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Abstract

The electrocardiogram (ECG) is a widely used device to monitor the electrical activity
of the heart. To diagnose various heart abnormalities, ECG diagnosis algorithms have
been developed and deep neural networks (DNN) have been shown to achieve significant
performance. Most of the DNN architectures used for ECG diagnosis models are adopted
from architectures developed for image or natural language domain, and their performances
have improved year by year in the original domains. In this work, we conduct in-depth
benchmarking of DNN architectures for ECG diagnosis. Using three datasets, we compared
nine DNN architectures for both multi-label classification settings evaluated with ROC-
AUC score and multi-class classification settings evaluated with F1 scores. The results
showed that one of classical architectures, ResNet-18, performed consistently better over
most of architectures, suggesting there is room for developing DNN architecture tailored
for ECG domain.

1. Introduction

The electrocardiogram (ECG) is a widely used device to monitor the electrical activity of the
heart and is essential in the diagnosis of cardiovascular disease. In order to diagnose cardiac
abnormalities, ECG signals must be reviewed by a physician with specialized knowledge.
It is a burdensome task for the physician to keep monitoring the signals that change over
time. In order to reduce this burden, models that automatically classify ECG abnormalities
have been developed and are being used as automatic diagnosis systems.

Among the models for automatic diagnosis of ECG abnormalities, models based on deep
neural networks (DNN) have shown significant performance. DNNs have outperformed
conventional methods in areas such as image classification, natural language processing,
and speech recognition (Szegedy et al., 2015; He et al., 2016; Bahdanau et al., 2014; Devlin
et al., 2018; Graves et al., 2013). For the task of image classification, the ImageNet dataset,
CIFAR-10, CIFAR-100, and other datasets have been used as benchmarks to compare the
performance of different architectures. Although ECG classification models using DNNs
show strong performance in each case, suitable DNN architectures for ECG data is unknown.
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Many models for classifying ECG data have been proposed through competitions. The
effectiveness of models using ResNet (Hannun et al., 2019), which is used for image classifi-
cation, and models using SE-ResNet has been reported (Zhu et al., 2020; Zhao et al., 2020).
Additionally, models using a Transformer architecture, which were originally introduced in
machine translation tasks, have also shown significant performance when combined with
hand-crafted features (Natarajan et al., 2020). Models proposed at competitions combine
DNNs and hand crafted features (Hong et al., 2017; Teijeiro et al., 2017), thus making it
difficult to compare and investigate pure DNN architecture suitable for ECG classification.

In this work, we compared the performance of nine DNN architectures for ECG diagno-
sis with three datasets. First, we searched hyperparameters for each DNN architecture to
determine the optimal training setting. Subsequently, we conducted multiple experiments
under different data splits and compared the average values of the test set scores. We tested
two types of tasks, namely multi-label classification and multi-class classification. In the
multi-label classification setting, models were trained to predict multiple labels simultane-
ously and evaluated with macro averaged ROC-AUC score. In the multi-class classification
setting, we selected atrial fibrillation (AF), first-degree atrioventricular block (I-AVB), left
bundle branch block (LBBB) and right bundle branch block (RBBB) as target diagnoses.
We evaluated the result of multi-class classification with macro average of F1.

Figure 1: Box plot of relative improvements of macro averaged ROC-AUC score over
ResNet-18 model on multi-label classification tasks. Box plot summarizes eight multi-label
classification tasks. Each classification task is conducted five times. Hyperparameters were
optimized for each architecture individually.

Generalizable Insights about Machine Learning in the Context of Healthcare

DNNs have driven substantial advances and demonstrated dramatic improvement of state
of the art in tasks like image recognition, machine translation and speech recognition. In the
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image domain, where most of the architectures experimented were originally proposed, their
performances have improved year by year. However, as shown in Figure 1, we observed lim-
ited improvements of classification accuracy over ResNet-18, shallow and simple architecture
compared to other convolutional neural network based architectures. This result indicates
performance of DNN architectures in the ECG domain does not necessarily correlate with
that of the image domain. Hence, suggesting a necessity of exploring and developing an
architecture suitable for target data domain, rather than just adapting architecture from
image or natural language domain.

2. Related Work

DNN architectures have been developed mainly in domains such as images and natural
language, where the amount of available data is abundant. In image classification, the Im-
ageNet dataset is used as a measure of the classification performance of an architecture.
ImageNet is a task to classify approximately 1.2 million images into 1, 000 classes (Rus-
sakovsky et al., 2015). For image classification architectures, such as ResNet (He et al.,
2016) and EfficientNet (Tan and Le, 2019), the classification accuracy on ImageNet dataset
is used to compare the performance under the same condition. As a benchmark for natural
language processing, datasets such as SQuAD (Rajpurkar et al., 2016) and WMT are used
to compare performance of various DNN architectures. On the other hand, the DNN archi-
tectures used for ECG classification adopts architectures used in image classification tasks
without comparison in ECG datasets.

Various DNN models to classify ECG data have been proposed, and Hannun et al. (2019)
have shown DNN models efficacy by comparing them to human cardiologists. Some of the
proposed DNN models for ECG classification have been proposed through data analysis
competitions, such as PhysioNet/Computing in Cardiology Challenge (PhysioNet)(Clifford
et al., 2017; Alday et al., 2020). However, the main focus of these models are to improve the
classification accuracy, thus proposed models were combined with various techniques such
as use of hand crafted features (Hong et al., 2017; Teijeiro et al., 2017; Natarajan et al.,
2020). As a result, it is difficult to compare the performance of the DNN architecture alone.

