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Abstract

On high-resolution structural magnetic resonance (MR) images Alzheimer’s disease (AD)
is pathologically characterised by brain atrophy and an overall loss of brain tissue con-
nectivity. In this study, we harness such prior clinical domain knowledge to evaluate MR
image-based classification of AD patients from healthy controls using deliberately simple
convolutional neural network (CNN) architectures. In addition to evaluating CNN per-
formance on high resolution structural MR imaging data, we consider topological feature
representations thereof to evaluate structural connectivity. We perform an ablation study,
combined with model interpretability analysis, to evaluate the relevance of the specific im-
age region used for classification. Notably, we find that by choosing a meaningful data
representation comprising the left hippocampus, we achieve competitive performance (ac-
curacy 84 + 7%) comparable to far more complex, heavily parameterised machine learning
architectures. This implies that clinical domain knowledge may overrule the importance of
model architecture design in the case of AD classification. This opens up new possibilities
for interpretable architectures and simplifies model training in terms of computational cost
and hardware requirements.

1. Introduction

Alzheimer’s disease (AD) is the primary cause of dementia and the fifth leading cause of
death in people over the age of 65 (Winblad et al., 2016). The societal and economic
costs associated with AD are enormous and projected to significantly rise with increasing
longevity (Wong, 2020). Despite immense research efforts, there is currently no curative
treatment for AD. Pathologically, AD manifests as an accumulation of intracellular neu-
rofibrillary tangles, neuritic plaques, as well as neuronal and synaptic loss (Scheff et al.,
2006; Serrano-Pozo et al., 2011; Suemoto et al., 2017) progressing to large-scale changes
to the brain morphology. These changes comprise atrophy, global loss of cerebral connec-
tivity, volumetric shrinkage of distinct brain areas (e.g. amygdala and hippocampus), and
enlargement of the ventricles (Barnes et al., 2009). Non-invasive neuroimaging, such as
high-resolution magnetic resonance imaging (MRI), plays a major role in visualizing local
atrophy and alterations to the global tissue connectivity (Rosenbloom and Pfefferbaum,
2008). Key clinical questions to address with these images include the early detection of
disease onset (e.g. cerebral changes) and the prediction of disease progression. Solving these
questions will ultimately allow to optimise available treatment strategies. Machine learning
based image classification is well suited to facilitate the detection of imaging biomarkers.
A first step towards this goal is the distinction of AD patients from cognitively normal
subjects (CN) of comparable age.

A broad variety of machine learning approaches have previously been suggested for this
task. Generally speaking, the main challenge for imaging-based classification is the effi-
cient handling of large imaging data as well as facilitating interpretable solutions to build
trust in the model prediction. The recent trend of model architectures has been moving
towards more complex approaches, employing a combination of deep convolutional neural
networks and unsupervised learning, or ensemble models combining multiple architectures
as described in detail below. While such approaches are seen to perform well and reach
state-of-the-art classification performance, they are also often hampered with respect to
their (clinical) applicability; with increasing MRI resolution, memory requirements may
quickly become prohibitive. Hence, several approaches prefer down-sampling input data to
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achieve good performance (Jin et al., 2019; Korolev et al., 2017; Oh et al., 2019). Down-
sampling data leads to the paradoxical situation that high-resolution data, which could be
useful for an early detection of AD, is discarded. This raises the question of the necessity
of complex models. Would simpler model architectures, which effectively select features
and build on prior knowledge of the biological hallmarks of AD, be sufficient? In addition
to significantly lower computational costs, a major advantage of simpler models is their
interpretability. For instance, using interpretability aware model training can improve clas-
sification robustness, which in turn will promote trust in chosen models (Boopathy et al.,
2020). In particular in the healthcare domain, model interpretability and explainability are
essential to build trust in the suggested predictions and to allow the physician to base a
decision on models that are “right for the right reason”. As such, less complex models based
on clinical domain knowledge could be more readily translatable to clinical application.

In this paper, we investigate two conceptually simple approaches embracing the patho-
logical hallmarks of AD at both the local (brain tissue atrophy, particularly in the hippocam-
pal region) and global (loss of whole brain tissue connectivity) scale. We first evaluate the
performance of convolutional neural networks (CNNs) on subsets of full-resolution 3D MR,
images and perform an ablation study to compare different levels of biological scale and
anatomical brain areas. Secondly, we employ topological data analysis (TDA) to assess
the global changes in brain connectivity. Briefly, TDA leverages the mathematical theory
of algebraic topology in order to detect topological features capturing the structural brain
connectivity or changes thereof. We hypothesize that using simple model architectures that
include prior domain knowledge of morphological hallmarks of AD and topological features
thereof, will result in classification performance comparable to more complex model (e.g.
Oh et al. (2019); Pan et al. (2020)). Moreover, our models will facilitate fast, scalable, and
interpretable solutions through meaningful representations.

Generalizable Insights about Machine Learning in the Context of Healthcare

The hypothesis addressed in this contribution is translatable to a variety of machine learning
problems covering;:

e the optimised handling of large-scale medical imaging data in terms of computational
cost

e inclusion of prior biological insights into model design, and data preselection
e topological data analysis for the application to structural MRI data.

