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Abstract

State of the art techniques for creating ML models in healthcare often require large quan-
tities of clean, labelled data. However, many healthcare organizations lack the capacity to
generate the large-scale annotations required to create and validate reliable labels. In this
paper, we demonstrate how raw data from an information-rich area of care can be exploited
without the need for mass manual annotation via the use of weak labels. We evaluate the
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proposed framework on telemetry data from the intensive care unit for application of atrial
fibrillation (AF) detection. We generate an in-house dataset of over 60,000 ECG segments
with weak labels, derived from a model trained on publicly available data. We then show
that building a deep learning model based on these weakly generated labels can signifi-
cantly improve (more than 30%) the performance of AF detection in comparison with only
using limited expert-annotated ground truth labels. We further demonstrate how weakly
supervised learning techniques can be used to augment and control the level of noise in
these weak labels. Lastly, we explore how supervised fine-tuning effects the performance
of these models and discuss the viability of leveraging weak labels for large-scale atrial
fibrillation detection and identification.

1. Introduction

As machine learning (ML) techniques gain more of a foothold in the healthcare space, many
practical challenges have arisen around the data required for developing these models. Chief
among these challenges is how to gather and handle a sufficient quantity of data for ML
algorithms, especially where ground truth labels are needed. This has been exacerbated by
the recent rise of techniques like deep learning that necessitate orders of magnitude more
samples in order to achieve state-of-the-art levels of performance.

The challenge of gathering an adequately-sized ground truth for ML-based analysis
crosses medical domains and modalities. Medical imaging, digital pathology and computa-
tional genomics all encounter similar issues with a paucity of annotated data Maslove et al.
(2017). Physiological data is no exception despite its prevalence compared to other sources.
Datasets with clean, comprehensive and sufficiently granular ground truth are rare, while
the heterogeneity of different patient populations changes how well external datasets can
generalize to a particular institution’s patient population. Most notably, there is a severe
lack of cost effective approaches for manually annotating these data. Unlike non-medical
ML domains such as general computer vision, where one can crowd-source data annotation
using systems such as CAPTCHA, medical data often require expert interpretation from
clinicians and healthcare staff, and thus would be prohibitively expensive to employ for
large scale annotation.

Intensive care unit (ICU) records of inpatient data offer a rich and diverse source of phys-
iological signals for potential analysis. These data include many vital signs (usually taken at
periodic intervals) and continuous waveform signals collected at high frequency such as elec-
trocardiography (ECG) for heart rhythm analysis, photoplethysmography (PPG) for pulse
oximetry, and arterial blood pressure (ABP) measurement via indwelling catheters. These
data are less sparse but can be very noisy and suffer from issues such as sensor drop-off
because they are sensitive to patient movement and other environmental factors. ICU mon-
itoring of ECG waveforms alone can generate GBs of data daily. The majority of these data
points come in the form of streams that are continuously displayed at the bedside. However,
the quantity of data in these streams generally limits manual inspection to deviations that
trigger alarms based on static thresholds and signal quality, or at semi-regular intervals
when a clinician deems it necessary. Moreover, clinician-created annotations at the bedside
are susceptible to collection time versus entry time drift (e.g. when a bedside nurse prints
out a 10 second diagnostic strip and when they create the corresponding medical record
entry). From a labelling standpoint, particularly for ML, these continuous data become
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sparse in much the same way that plagues the handling of vital signs. Working with raw
signals in near-real time could be especially valuable for automated monitoring and alerts
as they contain a wealth of information about the patient’s state, possible conditions, and
risk factors, all of which could be used to inform swift clinical interventions, if necessary.
As such, physiological signals are a promising proving ground for investigating methods of
generating less confident but more numerous labels.