In an attempt to compare classification performance of DNN architectures on ECG
data, Strodthoff et al. (2020) have compared several DNN architectures using PTB-XL
dataset (Wagner et al., 2020). Strodthoff et al. (2020) have compared DNN architectures
like ResNet, bidirectional LSTM (Hochreiter and Schmidhuber, 1997) and Inception (Fawaz
et al., 2020) model for ECG data. In this study, we extend the work of Strodthoff et al.
(2020) in two directions: adding datasets and adding architectures.

3. Dataset

In this study, we compared DNN architectures in ECG classification tasks. Three datasets,
PTB-XL, G12EC and CPSC, were used for validation. Summary of the datasets are shown
in Table 1. The models were compared in two tasks: the multi-label classification task,
which uses the same model to classify multiple labels simultaneously, and the multi-class
classification task, which focuses on a specific diagnostic class. In this section, we describe
the brief overview of the datasets and preprocessing procedures applied to the dataset.
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Table 1: Summary of dataset used in experiments.

PTB-XL G12EC CPSC

Number of leads 12 12 12

Location of collection Germany USA China

Number of samples 21, 837 10, 344 6, 877

Length of samples 10 sec 10 sec 6 − 60 sec

Number of classes 50 64 9

Sampling frequency 500 Hz 500 Hz 500 Hz

3.1. PTB-XL dataset

The PTB-XL dataset (Wagner et al., 2020) is a 12-lead ECG dataset collected in Germany.
The dataset contains 21, 837 ECGs of 10 seconds in length recorded at 500 Hz. The label
information assigned to each sample belongs to one of the categories diagnostic, form, or
rhythm, and there are 50 labels in total. In addition, labels belonging to the diagnostic
categories are assigned information on the sub-diagnostic class, which summarizes similar
classes, and the super-diagnostic class, which further summarizes them. We constructed
sub-datasets for the multi-label classification task and the multi-class classification task
based on the label information assigned to the dataset.

In this study, for a multi-label classification task, we followed the settings of a previous
study (Strodthoff et al., 2020), and prepared six sub-datasets (all, diagnostic, sub-diagnostic,
super-diagnostic, rhythm, and form) for the experiment. For the multi-class classification
task, we used “all” sub-dataset and reassigned one of normal, target diagnostic class, or
other class labels to each sample. For each sub-dataset, we split the train, valid, and test
sets into a size of 8:1:1 based on the stratified split index originally assigned to the dataset.
After splitting, we calculated the mean and variance for each lead based on the samples in
the train set, and normalized all samples in the train, valid, and test sets based on these
values.

3.2. Georgia 12-Lead ECG Challenge Database

The Georgia 12-Lead ECG Challenge Database (G12EC) (G12, 2020) is a dataset of 12-
lead ECGs collected in the US, consisting of 10, 344 samples. The ECGs collected were
recorded at 500 Hz with a length of 10 seconds. There are 64 different labels in the G12EC
dataset, and unlike PTB-XL, there is no categorization of labels. In this study, we used 30
labels that were assigned to more than 1% of the total 10, 344 samples in both multi-label
classification and multi-class classification tasks.

Preprocessing for G12EC was performed in the same way as for PTB-XL. To split the
data into train, valid, and test sets, we used multi-label stratification to evenly split the 30
class labels. The size of the split was set to 8:1:1 as in the case of PTB-XL. After splitting
the dataset, we calculated the mean and variance of each lead based on the samples in the
train set as in the case of the PTB-XL dataset, and normalized all samples in the train,
valid, and test based on these values.
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3.3. The China Physiological Signal Challenge 2018 dataset

The China Physiological Signal Challenge 2018 (CPSC) dataset (Liu et al., 2018) is a dataset
containing 12-lead ECGs of 6 to 60 second long, collected in the intensive care unit. The
dataset has 9 labels, including normal and atrial fibrillation, with a maximum of three labels
assigned to each sample. We used publicly available 6, 877 data in our experiments.

The same preprocessing is applied to the CPSC dataset as for PTBXL and G12EC. We
use all 9 class labels in both multi-label classification and multi-class classification tasks.
We apply multi-label stratification to split the dataset into train, valid and test sets. The
size of the split was set to 8:1:1 as in the case of PTB-XL and G12EC. After splitting the
dataset, we calculated the mean and variance of each lead based on the samples in the train
set, and normalized all samples in the train, valid, and test based on these values, as in
PTB-XL and G12EC dataset.

4. Experiment

In order to compare the classification performance of DNN architectures on ECG data,
we conducted multi-label classification and multi-class classification on three datasets with
different collected regions, PTB-XL, G12EC and CPSC, and compared the performance
among the architectures1. In this section, after explaining the evaluation metrics used
in multi-label and multi-class classification respectively, we describe the structure of the
classification model and the training procedure of the model.

4.1. Evaluation metrics

In this study, we compared the performance of DNN architectures for ECG classification in
two problem settings: multilabel classification and multi class classification.

First, we explain the evaluation criteria for the multi-label classification task. In the
multi-label classification task, where a single model predicts multiple binary class labels,
we followed Strodthoff et al. (2020) and used the macro averaged value of area under
the receiver operator characteristic curve (ROC-AUC). The ROC-AUC for each class was
calculated using the predicted values for each class output by the model and ground truth
label.

For multi-class classification task, we followed evaluation criteria of PhysioNet/Computing
in Cardiology Challenge 2017 (Clifford et al., 2017), which evaluate accuracy of atrial fib-
rillation classification with three other classes. We denote F1 of the model for class c by
F1c, calculated by following equation.