For machine learning, medical imaging data is challenging owing to its large dimensions,
which impose restrictions on hardware and thus exacerbate the optimisation of model hyper-
parameters in light of computationally expensive model training. We investigate the use of
patch-based models and subsequent combination through graph neural networks or logistic
regression to provide a scalable solution with minimal hardware requirements. In addition,
we observe that machine learning research is heading towards increasingly complex model
architectures and ensemble models to boost predictive performance. Such models are not
only computationally expensive, but often inherently difficult to interpret. We hypothesise
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that restricting the image to brain functional units predominantly affected by AD (for ex-
ample the hippocampus) may be more effective to guide classification while potentially also
allowing for more scalable and hence computationally less expensive solutions. Finally, the
application of TDA is a growing field in machine learning research (Carriere et al., 2020;
Hofer et al., 2017). It provides a means of feature extraction based on intrinsic connectivity
information and has previously shown success for the analysis of functional MRI data (Rieck
et al., 2020). To our knowledge, no application to structural MRI data has been reported
to date and we investigate its utility in this context. There is a clear clinical motivation
for why the analysis of tissue connectivity may be suitable for AD classification. More-
over, TDA provides an effective means of data compression which would align with the aim
to provide more scalable and computationally effective solutions for machine learning on
medical imaging data.

2. Related Work

(1* (2)* (3)* (4* (Ba)*  ay* | »)f ()T (n# (8b1g)ft (o)t

ACC 0.79 0.77 0.90 0.678 0.76 0.74 0.87 0.99 0.84 0.81 0.96
+0.08 +0.06 Hx +0.01 +0.02 wox +0.04 +0.05 wx +0.01
accHt o717 0.74 0.80
+0.07 +0.06 +0.05
AUC 0.88 0.78 Hx 0.79 Hx Hx 0.91 0.99 0.92 *x *x
+0.08 +0.04 +0.01 o +0.02 +0.08
Data ADNI ADNI ADNI ADNI, ADNI ADNI ADNI ADNI, ADNI ADNI OASIS
AIBL CAD-
Dementia

Table 1: Previously reported performance estimates for CNNs for classification of AD and
CN subjects (left: simple 3D CNNs, right: more complex models). Accuracy
(ACC), and area under the receiver operating curve (AUC) are reported. Addi-
tionally we included re-evaluations by Oh et al. (2019) since this publication used
a comparable data split and test set to our work. (1) Korolev et al. (2017); (2)
Rieke et al. (2018); (3) Béckstrom et al. (2018); (4) Liu et al. (2020); (5a,b) Oh
et al. (2019); (6) Hosseini-Asl et al. (2018); (7) Pan et al. (2020); (8) Valliani and
Soni (2017); (9) Hon and Khan (2017). *3D CNN architecture; '3D Convolutional
Autoencoder and 3D CNN; 'Ensemble based on 2D CNNs; T transfer learning
based on fine tuning existing model architectures with 2D slices. **Missing in-
formation not reported in original publication; $Three class classification (AD vs.
MCI vs. CN); YUnclear data split used in the original publication (see also Wen
et al. (2020)); it additional values reported are performance estimates provided by
Oh et al. (2019) who reproduced the original architecture. Data bases: AIBL (Ellis
et al., 2009); CADDementia (Bron et al., 2015); OASIS (Marcus et al., 2010).

Classification of CN and AD subjects has been attempted using a wide variety of machine
learning methods, ranging from linear support vector machines to deep 3D convolutional
neural network (CNN) architectures (Rathore et al., 2017; Wen et al., 2020). Data types
used for this task included genetic markers, clinical scores, cerebrospinal fluid markers, and
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a variety of MRI modalities. As the present study is based on structural MRI, the re-
mainder of this section is focusing to previous work based on this neuroimaging modality.
Table 1 summarises performance estimates for a selection of studies highlighted by Wen
et al. (2020), predominantly using data from the ADNI database as used in our work.
Early approaches typically warranted extensive preprocessing of scans to extract features,
such as cortical thickness measurements or tissue density (Rathore et al., 2017). Recent
advances in the AD classification task have been focusing on the application of deep CNNs
for end-to-end learning approaches on naive images (Wen et al., 2020). Both 2D (Aderghal
et al., 2017; Pan et al., 2020) and 3D convolutional architectures have been explored pre-
viously (Hosseini-Asl et al., 2018; Korolev et al., 2017). Approaches building on 2D brain
image slices might provide an appealing solution in a setting where computational resources
are constrained. However, in order to achieve state-of-the-art performance, large ensemble
models combining multiple architectures were required. For example, Pan et al. (2020)
selected a total of 15 base classifiers from an initial set of 123 options, each comprising a
separate CNN trained on a distinct 2D image slice. Hence, despite the use of simple model
architectures underpinning the ensemble, there was only a limited reduction in terms of
computational resources. Earlier work also considered transfer learning from natural image
classification, such as ResNet (He et al., 2016) or Inception Net (Szegedy et al., 2015) and
fine tuning these architectures’ output layers on either single (Valliani and Soni, 2017) or
multiple 2D MRI slices (Hon and Khan, 2017).

