due
to artificial correlations with the frequency of visits or encounters. In addition, the standard
dynamic C-Index will be more inflated for datasets with more frequent encounters.

Based on this result, ranking using 1/(N-Days) will potentially have better than chance
performance for the standard dynamic C-Index on real-world datasets (notice the perfor-
mance is inflated for all λ settings). Any model which makes use of time-since-synchronization
as a predictor could therefore have inflated performance on the standard dynamic C-Index
by exploiting this. This is despite the fact that ranking by 1/(N-Days) does not represent
a clinically meaningful predictor for many real-world applications. Our proposed at-risk
C-Index does not have this potential issue since it doesn’t include individuals with events
before the prediction time. To further confirm this we ranked individuals by 1/(N-Days)
for all three of our real clinical datasets, with results in Table 1, using both variants of the
C-Index. The results confirm that the standard dynamic C-Index is inflated for our three
real world datasets as well, i.e., only the at-risk dynamic C-Index results in performance
that is at random chance (0.5).

6. Results on Real Data

6.1. Model Fitting and Baselines

We evaluate our time-shift approach using both a linear model (Linear-∆) which only makes
use of the current covariate measurements without using the full history, and an RNN-based
model (RNN-∆) which uses the full history. We implemented both of our approaches using
PyTorch (Paszke et al., 2019). For training the model in practice we discretize time into
suitable units. However, despite this discretization, the model is still capable of issuing risk
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predictions at any desired time. For example, in the COVID-19 application, despite the
measurement time granularity being in days, predicting risks in the next 6-12 hours would
allow clinicians to identify higher risk patients to be moved into the ICU quickly.

For each dataset in our experiments we use grid search on validation data to select
hyperparameter settings for each model being evaluated. We then retrain each model on
the development and validation data combined (a 70% random subset of patients split once
more into 60% development and 40% validation), and evaluate on the test data to generate
metrics (dynamic C-Index values and Brier scores) for out-of-sample data (the other 30%
of patients).

For the Linear-∆ model we included L1 regularization to encourage sparsity and us-
ing the validation data searched over a grid of [0, 0.001, 0.01, 0.1] to set the regulariza-
tion strength. For the RNN-∆ model, we used L2 regularization searching over a grid of
[0, 0.0001, 0.001], and a grid of [64, 128, 256] for the hidden dimension. For both ∆ models,
we additionaly performed a grid search over learning rates of [0.001, 0.01, 0.1].

We also compare the performance of our time-shift ∆ models with several baselines.
The baselines include the Dynamic DeepHit (Dyn-DeepHit) model of Lee et al. (2020), in
order to include comparison to a competitive deep recurrent model. For Dyn-DeepHit we
performed our hyper parameter grid search using the validation data over values centered on
the default settings. This resulted in a search over [0.00001, 0.0001, 0.001] for the learning
rate, and [50, 100, 200] for the RNN hidden dimension. For all other parameters we used
default settings.

In addition we also evaluate a standard Landmark-Cox model as traditional statistical
baseline, and a Landmarked Random Survival Forest (Landmark-RF) model to compare
to a non-neural machine learning approach. For the Landmark-RF model we performed
a grid search on the validation data for the number of trees over [10, 50, 250]. Both land-
marked models were implemented using the open-source python package pysurvival (Fotso
et al., 2019). For the diabetes mellitus data we also include the risk score from the Fram-
ingham heart study to compare our results with a commonly used clinical risk assessment
(D’Agostino et al., 2008).

6.2. Experimental Results

We evaluated our proposed models and baselines on the three clinical datasets described
earlier in the paper. Table 2 shows test data results for all of the methods we evaluated for
the new at-risk dynamic C-Index that we introduced in equation 9. Table 2(a) shows
results for the COVID-19 data Table 2(b) shows results for the diabetes mellitus data, and
Table 2(c) shows results for the PBC2 data. For completeness in Appendix A we also
evaluate our model with the standard version of the dynamic C-Index as described in Lee
et al. (2020).