F1c =
2 ×Ncc

Ncx + Nxc
(1)

where, c = 1, 2, 3 for normal, target diagnosis and samples with other class labels respec-
tively. Ncc corresponds to a number of samples with predicted class of c and ground truth
label of c. Ncx and Nxc correspond to a number of samples with ground truth labels of c and
predicted class of c respectively. The final score of the model for multi-class classification
was calculated by averaging F1 of three classes.

1. https://github.com/seitalab/dnn_ecg_comparison

5

https://github.com/seitalab/dnn_ecg_comparison


In-depth Benchmarking of Deep Neural Network Architectures for ECG Diagnosis

score =
F11 + F12 + F13

3
(2)

We prepared five different splits of train, validation and test dataset and conducted five
independent trials for each training setting. After five independent training, we calculated
the mean and variance of prediction by each model and reported those values as a final
result. We applied Welch’s t-test (Welch, 1947) to test the statistical significance of each
training setting compared to baseline with p-value of 0.05 across all experiments. To correct
the p-values for multiple tests we applied (Benjamini and Hochberg, 1995). We excluded
settings with decrease of relative improvement from statistical testing.

4.2. Model and training

Figure 2: Overview of model used for our experiments. Backbone part corresponds to
various architectures. Output of backbone was given to prediction head. Both backbone
and prediction head are jointly trained.

For the purpose of comparing the different structures of DNNs, we divided the DNN
into two parts, backbone and prediction head module, for both multi-label and multi-class
classification tasks. The structural overview of the DNN model is shown in Figure 2.

The backbone module receives 12 lead ECG data and outputs vectors of a predeter-
mined number of dimensions. The structure of the backbone architecture is based on
LSTM (Hochreiter and Schmidhuber, 1997) and Transformer (Vaswani et al., 2017), which
are typical models for handling time series data, and ResNet (He et al., 2016), ResNeXt
(Xie et al., 2017), Squeeze-Excitation ResNet (SE-ResNet) (Hu et al., 2018), MobileNetV3
(Howard et al., 2019), EfficientNet (Tan and Le, 2019), Lambda ResNet (Bello, 2021), and
Normalizer-Free ResNet (Brock et al., 2021a), which are typical architectures used in image
classification. DNN architectures used in image classification were modified to handle one
dimensional ECG data.

The prediction head receives the vectors output by the backbone and outputs vec-
tors with the number of dimensions corresponding to the number of classes in each task.
The model consists of a fully connected layer, ReLU, batch normalization layer (Ioffe and
Szegedy, 2015), dropout layer (Srivastava et al., 2014), and fully connected layer. For each
model and each task, we jointly trained backbone and prediction heads.

The details of the training setting is as follows. First, we conducted grid search to find
optimal batch size and learning rate for each backbone model. We used PTB-XL dataset
with “all” labels subset to conduct grid search. We examined batch size of 64, 128, 256 and
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learning rate of 0.01, 0.001, 0.0001 for all backbone architectures and selected the best test
set ROC-AUC score setting for subsequent experiments. The results of all grid searches are
shown in Appendix A.

For each training setting, five independent experiments were conducted with different
splits of the data. We trained each model for maximum 250 epochs with early stopping
with a patience value of 5 for every dataset and tasks. We set output size of all backbone
module to 256. We evaluated the validation set score for every 5 epochs and picked the
model with the best validation score, subsequently applied trained model on a test set to
calculate score. Final score for each setting was calculated by averaging five independent
trials. We use Adam optimizer (Kingma and Ba, 2014) with the fixed learning rate selected
by grid search for each model. Following the training setting of Strodthoff et al. (2020), we
randomly subsample 2.5 seconds length data during training. During evaluation, we split the
input into segments of 2.5 second window size that overlap by half of the window size. After
obtaining segments we applied the model to all segments and aggregated predictions for each
segment by taking maximum values for each class predictions. In multi-class classification
tasks, in order to mitigate class imbalance problems, we computed the proportion of normal
classes in each train set for target diagnosis class and other label class, and took the inverse
of the value as the weight of the class.

5. Results

5.1. Multi-label classification

Figure 3: Result of multi-label classification with eight tasks from three datasets. Values
are relative improvements of macro averaged ROC-AUC score averaged of five independent
experiments, over ResNet-18 model. “diag”, “sub.” and “super.” indicate “diagnosis”, “sub-
diagnosis” and “super-diagnosis” category from PTB-XL dataset respectively.
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First, we compared the DNN architectures in a multi-label classification task. We used
eight datasets for comparison: six datasets generated from PTB-XL and datasets from
G12EC and CPSC datasets. As an evaluation criteria, macro average of the ROC-AUC
scores for each class in the datasets were used. The relative improvement of the mean
values of five independent trials with different data splits over ResNet-18 are shown in
Figure. 3. Among the eight tasks, SE-ResNet showed the highest score in three of them:
“diag”, “sub-diagnosis”, and “super-diagnosis”. For other tasks, ResNet-50 performed best
on “all”, Lambda-ResNet on “form”, MobileNetV3 on “rhythm”, ResNeXt on the G12EC
dataset, and NF-ResNet-18 on CPSC showed the highest accuracy. However, no significant
improvement over ResNet-18 was observed for any of the architectures experimented.

5.2. Multi-class classification

Table 2: Number of normal and overlapping diagnostic labels contained in each dataset
used in multi-class classification tasks.