Restricting models to 2D image slices implies a loss of information, especially with re-
spect to spatial relationships. Consequently, many approaches have favoured full 3D MRIs
evaluated by means of 3D CNNs. Simple feed forward architectures with varying numbers of
convolutional layers were presented by Béckstrom et al. (2018); Korolev et al. (2017); Rieke
et al. (2018) and Liu et al. (2020); Korolev et al. (2017) also assessed residual convolutional
networks; and Hosseini-Asl et al. (2018) and Oh et al. (2019) described combinations of
3D convolutional autoencoders for feature extraction with subsequent classification by a 3D
CNN. Studies reporting results from standard feed forward architectures included multiple
layers, each consisting of at least one set of convolutions (of varying size), activation and
maxpooling (Béckstrom et al., 2018; Korolev et al., 2017; Liu et al., 2020; Rieke et al., 2018).
While no results have been reported for smaller/shallower architectures, Liu et al. (2020)
observed that wider architectures provided greater performance gains, while additional lay-
ers only provided marginal improvements. Liu et al. (2020) further assessed the impact of
a number of modifications such as instance instead of batch normalisation; magnitude of
spatial downsampling in early layers; and dataset size. They reported that subsampling,
i.e. including fewer instances of each diagnostic group, performed worse. This may be
expected given the relatively limited number of instances available and the large number of
parameters to train for deep models. Interestingly, limiting spatial downsampling by using
a larger number of small kernels in the early layers of the network improved performance.
As diagnosis of AD, especially at early stages, requires the detection of subtle differences
in the MRI scan, this observation suggests that aggregating a large collection of (highly)
localised features could improve the classification performance in more challenging cases.

Many previous studies did not consider the interpretability of their approach (Backstrom
et al., 2018; Hosseini-Asl et al., 2018) or only provided limited interpretability analysis as
part of their model evaluation (Korolev et al., 2017; Liu et al., 2020; Oh et al., 2019).
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An exception is the publication by Rieke et al. (2018), who designed their study with the
explicit goal of assessing a variety of interpretability methods in addition to classification
performance. Rieke et al. (2018) assessed two occlusion and two gradient based methods to
identify the most discriminative brain regions. Results matched previous findings from AD
research, as all methods assessed highlighted the hippocampus and adjacent regions. Given
the pathological variability of AD (Ferreira et al., 2020), however, these patterns might
vary between individual subjects. Importantly, current interpretability analysis exclusively
focused on large scale brain changes, as manifested in distinct brain functional subunits, but
did not evaluate the local imaging features driving the identification of these subregions.

3. Cohort
3.1. Cohort Selection

This study was performed on T1-weighted MRIs obtained from the Alzheimer’s Disease
Neuroimaging Initiative! (ADNI) and comprised a collection of 358 subjects, including AD
patients and healthy controls of matched age (mean age 77 + 7 years). For each subject
scans were acquired at multiple time points (yearly up to ten years) using a designated
imaging protocol?.

3.2. Feature Choices

All images were preprocessed using established pipelines: Following conversion to BIDS
format using clinica®, fmriprep* was used to perform registration to MNI reference space,
bias field correction, and brain extraction for all images. The obtained 193 x 229 x 193 pixel
images were intensity normalised. All images were initially cropped to the inner brain
volume of 120 x 144 x 120 voxels to exclude the majority of the acquired image outside
the brain. This crop was further subdivided into 64 non-overlapping image patches of size
30 x 36 x 30. These patch dimensions provided a trade-off between image detail captured
and overall patch size. Finally, the left and right hippocampus were segmented based on
the Cerebrum Atlas (Manera et al., 2020), with a uniform three voxel dilation applied to
the atlas mask to ensure full coverage. See Figure 1 for an overview of all image subsets
used for classification.

3.3. Feature Choices for TDA

Persistent homology (Barannikov, 1994; Edelsbrunner and Harer, 2010) is the flagship tool
in TDA for the extraction of topological information from a data set. We will briefly provide
some intuition of the concept; for an in-depth background on TDA, specifically in the context
of machine learning, we refer to a recent survey (Hensel et al., 2021). In order to apply
TDA in our setting, we first need a filtered simplicial (i.e. cubical—) complez, which can be
thought of as a higher dimensional analogue of a graph). In our case, as we are dealing with
3D images, this cubical complex structure is naturally given by the voxel grid together with

. http://adni.loni.usc.edu/

. In depth description of the protocol can be found here: http://adni.loni.usc.edu/methods/documents/
. https://github.com/aramis-lab/clinica

. https://fmriprep.org/en/stable/

=W N =
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Figure 1: Schematic illustration of the T1-weighted MR image subvolumina used in this
analysis (top: horizontal, middle: coronal, bottom: sagittal planes). Columns
from left to right represent: full image (193 x 229 x 193); inner brain volume
(120 x 144 x 120); image patches (each 30 x 36 x 30); hippocampus (green),
~ 33 x 46 x 48).

a filtration over intensity (i.e. greyscale). By applying a threshold value 7 € [0, 1] to a 3D
image, we obtain a cubical complex, the T-superlevel-set, by only retaining voxels whose
intensity is at least 7. The topological features of the 7-superlevel-set are computed for
7 ranging in [0, 1]. In this case, topological features can occur in dimensions d € {0, 1,2}
and represent connected components (d = 0), cycles or tunnels (d = 1) and voids (d = 2).
Persistent homology tracks the changes of these topological features as 7 is varied and stores
this information in a so-called persistence diagram for each of the dimensions d = 0,1,2. We
performed the persistence homology calculation using the tool DIPHA® on each of the image
subsets described above. In order to use persistent homology features for machine learning
frameworks, we applied the persistence image (Adams et al., 2017) vectorisation method,
which is a weighted discretisation of persistence diagrams via a Gaussian distribution. For
this step we used persim®, with standard parameters, a quadratic weighting function and
an output resolution of 50 x 50 of the resulting persistence images (PIs) in each of the

5. https://github.com/DIPHA/dipha
6. https://persim.scikit-tda.org/en/latest/index.html
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Figure 2: A schematic representation of the topological feature generation; from a 3D MRI
image to a persistence image. Persistence homology is calculated via DIPHA
and the resulting persistence diagram is then vectorised via persim to obtain
a persistence image. This pipeline is repeated for each (homological) dimension
d e {0,1,2}.

dimensions d € {0,1,2}. See Figure 2 for a schematic representation of the topological
feature generation pipeline.