Table 3 shows results for all three datasets with the Brier score. We compute dynamic
Brier scores in the same manner as used in the Dyn-DeepHit codebase (Lee et al., 2020).
As with the standard dynamic C-Index the dynamic Brier score requires both a prediction
time and a time window to compute. To produce the results in our table, we take the
average for each of the five prediction times (selected according to percentiles of the true
event times) across four different time windows. For example, with the COVID-19 data
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(a)

COVID-19 Data

Day 0 3 4 7 11 Avg (std)

Landmark-Cox 0.79 0.78 0.79 0.77 0.47 0.72 (0.13)
Landmark-RF 0.81 0.85 0.85 0.88 0.85 0.85 (0.02)
Linear-∆ (proposed) 0.77 0.85 0.85 0.86 0.78 0.82 (0.04)
RNN-∆ (proposed) 0.78 0.83 0.83 0.82 0.71 0.78 (0.05)
Dyn-DeepHit 0.69 0.79 0.80 0.79 0.72 0.76 (0.05)

(b)

Diabetes Mellitus CVD Data

Month 0 3 8 16 30 Avg (std)

Framingham (static) 0.58 0.59 0.59 0.58 0.59 0.59 (0.01)
Landmark-Cox 0.66 0.66 0.66 0.66 0.63 0.66 (0.01)
Landmark-RF 0.66 0.66 0.66 0.66 0.60 0.65 (0.02)
Linear-∆ (proposed) 0.67 0.68 0.67 0.67 0.66 0.67 (0.01)
RNN-∆ (proposed) 0.66 0.68 0.68 0.68 0.65 0.67 (0.01)
Dyn-DeepHit 0.61 0.61 0.60 0.55 0.49 0.57 (0.05)

(c)

PBC2 Data

Month 0 4 7 10 13 Avg (std)

Landmark-Cox 0.77 0.81 0.80 0.83 0.89 0.82 (0.04)
Landmark-RF 0.77 0.81 0.81 0.95 0.96 0.86 (0.08)
Linear-∆ (proposed) 0.78 0.80 0.79 0.89 0.87 0.83 (0.04)
RNN-∆ (proposed) 0.79 0.80 0.80 0.80 0.85 0.81 (0.02)
Dyn-DeepHit 0.78 0.81 0.68 0.57 0.74 0.72 (0.08)

Table 2: Results using the proposed At-Risk Dynamic C-Index for three datasets: (a)
COVID-19 data, (b) diabetes mellitus CVD data, and (c) PBC2 data. Larger
scores are better. Standard deviations reflect variability across the five times.
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(a)

COVID-19 Data

Day 0 3 4 7 11 Avg (std)

Majority Class 0.076 0.090 0.085 0.060 0.027 0.067 (0.023)
Landmark-Cox 0.064 0.085 0.081 0.058 0.030 0.064 (0.020)
Landmark-RF 0.063 0.068 0.064 0.047 0.024 0.053 (0.016)
Linear-∆ (proposed) 0.067 0.071 0.068 0.049 0.026 0.056 (0.017)
RNN-∆ (proposed) 0.069 0.078 0.075 0.054 0.029 0.061 (0.018)
Dyn-DeepHit 0.065 0.070 0.067 0.050 0.025 0.055 (0.017)

(b)

Diabetes Mellitus CVD Data

Month 0 3 8 16 30 Avg (std)

Majority Class 0.170 0.134 0.114 0.090 0.070 0.115 (0.035)
Landmark-Cox 0.132 0.108 0.096 0.078 0.066 0.096 (0.023)
Landmark-RF 0.113 0.111 0.097 0.080 0.065 0.098 (0.024)
Linear-∆ (proposed) 0.146 0.132 0.124 0.112 0.106 0.124 (0.014)
RNN-∆ (proposed) 0.138 0.124 0.120 0.107 0.101 0.118 (0.013)
Dyn-DeepHit 0.137 0.112 0.098 0.080 0.063 0.098 (0.026)

(c)

PBC2 Data

Month 0 4 7 10 13 Avg (std)

Majority Class 0.160 0.197 0.137 0.105 0.071 0.134 (0.044)
Landmark-Cox 0.094 0.137 0.121 0.151 0.130 0.126 (0.019)
Landmark-RF 0.095 0.125 0.096 0.083 0.059 0.092 (0.021)
Linear-∆ (proposed) 0.093 0.127 0.130 0.142 0.100 0.118 (0.019)
RNN-∆ (proposed) 0.107 0.114 0.119 0.123 0.109 0.115 (0.060)
Dyn-DeepHit 0.118 0.105 0.125 0.102 0.051 0.100 (0.026)

Table 3: Results for Brier score on three datasets: (a) COVID-19 data, (b) diabetes mellitus
CVD data, and (c) PBC2 data. Lower scores are better. Standard deviations
reflect variability across the five times.
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each of the columns representing prediction times 0, 3, 4, 7, and 11 days is averaged across
four time windows of 3, 6, 9, and 12 days. See Appendix A for the time-windows used for
each dataset. Each sub-table of Table 3 also contains an additional row showing base-rates
for the Brier score. These base rates are computed by predicting the majority class on the
test (not train) data itself. This row is intended to provide a scale for the reported Brier
scores in order to help judge the difficulty of achieving better (lower) Brier scores on each
dataset at different times, and is not intended as a baseline itself (a true less-optimistic
baseline would instead pick the majority class from training and then test the results on
unseen data).