PTB-XL G12EC CPSC

Normal
9, 528

(43.63%)
1, 752

(16.94%)
918

(13.35%)

Atrial fibrillation (AF)
1, 514

(6.93%)
570

(5.51%)
1, 221

(17.75%)

First-degree atrioventricular block (I-AVB)
797

(3.65%)
769

(7.43%)
722

(10.50%)

Left bundle branch block (LBBB)
536

(2.45%)
231

(2.23%)
236

(3.43%)

Right bundle branch block (RBBB)
542

(2.48%)
542

(5.24%)
1, 857

(27.00%)

Subsequently, we conducted multi-class classification to examine if there were any dif-
ferences in the performance of the architectures for the different diagnostic classes. Ex-
periments were conducted on four diagnostic labels: atrial fibrillation (AF), first-degree
atrioventricular block (I-AVB), left bundle branch block (LBBB), and right bundle branch
block (RBBB), which overlapped in the three datasets PTB-XL, G12EC and CPSC. Table
2 shows the number and percentage of normal and targeted diagnostic labels in each data
set. In each experimental setting, we trained a classification model by assigning one of three
labels, normal, targeted diagnostic, and other non-normal classes, to each datum contained
in the dataset.

First, we conducted multi-class classification to predict atrial fibrillation (AF). The
results are shown in Figure 4. For the two datasets PTB-XL and G12EC, ResNet-18
showed the best performance. In the CPSC dataset, only NF-ResNet outperformed the
score of ResNet-18. However, the results of statistical hypothesis testing showed there were
no significant improvements over ResNet-18 for all architectures tested.

Subsequently, we classified the first degree AV block (I-AVB) class. The results of rela-
tive improvements over ResNet-18 architecture are shown on Figure 5. NF-ResNet-34 and
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Figure 4: Result of multi-class classification (target diagnosis: atrial fibrillation). Values
are a relative improvement of macro averaged F1 averaged of five independent experiments
over ResNet-18 architecture.

Figure 5: Result of multi-class classification (target diagnosis: first-degree atrioventricular
block; I-AVB). Values are a relative improvement of macro averaged F1 averaged of five
independent experiments over ResNet-18 architecture.
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NF-ResNet-50 outperformed ResNet-18 in all data sets. On the other hand, architectures
other than NF-ResNet were all below the score of ResNet18, except for ResNet-34 on the
CPSC dataset. We conducted statistical hypothesis testing to the obtained results, and we
did not observe any statistically significant improvements over ResNet-18 architecture.

Figure 6: Result of multi-class classification (target diagnosis: left bundle branch block;
LBBB). Values are a relative improvement of macro averaged F1 averaged of five indepen-
dent experiments over ResNet-18 architecture.

After the experiment of I-AVB, we selected left bundle branch block (LBBB) and con-
ducted multi-class classification. The results are shown in Figure 6. We obtained similar
results to I-AVB, where we observed improvements over ResNet-18 on NF-ResNet-34 and
NF-ResNet-50 for CPSC dataset. For other architectures, we observed improvements on
ResNet-34, EfficientNet b0 and Lambda-ResNet18 on CPSC dataset. The results of statis-
tical hypothesis test showed no significant improvements over ResNet-18 architecture.

Figure 7: Result of multi-class classification (target diagnosis: right bundle branch block;
RBBB). Values are relative improvement of macro averaged F1 averaged of five independent
experiments over ResNet-18 architecture.

Consecutively, we experimented multi-class classification with the right bundle branch
block (RBBB) class. The obtained results are shown in Figure 7. We observed improvement
of SE-ResNet-50, EfficientNet b0 and NF-ResNet-34 on PTB-XL dataset, and improvement
of ResNet-34 and NF-ResNet-34 on G12EC dataset over ResNet-18. On CPSC dataset, sim-
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ilar to previous three diagnostic classes, we observed improvement over ResNet-18 on NF-
ResNet-34 and NF-ResNet-50. We also conducted statistical hypothesis testing for RBBB
classification task, and as in the previous results, no statistically significant differences were
observed in any of the cases.

6. Discussion

In this study, we examined the difference in classification accuracy of DNN architectures in
ECG diagnosis. We used three 12 lead ECG datasets and tested nine DNN architectures in
two types of task: multi-label classification and multi-class classification. The results of the
experiment showed that among the nine DNN architectures tested in our experiment, there
was no architecture that statistically significantly outperformed ResNet-18 in the multi-label
classification task. In the multi-class classification task, NF-ResNet outperformed ResNet-
18 only on the CPSC dataset for all four diseases tested, and the other architectures only
outperformed ResNet-18 in some conditions.

The obtained result, the shallowest convolutional neural network based architecture
ResNet-18 performing consistently better compared to other architectures, is different from
the results in the image domain using the ImageNet dataset as a benchmark. One of the
differences between ECG data and image data is the size of the data. The ECG data is given
as a matrix of product of the series length and number of leads, and in our experiment, a
matrix of 1250 × 12 dimensions was given as an input. On the other hand, in the image
domain, for instance in ImageNet dataset, the size of the input is a 256 × 256 × 3 tensor,
and the size of data is very different. This difference may result in a difference of suitable
DNN architectures between ECG and image. The results obtained in this study suggest the
need to consider the size and architecture of the model appropriate for the data of interest.

Limitations In this work we examined the DNN architectures for ECG classification and
showed only NF-ResNet on CPSC dataset outperforms ResNet-18 architecture. As for a
hyper parameter, we determined batch size and learning rate for each training by grid
searching on the “all” label setting of PTB-XL dataset and other parameters such as type
of optimizer and output dimension of backbone architecture was fixed to predetermined
value. Searching for hyperparameters for each individual task may improve the score for
each architecture. Also, for the LSTM, performance may be improved by adding more
layers, and for the Transformer, performance may be improved by changing the structure
of the encoder. Thus, there is a possibility of obtaining results different from the conclusion
of this work by extending the search range of hyperparameters.