4. Methods

The relevant code and used subject IDs have been published on https://github.com/
BorgwardtLab/ADNI_3DCNNvsTDA.git.

4.1. Model architecture

The underlying hypothesis of this study was that inclusion of clinical domain knowledge
could boost classification performance of AD and CN subjects to allow for simpler, compu-
tationally less demanding architectures feasible for large scale application. We performed
an ablation study through subsequential focusing of the model input data to more clinically
relevant brain regions. We initially used the full-resolution inner brain volume as input,
then evaluated geometric brain subregions (image patches), and finally, brain functional
subunits (left and right hippocampus). For each of these image subsets both a TDA and
purely image domain-based model was evaluated.

All model architectures with relevant hyperparameters are given in the supplementary
material. For image-based classification, we used simple multilayer 3D CNNs with batch
normalisation, dropout, and ReLU activation. Convolutional layers were followed by global
average pooling and two dense layers prior to the output layer. For persistence image inputs,
four-layer 2D CNNs (with comparable layers as described above) were trained separately for
each of the three homological dimensions. The obtained pre-classification layer encodings
from these three models were combined using a multilayer perceptron comprising three
fully-connected layers, with optimised L regularisation and sigmoid activation function, to
arrive at the final classification based on topological features.

For each model, hyperparameters were optimised by random sampling, which, where ap-
plicable, was performed on a patch within the hippocampus. The relevant best hyperparam-
eters were subsequently applied to all image patches. Models using optimal hyperparameters
were trained within up to 2500 epochs on a NVIDIA TITAN RTX, 24 GiB RAM GPU.
We implemented early stopping based on validation loss (binary cross entropy loss) and
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used the Adam optimiser with He uniform initialisation and balanced class weights. This
method was implemented in Python using Keras/TensorFlow. Table 2 gives an overview of
the relevant model complexity and training times for all investigated approaches.

Model I-3D P*-3D HC-3D I-TDA P*TDA HC-TDA
Input dimension [voxels] 120x144x120 30x36x30 33x45x48  50x50 50x50 50x50
Input type 3D inner brain image 3D image patch 3D HC 2D PI 2D PI 2D PI
n 270k 72k 140k 54k 54k 54k
Training time/epoch 25 s 1s 2's 10 ms 10 ms 10 ms

Table 2: Overview of the implemented model architecture with relevant input data dimen-
sions, number of trainable parameters (n), and training time per epoch. Abbrevia-
tions: TDA: Topological data analysis, PI: Persistence image, 2D: two dimensional,
CNN: Convolutional neural network, P*: Best single patch 30 x 36 x 30 voxels, I:
Inner image subset of dimension 120 x 144 x 120 voxels, HC: Hippocampus.

4.2. Patch ensemble models

We compared two strategies for combining the information of the 64 image patches: (i) lo-
gistic regression (LR) as a means of unstructured data combination, and (ii) graph neural
networks (GNN) to evaluate the importance of geometrical proximity of image patches.
Logistic regression was implemented using hyperparameters optimised via grid search, bal-
anced class weights, and the 1iblinear solver Pedregosa et al. (2011). Here, class proba-
bilities obtained from 2D/3D CNNs for each subject and patch (normalised, and centred
around a decision boundary of zero) were used as inputs.

A simple GNN comprising four graph convolutional layers, with batch normalisation,
dropout and ReLU activation function, was implemented using the pytorch-lightning
library 7. The graph structure underlying our GNN was chosen as a simple adjacency graph,
in which nodes correspond to the image patches where edges connect patches that are direct
(including diagonal) neighbours. This architecture provides a means to incorporate between
patch connectivity information. We calculated the binary cross entropy loss and used the
Adam optimizer with early stopping on validation loss. The CNN preclassification layer
encodings were used as GNN node features for each image patch. Encodings were multiplied
by the relevant output layer weights, and sorted with increasing variance between AD and
CN groups to ensure most discriminative features being located in comparable positions
for inter node operations. Figure 3 gives an overview of the GNN graph and node feature
generation. In addition to combining different image patches, also TDA and 3D CNNs were
combined in the same way by providing both, topological and structural model outputs as
features to the relevant models.