For the COVID-19 data evaluated on the at-risk dynamic C-Index, the Linear-∆ model
has better performance than the RNN-∆ and Dynamic-DeepHit models while being slightly
outperformed by the Landmark-RF model. All models see a drop in performance at day
11 for the COVID-19 data, which especially affects the Landmark-Cox model causing it to
perform the poorest on this data. For the Brier score, the Landmark-RF, Linear-∆, and
Dynamic-DeepHit all perform similarly. All models have better performance than majority
class prediction on the test data.

For the diabetes mellitus CVD data evaluated on the at-risk dynamic C-Index, we also
include the static clinical risk score from the Framingham heart study (D’Agostino et al.,
2008). For this data, both of our ∆ models perform similarly to the Landmark-Cox and
Landmark-RF baselines while outperforming the (static) Framingham risk score. Here
Dynamic-DeepHit has performance similar to the Framingham risk score, which may come
from fitting on the not-at-risk patients. In general, differences between models’ discrimi-
native performance as evaluated by the at-risk dynamic C-Index are small for this dataset.
On the Brier score the two ∆ models have poorer performance compared to the others.
Since the ∆ models have slightly better discriminative performance, this implies their cali-
bration is worse given that Brier score can be decomposed into a combination of calibration
and discrimination. This poorer calibration of the ∆ based models could come from using a
Rayleigh distribution for the global parametric density which will have worse fit with longer
timescales as those found in the DM-CVD data.

For the PBC2 dataset evaluated on the at-risk dynamic C-Index, the two landmark
baselines and the Linear-∆ model all have similar performance. The Landmark-RF model
has the highest discriminative performance of the models for this data. On the Brier score
all models have better performance than majority class prediction on the test data.

Overall the Landmark-RF and Linear-∆ model have the best performance on the at-risk
dynamic C-Index across all three datasets. Dynamic-DeepHit and the Landmark-Cox mod-
els have poorer performance on this metric overall. For Brier score, overall the ∆ methods
had weaker performance likely due to miscalibration from the use of Rayleigh distributions
as the parametric form, suggesting potential improvement by using more flexible modeling
approaches for the global distribution in order to maintain both calibration and discrimi-
native performance. It is also interesting to note that Dynamic-DeepHit’s performance on
the Brier score is much better than on the at-risk dynamic C-Index. This discrepancy is
likely due to the inclusion of an additional loss term in their training loss which encourages
good performance on the standard dynamic C-Index by penalizing incorrectly-ranked indi-
viduals. Such a loss term could cause the model to focus on non-at-risk individuals, and
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Figure 3: Boxplots of the predicted ∆’s at different prediction times for the Linear-∆ model
on the COVID-19 data. For each prediction time we collect all individuals who
are still in the hospital, and plot a boxplot for the ∆’s output by the model for
that set of individuals. The minimum possible ∆ at time t is negative t. As time
passes the ∆’s tend to become smaller.

therefore decrease performance on the at-risk dynamic C-Index (which only evaluates over
at-risk individuals).

Figure 3 shows boxplots of the ∆’s learned by the Linear-∆ model for different prediction
times on the COVID-19 data. The model-predicted ∆’s tend to decrease the longer a patient
has been in the hospital, agreeing with the analysis in Rees et al. (2020) that length of stay
is inversely correlated with serious (or adverse) outcomes. The top row of Figure 4 shows
the predicted individualized densities over time-until-severe-outcome for two hospitalized
individuals from the COVID-19 dataset. Since our approach uses a simple parametric
density around which to structure it’s predictions, we are able to easily visualize the learned
densities, whereas visualization is more challenging with other approaches. We also show
the predicted hazards for the same two individuals in Figure 4. Here the plotted hazard
represents the predicted hazard function, which is a continuous function of time, evaluated
at the start of each day. The individual shown on the left plot of Figure 4 starts off with
slightly higher than average hazard after COVID-19 diagnosis, but after developing a fever,
and a high difference between systolic and diastolic blood pressure they then experience a
severe outcome at day 8. Conversely, the individual shown on the right starts off with a
better prognosis, their hazard rises slightly day 4, and then after the hazard decreases to zero
over time they leave the hospital with no severe outcome. We further explore interpretation
of the the Linear-∆ model in Appendix B showing the top ten learned features, and the
predicted hazards split by demographic.
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Figure 4: The top row shows the predicted individualized density for two hospitalized pa-
tients. The rows below show the results for the same individuals, illustrating the
model’s predicted hazard function evaluated at the start of each day, along with
the difference between systolic blood pressure and diastolic blood pressure, and
temperature. Average values, shown as dashed lines, are for comparison to the
individual values shown as bolded lines.
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7. Discussion