Additionally, in our experiment, we did not use any sophisticated training techniques
such as data augmentation or scheduling of learning rate. Although various data augmenta-
tion techniques are used in training ImageNet dataset, only augmentation by sub-sampling
was applied in our experiment. For example, Brock et al. (2021b) have shown NF-ResNet
trained with huge batch size and strong augmentation improves performance, but in this
experiment, the maximum batch size is 256. Thus, exploring the performance of each
architecture combined with various training techniques remains as a future issue.
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Appendix A.

In this section, we describe details of implementation and grid search results of DNN archi-
tectures tested in our experiments.
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A.1 ResNet

Table 3: Result of grid search on ResNet architectures.

(a) ResNet-18

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8929 0.9059 0.8871

128 0.8918 0.8922 0.8898

256 0.8946 0.8941 0.8796

(b) ResNet-34

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8972 0.9004 0.8971

128 0.8952 0.8930 0.8967

256 0.8988 0.8946 0.8810

(c) ResNet-50.

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8972 0.8987 0.8900

128 0.9057 0.8909 0.8877

256 0.8760 0.8956 0.8860

(d) ResNet-101.

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8944 0.8902 0.8800

128 0.8880 0.8998 0.8878

256 0.9027 0.8928 0.8829

ResNet (He et al., 2016) is an architecture which utilizes skip connections to enable
training of deeper models. ResNet has several variants with different numbers of residual
blocks used inside. We follow standard parameters and layer structure of ResNet applied to
image classification tasks, except we replace all 2d convolution layer and batch normalization
layer to 1d counterpart. In this work, we applied grid search on ResNet-18, ResNet-34,
ResNet-50 and ResNet-101. The results are shown in Table 3.

A.2 ResNeXt

Table 4: Result of grid search on ResNeXt architectures.

(a) ResNeXt-50.

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9073 0.8960 0.8922

128 0.9003 0.8969 0.8932

256 0.9002 0.8914 0.8794

(b) ResNeXt-101.

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9030 0.9003 0.8927

128 0.8988 0.8959 0.8873

256 0.8807 0.8808 0.8850

ResNeXt (Xie et al., 2017) is an architecture extending ResNet, consisting of multiple
paths in each block. Same as in ResNet, we implemented the standard layer structure of the
ResNeXt architecture, except switching convolutional layers and batch normalization layers.
In this work, we conducted grid search on ResNeXt-50 and ResNeXt-101, and conducted
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multi-label and multi-class classification tasks with ResNeXt-50 architecture. Results of
grid search are shown in Table 4.

A.3 SE-ResNet

Table 5: Result of grid search on SE-ResNet architectures.

(a) SE-ResNet-50

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9082 0.8977 0.8966

128 0.8994 0.9055 0.9000

256 0.9007 0.9068 0.8757

(b) SE-ResNet-101

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9066 0.8971 0.9013

128 0.9098 0.9089 0.9077

256 0.8979 0.9041 0.8996

SE-ResNet is a ResNet with Squeeze-Excitation module (Hu et al., 2018). Akin to
ResNet and ResNeXt architecture, we implemented the same structure to architecture used
for image classification and replaced convolution and batch normalization layer to 1d. We
conducted grid search with SE-ResNet-50 and SE-ResNet-101, and SE-ResNet-50 was used
in subsequent experiments. The results of grid search is shown on Table 5.

A.4 MobileNetV3

Table 6: Result of grid search on MobileNetV3 architectures.

(a) MobilenetV3-Small

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8980 0.8894 0.8777

128 0.8964 0.8965 0.8918

256 0.8778 0.8942 0.8851

(b) MobilenetV3-Large

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8934 0.8984 0.8883

128 0.8856 0.8884 0.8547

256 0.8902 0.8890 0.8624

MobileNetsV3 (Howard et al., 2019) is an architecture developed for mobile phone CPUs,
designed by neural architecture search. Two types of architecture, MobileNetV3-large and
MobileNetV3-small, exist and we conducted grid search and subsequent classification ex-
periments on both architecture. Similar to previous architectures stated above, we switched
convolution and normalizing layers to 1d and other parameters were used as is in 2d. Table
6 shows the results of grid search.

A.5 EfficientNet

EfficientNet is an architecture which uses a scaling method that uniformly scales all di-
mensions of depth,width and resolution (Tan and Le, 2019). We tested two small types
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Table 7: Result of grid search on EfficientNet architectures.

(a) EfficientNet b0

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8936 0.8923 0.8966

128 0.8977 0.8913 0.8878

256 0.8835 0.8962 0.8885

(b) EfficientNet b1

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8891 0.8902 0.9004

128 0.8909 0.9028 0.8986

256 0.8833 0.8987 0.8911

of EfficientNet architectures, b0 and b1, converted to treat ECG data. The results of grid
search is shown in Table 7

A.6 Lambda Network

Table 8: Result of grid search on Lambda ResNet architectures.