4.3. Performance evaluation

We performed 5-fold cross validation (CV) splitting patients into training (80%) and test
(20%) sets, stratified by class labels. Within the training samples a further 75-25% split

7. https://pytorch-lightning.readthedocs.io/en/latest/
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Figure 3: Overview of our model architecture using either 3D image patches or 2D persis-
tence images (PI) as input. The preclassification layer encodings (highlighted in
red) were used as node features for a GNN. In case of TDA features for all ho-
mological dimensions were included. The graph structure used to combine image
patches is illustrated on the right. Here, light blue indicates neighbouring nodes
to the central red node, with the relevant connections indicated.

was performed to obtain the final training and validation (used for hyperparameter tuning)
sets. All longitudinal images per subject were used for training, whereas a single image,
randomly selected from the longitudinal set, was selected for each validation and test patient.
Depending on the split, 490-771/189-222 train, 74/74 validation, and 73-74/73-74 test
images/subjects were used with an average train/validation/test prevalence of AD of 54 +
5%/57 £ 5%/55 + 1% for training, validation and test sets. Differences in included training
number of images arise due to differences in the total number of scans acquired for each
randomly selected subject.

Independent of the model architecture, training was repeated three times (runs) for each
CV fold and we evaluated test set prediction accuracy, area under the receiver-operating
curve (AUC), average precision score (APS), recall and precision. We averaged each metric
over individual runs, then over folds, reporting mean values with standard deviations.

4.4. Interpretability analysis

For any healthcare machine learning application it is essential to evaluate the recognised
image features that drive classification. The aim of interpretability analysis is to understand
the evidence in the given data for the assigned class, as well as evidence that points to dif-
ferent classes. An understanding of the classification mechanism, which is crucial to safety-
and trust-critical applications, starts with an assessment of the quality of the evidence with
respect to the classification task. We use gradient-weighted class activation mapping Sel-
varaju et al. (2016, grad-CAM) to obtain a post-hoc evaluation of model interpretability.
This method does not impose constraints on the CNN architecture and generates a class
activation map that highlights the contributions of image features to the class prediction.

10
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Grad-CAM is calculated using the n output feature maps of the final convolutional layer,
which are indexed by m € {1,2,...,n}. A feature map weight af, is computed based on
the average gradient of the score for class ¢ (y°) with respect to the activations along the
x-, y-, and z-axis in the three-dimensional feature map A™.

e 1 oy°
T gl ZZZ oA,

Each feature map is multiplied by its corresponding weight and summed up to obtain the
full class activation map. A ReLU function is applied to the map to preserve those image
features that support the classification decision.

map® = ReLu (Z a%Am> (2)

The resulting class activation map is converted to a heat map, highlighting the image fea-
tures most likely guiding the classification decision when changed. Grad-CAM was originally
implemented in a 2D setting. Apart from small modification to allow for 3D evaluation,
we use the originally-published code (Nguyen, 2020) to perform grad-CAM interpretability
analysis on all of our 3D CNNs.

(1)

5. Results

5.1. Image-based classification improves with clinical domain knowledge

Table 3 provides an overview of the classification performance of models using 3D image
subsets with increasing clinical domain knowledge upon selection of the input image region.
We started with classification on the full resolution inner brain region /. This model had
~ 270k parameters and trained at a speed of ~ 25s per epoch. It obtained an accuracy, and
AUC (ACC[73D = 0.79 £ 0.05, AUC]73D = 0.88 £+ 0.05, APS[’:),D = 0.91 £ 0.05) that were
comparable to previous results with similar architectures (see Table 1). In a second step
we analyzed 3D image patches. The relevant 3D CNNs comprised ~ 70k trainable param-
eters and training time per epoch dropped to ~ 1s. Depending on the anatomical location
of the patch, model performance varied as shown in Figure 4A. We observed maximum
performance if the image patch was located in proximity to the hippocampus (best per-
forming patch: ACCp,3p = 0.814£0.05, AUCp,3p = 0.89+0.05, APSp, 3p = 0.92+£0.03).
There was no further improvement if image patch models were combined, neither using LR
(ACCLRQ,D = 0.81 £0.04, AUCLr3p = 0.88 £0.03, APSrr3p = 0.90 £ 0.03), nor with a
GNN (ACCann,3p = 0.7940.03, AUCgNN,3p = 0.86+£0.04, APSgnn,3p = 0.884+0.04). We
finally evaluated a 3D CNN on the left and right hippocampus separately (~ 140k trainable
parameters, ~ 2s per epoch). Whereas results in the right hippocampus fell in the same
range as the best image patch network (ACCgcyr3p = 0.80£0.08, AUCH ¢, 3p = 0.8840.06,
APSpcr3p = 0.91£0.04), the model trained on the left hippocampus yielded the best re-
sults (ACCHCl’gp = 0.84 £ 0.07, AUCHCZ,?)D =091 £ 0.05, APSHCl’gp =093 £ 003)

11
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Figure 4: Classification APS of image patches either directly using 3D CNNs (A) or follow-
ing conversion to persistence images (B). In the background the relevant top and
bottom MR image slices of the 3D volume are shown. It can be observed that
patches within the hippocampal brain region perform best. The best performing
patch referenced in Table 3 and Table 4 is highlighted.