Atrial fibrillation (AF) is one of the most prevalent arrhythmias in the ICU (Bosch
et al., 2018). Estimates vary, but between 4% and 30% of ICU patients will develop AF
during their stay (Seguin and Launey, 2010). From a diagnostic perspective, this condition
can be identified through changes in the morphology of an ECG signal. This includes loss
of the P-wave, and irregularity in the R-R interval (Hindricks et al., 2021). AF carries a
great deal of downstream risk in the ICU. It has been shown to be strongly associated with
ischemic stroke, congestive heart failure and other high-risk cardiopulmonary conditions, as
well as generally increased risk of mortality and increased length of hospital stay (Bosch
et al., 2018; Klein Klouwenberg et al., 2016). In addition to the direct risk of patient harm,
delayed recognition and intervention has risks for the quality of healthcare delivery and
can potentially incur much higher costs from more invasive and later interventions that
could be prevented through more proactive effort. Post-hoc identification of AF in the ICU
typically relies on one of three data sources: structured diagnosis codes on admission or
discharge, unstructured clinical notes, and diagnostic ECG reports taken at the bedside.
However, each of these may lack both sensitivity and specificity for the diagnosis of AF, and
only capture a brief snapshot of the overall burden of AF carried by a patient during their
ICU stay. To that end, manual expert annotation is generally required to capture details
such as paroxysmal AF and other shifts in rhythm over time. Because expert clinician and
technician time is a limited, inelastic resource, this necessitates making a trade-off between
the number of patients considered and number of data points to consider for each patient.
Even then, many studies are restricted to large academic medical institutions that can scale
up enough time and personnel.

In this paper, we propose a method for training automated AF classifiers on ICU ECG
data without large-scale manual data annotation. We detail a method for generating weak
labels on institutional data without additional metadata by pre-training models on existing
external ECG databases. We then show that weakly supervised learning can be used in
tandem with these weak labels when only a limited ground truth is available. Lastly, we
explore combining labelled and weakly labelled data for training and find that fine-tuning
does not provide any benefit over only using weak labels and weak supervision.

Generalizable Insights about Machine Learning in the Context of Healthcare

1. Many healthcare domains still lack a wealth of clean, labelled in-house data for ML
applications.

2. Training with weakly labelled data can dramatically improve model performance when
ground truth labels are limited.

3. Weakly supervised learning techniques can be used to further boost model perfor-
mance and reduce the impact of label noise.
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4. Only applying weak supervision may be superior to conducting additional fine-tuning
in the absence of a sufficiently large or representative tuning dataset.

2. Related Work

2.1. Machine Learning on ECG Data

A large body of work has explored the application of machine learning techniques on ECG
signals. Hong et al. (2020) identified over 100 studies from 2019-2020 alone with a clinically
relevant objective. Also notable are the Computing in Cardiology competitions (Moody
et al., 2001; Clifford et al., 2015, 2017) which aim to provide standard benchmarks for
evaluating ML model performance for detecting or localizing various rhythms in ECGs,
as well as other classification tasks. Recent work has increasingly focused on using deep
learning for diagnostic and rhythm detection purposes (Goodfellow et al., 2018; Hannun
et al., 2019; Strodthoff et al., 2020).

2.2. Machine Learning with Limited Labelled Data

Many studies have applied techniques to circumvent the need for large quantities of ground
truth data in ML training (Cheplygina et al., 2019). Representation learning approaches
seek to accomplish this through training a model to first understand the structure of the
underlying data. This general feature extractor can then be fine-tuned on a significantly
smaller ground truth to learn about the underlying classes. Unsupervised techniques such as
direct input reconstruction are common for segmentation-based tasks on images (Hesamian
et al., 2019), have also been applied to text (Huang et al., 2020) and physiological signals
(Perslev et al., 2019). Self-supervised learning takes a similar approach, but favours learning
representations through proxy tasks such as re-arranging permuted inputs (Taleb et al.,
2020; Sarkar and Etemad, 2020), or via contrastive methods that try to group related
samples together in an embedding space (Banville et al., 2020; Chaitanya et al., 2020).

Instead of assuming an overall lack of training labels, weakly supervised learning at-
tempts to extract signal out of inherently noisy or coarse labels. These labels may originate
from unreliable external metadata (Hu et al., 2020) or non-expert labels (Saab et al., 2020).
Other techniques allow for hierarchical or finer-grained narrowing of labels for different spa-
tial or temporal segments (Sudharshan et al., 2019; Shen et al., 2021; Isaev et al., 2020).
In the absence of any external label sources, weak supervision can also be leveraged on
predicted labels from lower-powered classifiers or collections of heuristics (Fries et al., 2019;
Ratner et al., 2020).

3. Methods

A summary of the data and training pipeline is illustrated in Figure 1. We create or make
use of three main datasets: a publicly available 12-lead ECG dataset, a small set of ground
truth labelled in-house data and a much larger set of weakly labelled in-house data.
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Figure 1: Summary of the data extraction, annotation and training process. We sample two
disjoint sets of data from the patient cohort, only one of which receives human annotations
(less than 1% of cohort). External data are used purely for training the weak label generation
model. The weak label data is then used to train the the model that is validated, tested,
and later fine tuned by expert annotated cohort.