In terms of limitations of this work, the experimental results described in this paper are
only for three datasets (two non-public and one public). Further evaluation on additional
datasets would be valuable to explore in more detail the robustness of the comparisons
between baselines and the proposed models.

In addition, the choice of parametric form for the global distribution in our proposed
∆ models may be a significant limiting factor in terms of the representational capacity of
these models since it limits the global hazard function to an increasing linear function of
time since the synchronizing event. Exploration of more flexible global representations is a
natural direction for future investigation.

Another unresolved question is why the additional modeling power of the RNN-based
models (Dyn-DeepHit and RNN-∆) did not perform any better (and were often worse)
than alternatives based on linear representations or random forests. A potential reason
for this is that the deep models did not have sufficient data in our experiments to fully
utilize their capacity. The largest dataset (DM-CVD) has 16,335 patient sequences, which
is orders of magnitude less data than typical sequence prediction tasks in natural language
processing (for example) where deep recurrent models have been particularly successful. A
natural question is whether deep models can show systematic improvements over alterna-
tive methods for dynamic survival analysis on problems with significantly larger training
datasets.

8. Conclusions

In this paper, we introduce a new class of personalized dynamic survival models which
learn a simple global parametric density and perform individualization by locating indi-
viduals along the time axis of that global density. We also illustrated the importance of
careful evaluation of the predictive performance of models for dynamic survival analysis in
a healthcare context. In particular, evaluation metrics may need to be adapted to prevent
inflated performance of such models caused by exploiting clinically irrelevant information.
We introduced the at-risk dynamic C-Index to help bridge this gap since it is more suited for
making predictions in a clinical context evaluating over only at-risk patients, i.e., patients
for whom an intervention to prevent a negative health outcome of interest is still possible.
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Appendix A: Results with the Standard Dynamic C-Index

(a)

COVID-19 Data

Day 0 3 4 7 11 Avg (std)

Landmark-Cox 0.79 0.79 0.80 0.74 0.61 0.75 (0.07)
Landmark-RF 0.82 0.75 0.76 0.70 0.79 0.80 (0.02)
Linear-∆ (proposed) 0.76 0.80 0.82 0.85 0.86 0.82 (0.04)
RNN-∆ (proposed) 0.70 0.76 0.78 0.83 0.84 0.78 (0.05)
Dyn-DeepHit 0.82 0.87 0.87 0.89 0.88 0.87 (0.02)

(b)

Diabetes Mellitus CVD Data

Month 0 3 8 16 30 Avg (std)

Framingham (static) 0.58 0.59 0.58 0.58 0.58 0.58 (0.003)
Landmark-Cox 0.67 0.66 0.66 0.65 0.61 0.65 (0.02)
Landmark-RF 0.67 0.66 0.66 0.67 0.63 0.66 (0.02)
Linear-∆ (proposed) 0.68 0.71 0.75 0.81 0.86 0.76 (0.07)
RNN-∆ (proposed) 0.67 0.64 0.67 0.79 0.86 0.73 (0.09)
Dyn-DeepHit 0.67 0.69 0.71 0.74 0.74 0.71 (0.03)

(c)

PBC2 Data

Day 0 4 7 10 13 Avg (std)

Landmark-Cox 0.81 0.85 0.84 0.77 0.78 0.81 (0.03)
Landmark-RF 0.81 0.83 0.81 0.78 0.77 0.80 (0.02)
Linear-∆ (proposed) 0.78 0.83 0.82 0.79 0.80 0.81 (0.02)
RNN-∆ (proposed) 0.81 0.86 0.84 0.83 0.82 0.83 (0.02)
Dyn-DeepHit 0.80 0.84 0.77 0.66 0.71 0.76 (0.07)

Table 4: Results on the three datasets on the Standard Dynamic C-Index, (a) COVID-19
data, (b) the Diabetes Mellitus CVD data, and (c) the PBC2 data.