Model 1-3D LR-3D GNN-3D P*-3D HC left (3D)  HC right (3D)
ACC 0.79+0.05 0814004 0.82+005 081+005 0.84+0.07  0.80+0.08
AUC 0.88+0.05 0.88+0.03 0.90+003 089+0.05 0.91+0.05  0.88+0.06
APS 0.91+0.05 0.90£0.03 0914003 092+0.03 0.93+0.03  0.9140.04
Recall 0.85+0.07 0.85+0.05 0.86+003 0.85+0.06 0.87+0.08  0.85+0.07
Precision  0.7940.05 0.82+0.04 0.83+£0.07 0824005 0.84=+0.06  0.80=£0.00

Table 3: Classification performance image subsets with 3D CNNs. Results are shown as
test set (n = 74) mean values and standard deviations taken over three repeat
runs and five cross validation folds. Abbreviations: 3D: three dimensional, P*:
Best single patch, I: inner image subset of dimension 120 x 144 x 120 voxels, HC:
Hippocampus, LR: Logistic regression comprising all patches, GNN: Graph neural
network comprising all patches, ACC: Accuracy, AUC: Area under the receiver
operator curve, APS: Average precision score.

5.2. Connectivity information does not improve prediction

TDA provides an effective means of extracting connectivity features (and its higher ana-
logues; homology) of data. This yields a substantial compression of the the original 3D
image data to 50 x 50 pixel persistence images. Thus, despite comparable numbers of model
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parameters in TDA approaches (independent of original input image size, ~ 50k trainable
parameters) training was much faster than the relevant 3D CNNs (~ 10 ms per epoch) but
came at the cost of loss of predictive power. To what degree the task-relevant information
is preserved in our topological features can be seen in Table 4, which provides an overview
of the classification performance of models using persistence images. As above, we report
results for models building on different image subsets. We observed that overall TDA-based
models were inferior to image-based classification. However, general trends between mod-
els using different image subset were preserved as discussed above: Classification based on
the inner brain region, I, achieved an average accuracy of 71% (ACCjrpa = 0.71 £ 0.05,
AUC;tpa = 0.78 £ 0.03, APS;tpa = 0.79 £ 0.03). Within the range of uncertainties,
this was comparable to the performance of the 3D image-based CNN but marginally in-
ferior to the results obtained for the best performing image patch in the hippocampal
region (ACCp, pa = 0.74 £0.03, AUCp, tpa = 0.83 £0.03, APSp, tpa = 0.85 £ 0.03).
Figure 4B gives an overview of the APS within image patches of different brain regions.
Again, patches within the medial temporal lobe areas, comprising parts of the hippocam-
pus, performed best. LR-based combination of image patches did not improve performance
(ACCrr DA = 0.81 £0.04, AUCLr DA = 0.88 £0.05, APSy.r DA = 0.84 £ 0.06). How-
ever, depending on the evaluation metric, both the left hippocampus image subset alone
or patch combination through a GNN were the best approach using persistence images
(ACChcitpA = 0.74 £ 0.03, AUCHcitDA = 0.84 £ 0.04, APSHcitpA = 0.87 £ 0.03
VS. ACCGNN,TDA =0.77 £+ 0.02, AUCGNN,TDA =0.84 £+ 0.04, APSGNN,TDA =0.85 % 0.04).
As in the case of the 3D image-based models, the right hippocampus was less informa-
tive of AD status than the left (ACCrcyrmpa = 0.73 £ 0.05, AUCHcr, DA = 0.81 £ 0.05,
APSHcr DA = 0.84 £ 0.04).

Finally, when we combined TDA with 3D CNN models for the left HC through LR
we observed no further performance improvement beyond what was achieved using the
3D CNN alone: ACCHCLTDA—&-SDCNN = 0.83 £+ 0.06, AUCHC’LTDA—&-SDCNN = 0.90 £+ 0.04,
APSHOZ,TDA+3DCNN = 0.92 £+ 0.03.

5.3. Interpretability analysis

In Figure 5 we show selected 2D image slices with the relevant class activation maps for
different image subsets. For models considering a large fraction of the image (Figure 5A),
typical brain regions affected by AD are highlighted. These include the ventricles and the
hippocampus region at the base of the brain. In smaller image subsets, such as patches
(Figure 5B) and the left hippocampus (Figure 5C), groves between the brain mass are
emphasised indicating the presence of brain atrophy. In the case of the left hippocampus
it remained open for interpretation if the highlighted low intensity image regions were
associated with brain tissue atrophy or the result of a change in shape of the structure not
captured by the applied atlas-based segmentation.

6. Discussion

Informed choice of image subset allows for less-complex model architecture De-
spite choosing a deliberately simple model architecture we have demonstrated competitive
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Model I-TDA LR-TDA GNN-TDA P*-TDA HC left-TDA  HC right-TDA
ACC 0.714+0.05 0.75+0.02 0.77 £ 0.02 0.74 £0.03 0.74 £ 0.04 0.73 £0.05
AUC 0.78+0.03 0.82+0.03 0.84 +0.04 0.83 £0.03 0.84 + 0.04 0.81 £ 0.05
APS 0.79+£0.03 0.84 +£0.03 0.85 +0.04 0.85+0.03 0.87 £ 0.03 0.84 +£0.04
Recall 0.77+0.10 0.80£0.08 0.81 £0.05 0.82 £ 0.08 0.80 £ 0.08 0.80 £ 0.09
Precision 0.73+0.05 0.76+£0.04 0.78 £ 0.05 0.75 £ 0.06 0.75+£0.05 0.74 £ 0.05