3.1. Cohort

Out primary dataset was derived from a single-centre cohort at a tertiary North American
academic health centre. This facility has a 33-bed mixed-use medical, surgical, neurological,
and trauma ICU. Data were collected between 2015 to 2020 from GE Solar bedside monitors.
Data were captured using Bedmaster software (Hill-Rom Holdings Inc, Chicago, Ill), which
created a single file for each patient stay. Prior to analysis, each Bedmaster file was converted
from its proprietary format to XML, and then to HDF5. The resulting dataset consists over
11TB of vital sign and waveform data, including mean arterial pressure, oxygen saturation
(SpO2), and ECG leads I, II, III and V1 (each collected at 240Hz). To create our patient
cohort, we matched clinical metadata from our EMR system to find 1,043 patients with
unambiguous admission and discharge times (i.e. with no transfers between ICU beds
during their stay).

3.2. Labelled Segment Extraction

From the primary cohort, we selected 655 patients and extracted one random contiguous 10
second segment from their record for clinical annotation. We defined 8 disjoint classes to use
for annotation (Table 1). Each segment was annotated by two critical care physicians with
extensive experience in ECG interpretation. Inter-annotator agreement (Cohen’s Kappa) on

5



AF Detection with Weak Labels

Table 1: Distribution of data segments in each ECG class label, extracted from the an-
notated subset of the internal cohort. Each segment is associated with one patient. No
segments in the cohort were labelled as ventricular tachycardia/fibrillation or other tachy-
cardia

Class Count Percentage

Sinus Rhythm 502 76.6%

Atrial Fibrillation/Atrial Flutter 89 13.6%

Pacemaker 12 1.8%

Bigemeny and Trigemeny 2 0.3%

Ventricular Tachycardia/Fibrillation 0 0%

Other Tachycardia 0 0%

Other Bradycardia 1 0.2%

Noise (non-diagnostic) 12 1.8%

the entire labelled set was 0.81. Ties were broken by a 3rd critical care physician annotator
and then by consensus among all three physicians.

We set aside a random split of 70% of the data for baseline training and fine-tuning. The
remaining data were split into 15% for validation and 15% for testing. All splits were done
in a stratified fashion using label counts. Due to the low prevalence of the other classes, we
only consider AF and Sinus Rhythm for our experiments.

3.3. Unlabelled Segment Extraction

For the unlabelled dataset, we extracted a further set of 100,722 10-second segments from
the 1,043 patient cohort. For each patient, we performed a linear scan of the ECG signal
until we found a continuous 10-second interval with no sensor drop-off. This interval was
extracted as an ECG segment and incorporated into the unlabelled dataset. To reduce
the risk of redundancy among segments from the same patient, we ensured adjacent ECG
segments found during the linear scan were situated at least 1 hour apart in the patient’s
stay. Likewise, no identifiers (anonymized or otherwise) or demographic information was
retained to ensure models could not directly associate segments from the same patient or
between datasets. The mean and median segment counts for each patient were 101 and
57 respectively, with a minimum of 1 and artificially enforced maximum of 1000 segments.
To create a more balanced dataset, a random set of 267 (1.75 × the IQR + the median)
segments was sampled for each patient, for a grand total of 84,614 unlabelled segments.

We also employed the Chapman public 12-lead ECG dataset (Zheng et al., 2020) for our
experiments. This consists of 12-lead ECGs from 10,645 patients (10 seconds each) extracted
from Shaoxing People’s Hospital in China. Per the authors’ recommendations, we collapsed
the 11 rhythm classes into 4 superclasses: Atrial Fibrillation (AFIB), Sinus Rhythm (SR),
Sinus Bradycardia (SB) and Generalized Supraventricular Tachycardia (GSVT). We re-
sampled the 500Hz signals to 240Hz to match our institutional dataset, and used splits of
70% for training, 10% for validation and 20% for testing.
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Figure 2: Preprocessing and windowing an ECG segment. The raw signal (top) is band-
passed filtered and normalized. If the signal is in the training set, a single 2.5s random crop
of it is taken for training the model. For validation and test, a sliding window of 2.5s with
overlap of 1.25s is used (bottom) and the predictions are aggregated.

3.4. Preprocessing and Windowing

Only minimal processing was performed on the raw signals. Each 10 second sample was
filtered using an order 3 Butterworth filter (Butterworth, 1930) with band 0.5-40Hz fol-
lowing Clifford et al. (2006). To ensure a consistent range of data for training, each lead
of each segment was also independently min-max scaled. Per Strodthoff et al. (2020), we
took a random crop of 2.5s from the signal while training and aggregate predictions from a
sliding 2.5s window with 1.25s of overlap during validation and testing (Figure 2). This pro-
vided some limited train-time augmentation and smooths out per-label predictions during
evaluation.