Table 4 shows the performance on the three datasets of all models for the standard
dynamic C-Index. The standard dynamic C-Index requires both a prediction time, and
a time window. Therefore to generate each entry of this table, the performance at each
prediction time is averaged over four time windows. These time windows were [3, 6, 9, 12],
[7, 14, 21, 28], and [2, 4, 6, 8] in the corresponding time units (days, months, and months)
for the COVID-19 data, DM-CVD data, and PBC2 data respectively. For the COVID-19
data we see that Dynamic-DeepHit apparently has better performance (0.87) on average
than any of the other methods. However this gap in performance disappears for the at-
risk dynamic C-Index in Table 2(a), and ranking by the inverse of the number of days
since COVID-19 diagnosis (1/(N-Days)) leads to performance well above chance as shown
in Table 5. For the diabetes mellitus CVD data, the 1/(N-Days) ranking has even higher
performance as shown in Table 5. The performance of all three machine learning based
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1/(N-Days) Ranking

At-Risk Dynamic C-Index Standard Dynamic C-Index
Day/Month T0 T1 T2 T3 T4 Avg (std) T0 T1 T2 T3 T4 Avg (std)

COVID-19 0.48 0.49 0.49 0.51 0.52 0.50 (0.01) 0.50 0.59 0.60 0.60 0.60 0.58 (0.04)
DM-CVD 0.49 0.49 0.49 0.48 0.48 0.49 (0.01) 0.50 0.59 0.67 0.75 0.82 0.67 (0.13)
PBC2 0.48 0.45 0.47 0.53 0.50 0.49 (0.03) 0.50 0.65 0.75 0.75 0.78 0.69 (0.10)

Table 5: Results per prediction time with the 1/(N-Days) ranking. Prediction times are
represented with capital T’s since they vary per dataset.

approaches (Linear-∆, RNN-∆, and Dynamic-DeepHit) outperform the other two baseline
models on the dynamic C-Index for the diabetes mellitus dataset. However when compared
to the at-risk dynamic performance in Table 2 the performance of the machine learning
approaches is near identical to the landmarked Cox baseline. This clearly demonstrates the
potential for inflated performance estimates when the standard dynamic C-Index is used
for evaluation.
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Appendix B: Interpretation of Linear-∆ Model for COVID-19 Data

The top feature, and two other features included in the top ten features with the highest
weights for the Linear-∆ model are all related to tobacco usage which has been linked to
severe COVID-19 outcome (Gupta et al., 2021). White blood cell count, monocytes percent-
age (among elderly in particular), and lactate dehydrogenase have also all been suggested
as markers for COVID-19 disease severity (Zhu et al., 2021; Pence, 2020; Szarpak et al.,
2021). Given this, the Linear-∆ version of our model seems to have recovered important
biomarkers of COVID-19 severity with real clinical usefulness.

Name Weight Missing % Static or Dyanmic

Smokeless Tobacco Use 11.45 0.5% Static

White Blood Cell Count 11.31 53% Dynamic

Lactate Dehydrogenase (LDH) 10.90 80% Dynamic

Platelet Count -10.75 53% Dynamic

Monocytes % -10.47 59% Dynamic

Blood Urea Nitrogen 10.28 49% Dynamic

Tobacco Use Missing 10.01 0% Static

Smoking Tobacco Use 9.83 0.5% Static

C-Reactive Protein 9.59 75% Dynamic

Alanine Transaminase (ALT) -9.58 70% Dynamic

Table 6: The top ten features in terms of the linear weights produced by the Linear-∆
model. Missing percentages are computed across all encounters and all individuals.
Note that the tobacco-use-missing feature is completely observed by definition.
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Figure 5: Hazard boxplots from the Linear-∆ model for the COVID-19 data for each day
since hospital admission split by age. The more elderly patients have higher
predicted risk as expected, and those younger than 75 see their risks decreasing
at a faster rate each day than those over 75.

Figure 6: Hazard boxplots from the Linear-∆ model for the COVID-19 data at each day
since hospital admission, split by sex. There is a small but consistent difference
with males having higher risks for the first 6 days. Afterwards, the differences
between the sexes disappears.
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