Table 4: Classification performance of models using 2D Pls calculated from different im-
age subsets as inputs. Results are shown as test set (n = 74) mean values and
standard deviations taken over three repeat runs and five cross validation folds.
Results represent an agglomeration of the PI dimensions 0, 1, and 2. Abbrevia-
tions: TDA: Topological data analysis, PI: Persistence image, 2D: two dimensional,
CNN: Convolutional neural network, P*: Best single patch 30 x 36 x 30 voxels, I:
Inner image subset of dimension 120 x 144 x 120 voxels, HC: Hippocampus, LR:
Logistic regression comprising all patches, GNN: Graph neural network comprising
all patches, ACC: Accuracy, AUC: Area under the receiver operator curve, APS:
Average precision score.

classification performance for a subset of the models evaluated, particularly when restrict-
ing the image data to clinically relevant brain subregions. A model considering exclusively
the left hippocampus reached a comparable performance to far more complex model archi-
tectures previously reported (Oh et al., 2019) on the same data (see Table 1). It has been
suggested both by clinical researchers (Delacourte et al., 1999; Kilin et al., 2017; Mueller
et al., 2010), as well as machine learning studies (Oh et al., 2019; Rieke et al., 2018), that the
hippocampus is highly informative of AD status. Interestingly, we observed a performance
asymmetry—for both image features, as well as topological features—between the left and
right hippocampus. This observation is indeed in agreement with previous clinical insight.
In general, it has been observed that the left hemisphere is more strongly affected by atrophy
in AD (Laakso et al., 1995; Shi et al., 2009; Thompson et al., 2003). Recent results based
on the ADNI data further indicated noticeable left-right asymmetry in total hippocampal
volume in AD patients (Sarica et al., 2018). Importantly, cognitive performance of patients
worsened with increasing hippocampal volume asymmetry (Sarica et al., 2018). Wachinger
et al. (2016) also observed increasing deviations in the shape of the hippocampal regions
for AD patients. They suggested that shape features were even more informative of disease
state and progression than volume asymmetry. Here, despite using an atlas based segmen-
tation of the hippocampus, which may not yield absolute accurate outlines, we allowed for
visualisation of shape deviations through the dilation of the field of included voxels. The
strong performance suggests that our approach is able to provide class predictions that
align with clinical knowledge of AD, emphasising that a meaningful image representation
was obtained. Interpretability analysis further pointed towards local brain atrophy, or shape
deformation in the relevant volume, highlighting low image intensities. Despite predomi-
nant AD imaging biomarkers being related to the hippocampus and amygdala, it has been
reported, that other structural brain changes and global loss of brain tissue connectivity are
further hallmarks of AD. Such features were available for the patch-based and inner brain
image-based classification tasks. Our interpretability analysis showed that, in addition to

14



BACK TO THE BASICS WITH INCLUSION OF CLINICAL DOMAIN KNOWLEDGE

Sagittal View Horizontal View

MR Image Overlay GradcAM MR Image  Overlay GradCAM

Figure 5: Grad-CAM interpretability analysis of the 3D CNNs at different scales. A se-
lected 2D slice of the 3D MR image volume is shown together with the relevant
class activation maps for a correctly classified AD patient with respect to the AD
class. A) Inner brain image subset. B) Best performing patch in the left hip-
pocampus region. C) Left hippocampus. For visualisation purposes, images are
not drawn to scale, but preserve the original dimensions. The colour-bar indicates
the normalised gradient-weighted class activation.

the hippocampus, the ventricular volume drove image classification. However, this did not
translate to a performance benefit. Our ablation study showed, that classification based
on a large image subset was comparable to previous work with similar models (Oh et al.,
2019), demonstrating the generalizable improvement of classification performance by focus-
ing on smaller image subsets containing brain structures affected by AD. The discrepancy
in classification performance on the inner brain image and the hippocampus alone may be
explained by the more favourable ratio of model parameters to image features in the latter
case, as well as an effective preconditioning of the model, i.e. focusing on the most informa-
tive image subset. This may overrule potential other imaging features present outside the
hippocampus. Interestingly, a patch-based ensemble model based on either LR or a GNN
was unable to reproduce the classification results obtained based on the hippocampus data.
This may be due to potentially confounding features present in other brain regions.

Model interpretability analysis Previous work mostly focused on high level inter-
pretability analysis of the full MRI to reveal brain subregions, as the most discriminative
image features between AD and CN subjects. Here, we go a step further by providing
interpretability analysis at both the global and local scale of imaging features. We first
demonstrated the importance of the hippocampus for AD classification through classifi-
cation performance analysis of different image patches. In a second step, by means of
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grad-CAM, we identified that the extent of hippocampal brain tissue atrophy, or defor-
mation of this structure, was driving classification at the local scale. This is in line with
the biological hallmarks of AD in terms of progressive brain atrophy and implies that our
methodology was successful in providing image classification based on clinically relevant
features.