3.5. Model Architecture

We employ a fully-convolutional network derived from the model in Goodfellow et al. (2018).
This model consists of 13 convolutional blocks and a final linear head. Each block is
composed of a 1D convolution, batch normalization, ReLU and 30% dropout. The number
of channels is gradually decreased from 256 to 64 while the per-block dilation is increased
from 1 to 8. Blocks 6 and 11 also incorporate max-pooling with a kernel size and dilation
of 2. To allow for input size invariance, global average pooling is applied before the final
linear layer. A full architecture diagram may be found in Appendix A. All models were
created using PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon et al., 2020).

3.6. Baseline

We trained the model described in Section 3.5 from scratch on our set of labelled in-house
data. Training was conducted over a maximum of 200 epochs with a batch size of 64,
learning rate of 0.05, Adam optimizer (Kingma and Ba, 2017) and early stopping with a
patient threshold of 10 epochs.
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3.7. Training with Weak Labels

To create the weak labelling model, we trained a copy of the CNN classifier from Section
3.5 on the Chapman dataset. All hyperparameters were identical to Section 3.6, with the
exception of a batch size of 128 to accommodate the larger training set. The resulting model
achieved a AUC of 0.91 on our Chapman test set, roughly in line with Zheng et al.’s results.

Once trained, the model was then used to generate labels via running inference on our
unlabelled data. We map the Chapman AFIB class to our AF class and the SR and SB
classes to Sinus Rhythm. Samples with the Chapman GSVT class are discarded because
there is no direct analogue in our classes. Under this scheme, we extracted 51,218 weak
AF and 16,105 weak Sinus Rhythm labels for a total training set size of 67,323. We then
trained a model directly on the weak generated labels, while using a subset of the annotated
cohort for validation and testing.

3.8. Weakly Supervised Learning

We explored two complementary approaches for weakly supervised learning on the our large
dataset of inferred model labels.

3.8.1. Confident Learning

Confident learning seeks to estimate the level of uncertainty in weak labels (Northcutt et al.,
2021). This is accomplished through estimating the confident joint Cỹ,y∗ of noisy labels ỹ
and uncorrupted or clean labels y∗ in the dataset. Much like a confusion matrix, this
is derived from counting (dis)agreements between predicted class labels and given target
labels. To create a set of noisy samples X̂ỹ=i,y∗=j , the conditional probability p̂(ỹ = j) of
each sample being misclassified is calculated. To minimize the impact of class imbalance,
samples are only included if p̂(ỹ = j) exceeds a threshold tj based on the expected per-class
confidence score.

Once noisy label candidates are found, the corresponding samples can be down-weighted
or pruned from the dataset. In our experiments, we use iterative cleaning and re-training
procedures provided via the cleanlab library (Northcutt et al., 2021). This is conducted
every 3 epochs (see Figure 5 and 6 in Appendix B for a more in-depth exploration of
different intervals), calibrated based on how often the validation loss hits an inflection point
and begins increasing. To effectively prune samples from the loss function, we keep track
of the indices of potentially noisy samples. Any predictions from those indices are then
masked with zero when they appear in a batch.

3.8.2. Co-teaching

In contrast to confident learning, co-teaching (Han et al., 2018) relies on a pair of networks
to share information about noisy samples and high confidence samples during the training
process. Instead of backpropagating the loss signal to its own weights, each network will
rank and sample low loss instances to pass to the other. This can be expressed in the
following form:
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Lf = L(θf , X, y), Lg = L(θg, X, y) (1)

if = argsort(Lg)[0, ..., R(T ) ∗ |X|] (2)

ig = argsort(Lf )[0, ..., R(T ) ∗ |X|] (3)

Lf
′ = L(θf , X[if ], y[if ]), Lg

′ = L(θg, X[ig], y[ig]) (4)

Where f and g are networks with parameters θf and θg, X is the input batch, y is the
target labels and L is the loss function and R(T ) is the proportion of samples to propagate
at epoch T . Han et al. demonstrate that this improves robustness and reduces the risk of
large deep learning models overfitting on noisy labels. The dual network architecture allows
for more heterogeneity and reduces the impact of outliers on training performance. The
proportion of low loss instances is slowly annealed over the course of training, effectively
pruning out noisy samples and providing a fine-tuning like approach for later epochs. For
our experiments, we followed the equation in section 4.2 of Han et al. (2018) and used a
sampling proportion R(T ) of 1. This was annealed to 0.75 using a τ of 0.25 over the course
of 15 epochs.