(a) Lambda-ResNet-18

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9051 0.8986 0.8880

128 0.9086 0.8805 0.8790

256 0.8895 0.8935 0.8724

(b) Lambda-ResNet-50

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.9089 0.8962 0.8729

128 0.9129 0.8820 0.8935

256 0.8906 0.8896 0.8768

Lambda Networks is an architecture with lambda layers which is an alternative frame-
work to self-attention (Bello, 2021). We implemented ResNet with lambda layers converted
for 1 dimensional ECG data in our experiments. To avoid explosion of passed values, clamp-
ing with absolute value of 20 was introduced after every block of residual connection. For
lambda convolution parameters, we used 7, 4, 16 for context spatial dimension m, embed-
ding dimension u and query/key depth k respectively. As a number of heads we chose 4.
The results of grid search is shown on Table 8.

A.7 Normalizer Free Networks

Normalization-Free network is an architectures proposed to alleviate negative aspects of
batch normalization (Brock et al., 2021b). Brock et al. (2021b) introduces multiple training
techniques such as adaptive gradient clipping for NF-ResNet. Howereve, in this work, we
only implement ResNet with convolution layers with scaled weight standardizations (Brock
et al., 2021a) converted for 1 dimensional data. The results of grid search is shown on Table
9
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Table 9: Result of grid search on Normalizer Free ResNet architectures.

(a) NF-ResNet-18

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8828 0.8907 0.8884

128 0.8882 0.9007 0.8823

256 0.8846 0.8890 0.8778

(b) NF-ResNet-34

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.5000 0.8816 0.8913

128 0.5000 0.8733 0.8837

256 0.5000 0.8767 0.8766

(c) NF-ResNet-50

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.5000 0.7190 0.8770

128 0.5000 0.7871 0.8749

256 0.5000 0.7700 0.8619

(d) NF-ResNet-101

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.5000 0.5000 0.8779

128 0.5000 0.5659 0.8691

256 0.5000 0.7216 0.8624

Table 10: Result of grid search on Bidirectional-LSTM architecture.

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.8087 0.8824 0.8587

128 0.8436 0.8741 0.8490

256 0.8511 0.8798 0.8430
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A.8 Bidirectional LSTM

Long short term memory (LSTM) is an architecture used on sequence modeling tasks
(Hochreiter and Schmidhuber, 1997). We tested a single layer bidirectional LSTM with
a hidden size of 64 in our experiments. The result of grid search is shown on Table 10.

A.9 Transformer

Table 11: Result of grid search on Transformer architectures.

(a) Transformer D2

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.6091 0.8735 0.8245

128 0.6155 0.8440 0.8322

256 0.5877 0.8306 0.7950

(b) Transformer D4

Learning rate
0.01 0.001 0.0001

Batch
size

64 0.5705 0.8501 0.8207

128 0.5628 0.8543 0.8068

256 0.5722 0.8563 0.6633

Transformer is an architectures which utilizes self-attention originally applied to natural
language processing tasks (Vaswani et al., 2017). In this work, we split input sequence data
into 50 time step chunks and applied a linear embedding layer to each chunk. After adding
positional encoder values to output of linear layer we applied transformer encoder. Number
of attention heads for each layer was set to 4, dimension of the input and output of the
encoder was set to 32, output of feed forward layer inside the transformer encoder was set
to 64. We tested 2 and 4 for the number of layers to stack, which we call “Transformer D2”
and “Transformer D4”. The results of grid search is shown on Table 11

Appendix B.

In this section we show details of experimental results mentioned in our experiments.

B.1 Multi-label classification

Table 12 and 13 shows mean values of five independent trials for multi-label classification
tasks.

B.2 Multi-class classification

Table 14, 15, 16, 17 shows results of multi-class classification tasks for AF, I-AVB, LBBB
and RBBB respectively.
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Table 12: Result of multi-label classification with 6 tasks from PTB-XL dataset. Values
are macro averaged ROC-AUC score averaged of five independent trials. Values inside
the bracket are standard deviation of five independent trials. “diag”, “sub.” and “super.”
indicate “diagnosis”, “sub-diagnosis” and “super-diagnosis” category respectively.

PTB-XL
all diag. sub. super. form rhythm

ResNet-18
0.914

(±0.011)
0.928

(±0.007)
0.932

(±0.013)
0.933

(±0.006)
0.882

(±0.011)
0.921

(±0.022)

ResNet-34
0.913

(±0.008)
0.925

(±0.005)
0.922

(±0.008)
0.935

(±0.007)
0.879

(±0.018)
0.913

(±0.027)

ResNet-50
0.916

(±0.007)
0.925

(±0.008)
0.924

(±0.011)
0.932

(±0.007)
0.856

(±0.028)
0.897

(±0.026)

ResNext-50
0.907

(±0.004)
0.925

(±0.003)
0.92

(±0.016)
0.935

(±0.008)
0.883

(±0.011)
0.913

(±0.026)

SE-ResNet-50
0.911

(±0.005)
0.932

(±0.002)
0.932

(±0.013)
0.936

(±0.004)
0.888

(±0.016)
0.931

(±0.017)

EfficientNet b0
0.909

(±0.006)
0.908

(±0.007)
0.884

(±0.047)
0.93

(±0.007)
0.838

(±0.033)
0.937

(±0.007)

EfficientNet b1
0.905

(±0.006)
0.918

(±0.01)
0.916

(±0.008)
0.933

(±0.007)
0.874

(±0.012)
0.926

(±0.029)

MobilenetV3-Large
0.902

(±0.013)
0.909

(±0.014)
0.911

(±0.009)
0.93

(±0.007)
0.872

(±0.02)
0.927

(±0.008)

MobilenetV3-Small
0.905

(±0.008)
0.901

(±0.009)
0.911

(±0.015)
0.932

(±0.007)
0.87

(±0.011)
0.938

(±0.018)