Topological data analysis did not further improve performance There was a
strong motivation to investigate the use of TDA for the classification of AD from MRI
data as AD manifests through a global loss of brain tissue connectivity. It was expected to
provide an ideal setting for TDA as a tool capturing overall structural connectivity. At the
same time, TDA may be regarded as a means of feature extraction, allowing for fast model
training (~10 ms per epoch) with minimal hardware requirements. We investigated whether
topological features, represented as persistence images, hold sufficient information to allow
for robust classification of AD from structural MRIs. Despite our best efforts, we were un-
able to obtain results competitive to our 3D CNN models using the TDA approach neither
at the patch, hippocampus, or inner brain image level. However, it is essential to note that
the classification performance of our TDA GNN model combining 64 image patches yielded
accuracy and AUC levels that were in the range of previous, simple model architectures (see
Table 1) making it suitable as a computationally efficient baseline model. Despite perform-
ing a substantial compression of 3D image data, topological representations are capable of
encoding pertinent information for the anticipated classification task. These observations
support our original hypothesis that topological features are relevant and can be leveraged
for AD prediction to some extent. However, due to the intensity-based evaluation approach,
image noise may impact on the persistence and number of homological features (connected
components) detected. Previous work (Briiningk et al., 2020) investigated the use of image
preprocessing techniques, such as smoothing, to mitigate this challenge but observed no sig-
nificant boost in performance. This was likely due to the loss of small, local image features
in the presence of smoothing. We consider our investigation a first step in the direction of
using TDA in connection with structural MRI data analysis, but suggest that there remains
room for exploration of optimised topological feature extraction and representation.

Limitations The diagnosis of AD per se is not an open clinical question given that other
indication, such as cognitive performance or motor skills, are readily informative of AD vs.
CN. The presented analysis should be understood as the foundation towards evaluation of
more sophisticated clinical questions in the realm of AD research, including the prediction
of the transition time of mild cognitively impaired to AD patients.

A further limitation of our approach’s focus on specific image subregions (i.e. the left
hippocampus) might arise due to the presence of heterogeneity in AD pathology (Ferreira
et al., 2020; Habes et al., 2020). While a majority of AD diagnoses can be assigned to
subtypes affecting predominantly the hippocampus (typical AD, limbic-predominant AD;
pooled frequency 76% of cases (Ferreira et al., 2020)), two further subtypes of AD have
been identified. One of these is the hippocampal sparing subtype (15% of cases (Ferreira
et al., 2020)) which would be expected to be difficult to detect using our proposed archi-
tecture and may account for the failure to correctly stratify AD and CN subjects in all
cases. Interestingly, the hippocampal sparing AD subtype shows an earlier age of onset
and occurs more frequently in males. Using the augmentation of a 3D CNN with an age
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encoding, as successfully demonstrated in Liu et al. (2020), could potentially improve our
approach’s performance in these rarer cases. The fourth subtype described in the literature
is characterised by minimal atrophy. It is unclear how restricting the input to particular
brain regions would affect a classifier’s ability to correctly predict a diagnostic label for
patients affected by this subtype.

Finally, we took first steps into the investigation of topological analysis of structural
MRI images and their relevance in the context of AD prediction. Despite our best efforts,
there remains room for improvement in classification performance based on topological
features. In addition to the limited classification performance, persistence images are inher-
ently less intuitive to interpret than imaging information. A cornerstone of any medical ML
application is to build trust in the suggested predictions—interpretability and explainabil-
ity analysis is key towards this goal. This makes it essential to address the interpretation
of topological differences for future application of this technique in the realm of medical
data. Here we provide a solution that remains interpretable at the global level through the
means of ensemble pooling of individual image patches. However, it remains unclear which
anatomical image features drive classification performance. Such findings would not only
be informative in terms of interpretability of the model but also yield a deeper insight into
how (the progression of) AD affects brain connectivity.

Summary and outlook In conclusion, we demonstrated that a well-informed choice of
the image subregion, derived from clinical domain knowledge, may overrule the need for
complex model architectures and ensemble models. Despite a strong clinical and concep-
tual motivation for the use of topological features for AD classification, models based on
connectivity features were outperformed by image-based 3D CNNs on the same data. In-
cluding clinical priors in 3D image-based models facilitates the use of comparably simple
architectures. Our model was post-hoc interpretable, fast and computationally less expen-
sive than previously reported architectures while maintaining competitive performance. We
plan to investigate this approach further for interpretablity-aware model training (Boopathy
et al., 2020) that requires a computationally efficient architecture. The grayscale intensity
distributions of MR images are subject to the characteristics of the specific machine and the
operating mode Lee et al. (2020). This implies that, without additional intensity correction,
for example based on phantom scans, these differences in intensity distribution may signif-
icantly affect feature extraction and algorithm classification performance. Interpretability-
aware models could improve the generalizability of the model to be applicable to differ-
ent clinics and scanners. Interpretability-aware training is suggested to yield more robust
predictions, which could improve model generalizability to out-of-domain imaging data ac-
quired at multiple institutions and with different MR machines. While generalizability may
also be improved using techniques from domain adaptation, we consider interpretability to
be a crucial aspect for methods in this area. Moreover, we plan to investigate AD subtypes
with the presented architecture to evaluate the importance of other functional subunits of
the brain for AD subtyping. Such information is expected to impact on patient progression
profiles and could truly advance the clinical understanding and treatment of AD.

We suggest that the proposed method of focusing analysis to clinically relevant image
subsets translates also to other domain-intensive approaches. A hypothetical examples
could be the treatment response prediction of brain tumours. Here, it is well known that
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tumour perfusion as well as anatomical location correlate with outcome. By including this
clinical domain knowledge, e.g. through performing image classification based on only the
brain region containing the tumour in addition to features encoding the anatomical location
of the selected subset, may be superior to simply performing classification on the full brain
image. This may be particularly important given a limited sample size and heterogeneity
in tumours. A second example could be the evaluation of cognitive performance of former
victims of traumatic brain injuries. Rather than including the full brain imaging data,
specific brain subregions, such as the hippocampus, could be considered on their own.
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