3.8.3. Combined Learning Approaches

As confident learning and co-teaching address different parts of the training pipeline, we can
combine them and evaluate if the performance of both approaches is superior in aggregate.
The hyperparameters and training procedure are unchanged from Section 3.8.1 and 3.8.2.

3.9. Fine-tuning

In addition to the above, we also fine-tune each model trained with weak labels on our
labelled training set (see Figure 1). This fine tuning follows the same training procedure
as Section 3.8 with additional steps for gradually unfreezing the model. Firstly, the back-
bone of the network up to the final linear layer was frozen for the first 10 epochs. This
reduces variance in the vital first few steps of fine tuning and prevents severe performance
degradation. After the 10 epochs, the remainder of the network was unfrozen and training
continued as before.

4. Results

We calculated the binary AUC and average precision for each training configuration on
our labelled holdout test set. We also derive F1 and specificity scores, both calibrated
using Youden’s J statistic (Youden, 1950) on the validation dataset. Figure 3 and Table
2 summarize these results. Training directly on weak labels offered a significant increase
in all metrics over the baseline. However, applying the label generation model directly
onto our labelled data was also comparable to training on the weak labels that the model
generated. Co-teaching exhibited the best overall performance with a marginal lead, but
not a significant difference compared to working with weak labels directly. Surprisingly,
confident learning did not provide any measurable advantage over training on weak labels
directly and even adversely affected performance when applied in tandem with co-teaching.
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Figure 3: Boxplot comparison of AUROC for all configurations against the fully-supervised
baseline. The “Weak Labels Only” legend refers a model that directly trained on the weak
generated labels, while validated/tested using a subset of the annotated cohort.

Similarly, fine-tuning on our labelled training data actually incurred a performance deficit
for all models. Here too, co-teaching suffers the least impact from fine-tuning and maintains
a relatively low variance compared to the other techniques.

About 10-12% of training labels were identified as potentially noisy by the confident
learning process at the first label-cleaning interval. This decreases to 2-3% after 15 epochs
(5 rounds of cleaning). Although all configurations follow a similar monotonically decreasing
trend, training with co-teaching appears to exhibit a higher variance in starting noise and
a slower initial decrease until the 15 epoch mark (Figure 4).
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Table 2: Comparison of average (and standard deviation) of curve-based (top) and thresh-
olded (bottom) performance metrics over 10 trials for each training configuration.

Performance metric AUROC Average Precision

Fine-tuning performed No Yes No Yes

Baseline 0.59 (0.09) 0.25 (0.06)
Label Generation Model 0.90 (.01) 0.66 (.06)
Weak Labels Only 0.91 (.03) 0.86 (.07) 0.63 (.10) 0.57 (.14)
Confident Learning 0.89 (.02) 0.82 (.07) 0.62 (.03) 0.52 (.13)
Co-teaching 0.91 (.01) 0.88 (.05) 0.61 (.06) 0.56 (.09)
Co-teaching + Confident Learning 0.88 (.01) 0.82 (.09) 0.38 (.08) 0.37 (.09)

Performance metric F1 Score Specificity

Fine-tuning performed No Yes No Yes

Baseline 0.45 (.16) 0.56 (0.21)
Label Generation Model 0.73 (.04) 0.81 (0.06)
Weak Labels Only 0.75 (.11) 0.73 (.10) 0.84 (.03) 0.82 (.09)
Confident Learning 0.73 (.05) 0.70 (.09) 0.81 (.04) 0.84 (.07)
Co-teaching 0.78 (.03) 0.75 (.06) 0.82 (.03) 0.84 (.03)
Co-teaching + Confident Learning 0.74 (.04) 0.66 (.12) 0.67 (.13) 0.69 (.16)

Figure 4: Trend in the estimated proportion of noisy labels from confident learning. The
interval for iterative cleaning and re-training is 3 epochs. Note that no label cleaning occurs
between epoch 0 and the first cleaning interval.

5. Discussion

In this study, we investigated and demonstrated that weak labels can help to bridge a
labelling gap for institutions without the resources to create extensive manual annotation
campaigns. Most notably, using weak labels is superior to a smaller set of clean ground
truth labels even when weakly supervised learning techniques are not applied. Jiang et al.
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(2020) found similar results when comparing inherent and synthetic label noise on natural
images, but to our knowledge this has not been explored for physiological signals.