Lambda-ResNet-18
0.911

(±0.006)
0.926

(±0.006)
0.921

(±0.009)
0.935

(±0.006)
0.894

(±0.012)
0.927

(±0.017)

Lambda-ResNet-50
0.916

(±0.01)
0.92

(±0.01)
0.923

(±0.011)
0.935

(±0.006)
0.889

(±0.022)
0.921

(±0.012)

NF-ResNet-18
0.895

(±0.015)
0.901

(±0.007)
0.903

(±0.013)
0.922

(±0.007)
0.839

(±0.028)
0.924

(±0.018)

NF-ResNet-34
0.907

(±0.012)
0.908

(±0.007)
0.911

(±0.015)
0.92

(±0.006)
0.813

(±0.023)
0.909

(±0.029)

NF-ResNet-50
0.897

(±0.009)
0.902

(±0.01)
0.906

(±0.016)
0.917

(±0.008)
0.785

(±0.024)
0.908

(±0.025)

Bi-LSTM
0.898

(±0.008)
0.898

(±0.002)
0.905

(±0.022)
0.918

(±0.009)
0.852

(±0.024)
0.887

(±0.016)

Transformer D2
0.878

(±0.015)
0.891

(±0.006)
0.896

(±0.009)
0.91

(±0.008)
0.832

(±0.016)
0.881

(±0.02)

Transformer D4
0.857

(±0.025)
0.877

(±0.013)
0.883

(±0.016)
0.909

(±0.005)
0.783

(±0.032)
0.868

(±0.033)
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Table 13: Result of multi-label classification with G12EC and CPSC dataset. Values are
macro averaged ROC-AUC score averaged of five independent trials. Values inside the
bracket are standard deviation of five independent trials.

G12EC CPSC

ResNet-18 0.979 (±0.002) 0.991 (±0.001)

ResNet-34 0.98 (±0.002) 0.991 (±0.003)

ResNet-50 0.976 (±0.007) 0.984 (±0.015)

ResNext-50 0.981 (±0.002) 0.968 (±0.03)

SE-ResNet-50 0.972 (±0.012) 0.967 (±0.021)

EfficientNet b0 0.956 (±0.008) 0.974 (±0.015)

EfficientNet b1 0.976 (±0.003) 0.991 (±0.003)

MobilenetV3-Large 0.974 (±0.003) 0.991 (±0.002)

MobilenetV3-Small 0.94 (±0.017) 0.972 (±0.005)

Lambda-ResNet-18 0.971 (±0.017) 0.991 (±0.004)

Lambda-ResNet-50 0.98 (±0.003) 0.992 (±0.002)

NF-ResNet-18 0.963 (±0.027) 0.993 (±0.001)

NF-ResNet-34 0.977 (±0.002) 0.992 (±0.002)

NF-ResNet-50 0.975 (±0.002) 0.992 (±0.003)

Bi-LSTM 0.898 (±0.01) 0.926 (±0.033)

Transformer D2 0.871 (±0.009) 0.934 (±0.008)

Transformer D4 0.853 (±0.008) 0.912 (±0.016)
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Table 14: Result of multi-class classification (target diagnosis: atrial fibrillation). Values
are macro averaged F1 averaged of five independent trials. Values inside the bracket are
standard deviation of five independent trials.

PTB-XL G12EC CPSC

ResNet-18 0.862 (±0.013) 0.904 (±0.007) 0.885 (±0.044)

ResNet-34 0.851 (±0.013) 0.791 (±0.173) 0.835 (±0.107)

ResNet-50 0.772 (±0.113) 0.369 (±0.105) 0.773 (±0.038)

ResNext-50 0.852 (±0.009) 0.458 (±0.2) 0.765 (±0.053)

SE-ResNet-50 0.852 (±0.018) 0.318 (±0.044) 0.816 (±0.067)

EfficientNet b0 0.862 (±0.012) 0.371 (±0.101) 0.735 (±0.055)

EfficientNet b1 0.834 (±0.036) 0.403 (±0.174) 0.862 (±0.056)

MobilenetV3-L 0.845 (±0.021) 0.322 (±0.045) 0.846 (±0.054)

MobilenetV3-S 0.828 (±0.023) 0.368 (±0.076) 0.796 (±0.03)

Lambda-ResNet-18 0.858 (±0.016) 0.41 (±0.134) 0.842 (±0.01)

Lambda-ResNet-50 0.848 (±0.017) 0.288 (±0.001) 0.731 (±0.056)

NF-ResNet-18 0.819 (±0.02) 0.498 (±0.238) 0.846 (±0.099)

NF-ResNet-34 0.812 (±0.014) 0.84 (±0.062) 0.954 (±0.008)

NF-ResNet-50 0.801 (±0.02) 0.867 (±0.059) 0.939 (±0.017)

Bi-LSTM 0.651 (±0.043) 0.363 (±0.064) 0.577 (±0.053)

Transformer D2 0.686 (±0.071) 0.293 (±0.006) 0.622 (±0.046)

Transformer D4 0.626 (±0.074) 0.305 (±0.035) 0.609 (±0.045)
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Table 15: Result of multi-class classification (target diagnosis: I-AVB). Values are macro
averaged F1 averaged of five independent trials. Values inside the bracket are standard
deviation of five independent trials.

PTB-XL G12EC CPSC

ResNet-18 0.62 (±0.029) 0.909 (±0.013) 0.83 (±0.081)

ResNet-34 0.612 (±0.028) 0.849 (±0.091) 0.862 (±0.057)

ResNet-50 0.579 (±0.014) 0.517 (±0.17) 0.776 (±0.038)

ResNext-50 0.603 (±0.041) 0.637 (±0.186) 0.735 (±0.053)

SE-ResNet-50 0.606 (±0.053) 0.412 (±0.251) 0.727 (±0.056)

EfficientNet b0 0.587 (±0.023) 0.417 (±0.111) 0.697 (±0.028)

EfficientNet b1 0.587 (±0.009) 0.691 (±0.209) 0.74 (±0.105)

MobilenetV3-L 0.592 (±0.038) 0.583 (±0.172) 0.817 (±0.048)

MobilenetV3-S 0.571 (±0.009) 0.704 (±0.06) 0.729 (±0.057)

Lambda-ResNet-18 0.594 (±0.032) 0.621 (±0.25) 0.729 (±0.049)

Lambda-ResNet-50 0.601 (±0.024) 0.424 (±0.125) 0.57 (±0.161)

NF-ResNet-18 0.571 (±0.007) 0.798 (±0.183) 0.482 (±0.233)

NF-ResNet-34 0.652 (±0.069) 0.911 (±0.02) 0.89 (±0.11)

NF-ResNet-50 0.624 (±0.046) 0.916 (±0.012) 0.944 (±0.01)

Bi-LSTM 0.56 (±0.011) 0.366 (±0.108) 0.392 (±0.049)

Transformer D2 0.556 (±0.007) 0.287 (±0.002) 0.365 (±0.051)

Transformer D4 0.561 (±0.009) 0.298 (±0.014) 0.299 (±0.017)

23



In-depth Benchmarking of Deep Neural Network Architectures for ECG Diagnosis

Table 16: Result of multi-class classification (LBBB). Values are macro averaged F1 av-
eraged of five independent trials. Values inside the bracket are standard deviation of five
independent trials.

PTB-XL G12EC CPSC

ResNet-18 0.874 (±0.023) 0.833 (±0.047) 0.765 (±0.117)

ResNet-34 0.863 (±0.029) 0.598 (±0.179) 0.779 (±0.078)

ResNet-50 0.859 (±0.031) 0.343 (±0.042) 0.717 (±0.115)

ResNext-50 0.849 (±0.03) 0.343 (±0.081) 0.697 (±0.09)

SE-ResNet-50 0.873 (±0.019) 0.317 (±0.041) 0.695 (±0.044)

EfficientNet b0 0.866 (±0.022) 0.373 (±0.111) 0.611 (±0.182)

EfficientNet b1 0.86 (±0.027) 0.296 (±0.001) 0.783 (±0.029)

MobilenetV3-L 0.851 (±0.02) 0.474 (±0.116) 0.656 (±0.223)

MobilenetV3-S 0.864 (±0.018) 0.424 (±0.047) 0.721 (±0.07)

Lambda-ResNet-18 0.855 (±0.03) 0.376 (±0.111) 0.814 (±0.066)

Lambda-ResNet-50 0.856 (±0.023) 0.296 (±0.001) 0.583 (±0.227)

NF-ResNet-18 0.85 (±0.025) 0.667 (±0.131) 0.496 (±0.244)

NF-ResNet-34 0.836 (±0.032) 0.831 (±0.097) 0.93 (±0.039)

NF-ResNet-50 0.849 (±0.017) 0.872 (±0.052) 0.935 (±0.017)

Bi-LSTM 0.747 (±0.064) 0.39 (±0.069) 0.615 (±0.061)

Transformer D2 0.799 (±0.026) 0.362 (±0.084) 0.646 (±0.05)

Transformer D4 0.672 (±0.107) 0.33 (±0.056) 0.479 (±0.061)
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Table 17: Result of multi-class classification (RBBB). Values are macro averaged F1 av-
eraged of five independent trials. Values inside the bracket are standard deviation of five
independent trials.

PTB-XL G12EC CPSC

ResNet-18 0.766 (±0.039) 0.823 (±0.105) 0.92 (±0.028)

ResNet-34 0.738 (±0.065) 0.902 (±0.033) 0.882 (±0.053)

ResNet-50 0.673 (±0.089) 0.582 (±0.195) 0.823 (±0.047)

ResNext-50 0.766 (±0.047) 0.59 (±0.165) 0.863 (±0.047)

SE-ResNet-50 0.786 (±0.038) 0.569 (±0.191) 0.819 (±0.02)

EfficientNet b0 0.786 (±0.042) 0.577 (±0.076) 0.808 (±0.04)

EfficientNet b1 0.755 (±0.062) 0.626 (±0.223) 0.867 (±0.044)

MobilenetV3-L 0.759 (±0.084) 0.666 (±0.091) 0.884 (±0.026)

MobilenetV3-S 0.691 (±0.08) 0.502 (±0.064) 0.814 (±0.021)

Lambda-ResNet-18 0.745 (±0.061) 0.583 (±0.152) 0.784 (±0.038)

Lambda-ResNet-50 0.71 (±0.07) 0.451 (±0.165) 0.837 (±0.019)

NF-ResNet-18 0.741 (±0.063) 0.822 (±0.139) 0.883 (±0.049)

NF-ResNet-34 0.8 (±0.017) 0.848 (±0.13) 0.946 (±0.008)

NF-ResNet-50 0.763 (±0.051) 0.816 (±0.145) 0.946 (±0.014)

Bi-LSTM 0.651 (±0.04) 0.614 (±0.167) 0.784 (±0.043)

Transformer D2 0.68 (±0.046) 0.449 (±0.041) 0.694 (±0.042)

Transformer D4 0.667 (±0.085) 0.38 (±0.062) 0.609 (±0.065)
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