We also demonstrate that weakly supervised learning can be used to further build on the
performance of using noisy labels directly. However, we do not find that weak supervision via
label cleaning (confident learning) is beneficial. We hypothesize that the iterative pruning
reduces the diversity of training samples available for a given class and allows the model
to skip less confident examples. This effect can be seen in Appendix B, where both semi-
frequent and extremely infrequent (i.e. equivalent to no confident learning) re-cleaning allow
the model to re-gain or retain previously pruned samples respectively. In a similar vein,
we counter-intuitively see a performance drop from fine-tuning on our labelled dataset. We
believe this adds more evidence in support of prior work that has looked into the limitations
of consensus-based hard labelling (Guan et al., 2018) and the advantages of having more
labelled samples over more labels for each sample (Khetan et al., 2018).

The absence of copious annotated data is an endemic and well-described problem for
machine learning in healthcare. From a technical perspective, there remains a wide solution
space to explore in terms of approaches for generating weak labels, classification models
and data sampling strategies. We propose two particular categories of weak labels sources
to draw from. Intrinsic features are anything that can be extracted directly from the
signal without out-of-band information. Existing heuristics based on gross features such as
heart rate, as well as derived morphological features such as R-R intervals and heart rate
variability are a promising source, as are learned feature representations from deep models.
Conversely, extrinsic features include any additional clinical data that might be associated
with a patient’s ICU stay. For example, current clinical practice advocates for the use of
antiarrhythmic drugs as a part of AF treatment; pharmacy records identifying patients
receiving these medications could be used to derive labelling functions. Other sources
include structured notes and labels that are both timestamped and commonly associated
with AF (Ding et al., 2019), or other clinical conditions such as AF risk factors (age,
history of hypertension). With weakly supervised learning, one can use this information to
find rough ranges where a patient may have experienced AF without needing to pinpoint
exact intervals on the signal to ensure accurate labels for model training.

5.1. Limitations

As a preliminary proof of concept, our study has a few limitations to consider. We focused
on one condition (AF) in a single clinical setting (the ICU) and using one data modality
(ECG). Our samples were derived from a smaller cohort and are likely less diverse than
the entire spectrum of patients that present to our ICU. This diversity was only further
reduced by filtering criteria such as excluding uncommon arrythmias or segments with more
than 50% sensor drop-off. Therefore, our approach has only been thoroughly tested on data
from one institution and may be influenced by specific attributes of our regional patient
population as well as local practice patterns. Future work may explore cross-institution
applications and whether the approach generalizes to disparate care systems as well.

Moreover, the value of weak labels from our label generation model can not be completely
decoupled from the external dataset it was pre-trained on. Specifically, it is difficult to
decouple uncertainty inherent in labels and label collection from the uncertainty that results
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from the stochastic nature of deep learning methods when evaluating results. In this paper,
we aimed to address the former challenge. However, our preliminary experiments with
varying levels of artificial noise on the Chapman dataset find that weak supervision can
result in an over 0.1 average improvement in F1 compared to using weak labels with the
label generation model when the proportion of noisy labels exceeds 25%.

5.2. Conclusion

In this paper, we evaluated the feasibility of leveraging external data and weakly supervised
learning to improve AF detection for local ICU data. Many questions remain around the
prevalence, burden and treatment of AF in the ICU. Our hope with this work is to provide
techniques for accelerating research into this condition in the critical care context, with
a focus on how it develops, and its downstream consequences, particularly as the overall
burden of AF increases. This will be used to inform decisions about treatment best practices
and answer long-standing clinical questions about the condition itself. Eventually, we hope
to extend this beyond the domain of detection to predictive modelling, such that machine
learning models may be used for early warning and monitoring directly. Lastly, we hope
that our approach provides an avenue for more democratization of ML for healthcare in
the ICU by allowing organizations to create competitive and useful models with tractable
human and computational investment.
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Appendix A.

A.1. Full Model Architecture

Figure 5: Deep learning model architecture used for training and label generation. The
model takes in input of batch size N , 4 channels (leads) and arbitrary length (shown here
as 2.5s × 240Hz = 600 samples).
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Appendix B.

B.1. Effect of Varying Cleaning Interval

(a)

(b)

Figure 6: AUROC (a) and F1 Score (b) performance metric comparison in confident learning
with differing label cleaning intervals (number of epochs). A cleaning interval of 3 epochs
shows the highest performance.
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