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Abstract

Researchers require timely access to real-world longitudinal electronic health records (EHR)
to develop, test, validate, and implement machine learning solutions that improve the qual-
ity and efficiency of healthcare. In contrast, health systems value deeply patient privacy
and data security. De-identified EHRs do not adequately address the needs of health sys-
tems, as de-identified data are susceptible to re-identification and its volume is also limited.
Synthetic EHRs offer a potential solution. In this paper, we propose EHR Variational Au-
toencoder (EVA) for synthesizing sequences of discrete EHR encounters (e.g., clinical visits)
and encounter features (e.g., diagnoses, medications, procedures). We illustrate that EVA
can produce realistic EHR sequences, account for individual differences among patients,
and can be conditioned on specific disease conditions, thus enabling disease-specific stud-
ies. We design efficient, accurate inference algorithms by combining stochastic gradient
Markov Chain Monte Carlo with amortized variational inference. We assess the utility of
the methods on large real-world EHR repositories containing over 250,000 patients. Our
experiments, which include user studies with knowledgeable clinicians, indicate the gen-
erated EHR sequences are realistic. We confirmed the performance of predictive models
trained on the synthetic data are similar with those trained on real EHRs. Additionally,
our findings indicate that augmenting real data with synthetic EHRs results in the best
predictive performance - improving the best baseline by as much as 8% in top-20 recall.

1. Introduction

Electronic health records (EHR) are now widely adopted in the US by more than 90% of
hospitals and 72% of ambulatory practices Henry et al. (2016), opening opportunities to
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advance development of machine learning (ML) and digital health solutions that improve
the quality and efficiency of care. Access to EHR data is essential to the development,
design, testing, validation, and implementation of ML solutions. But, health systems are
often reluctant to share EHR data for research and development as they ultimately assume
responsibility for the risk and the related consequences of data breaches. More often than
not, health systems simply refuse to provide access to data or, alternatively, impose sig-
nificant administrative burdens that can be costly (e.g., indemnity insurance) or result in
serious delays that threaten the success of research endeavors.

While healthcare is on the precipice of profound changes, mediated by artificial intelli-
gence, automation, and other means of transforming care Musen et al. (2014); Choi et al.
(2016); Futoma et al. (2017); Ho et al. (2014); Wang et al. (2015), a fundamental conflict
stands in the way between health systems that control access to EHR data and researchers
who need the data. A health system’s need for certainty of data security is in direct conflict
with a researcher’s need for direct access to data that accurately represents the longitudinal
history of large patient population. Current methods for resolving the conflict favor the
needs of one or the other parties, not the joint interests of both. The standard method
for alleviating EHR data privacy rely on methods such as de-identification. Moreover, even
carefully de-identified EHRs are still susceptible to re-identification attacks El Emam et al.
(2011, 2015). And the volume of the de-identified EHRs are bounded by the original EHR
data. Especially, if one wants to study patients with specific condition combinations, the
available EHR data can be very limited.

Ideally, synthetic EHRs can offer a potential solution as they yield a database that is
beyond de-identification hence immune to re-identification, while preserving temporal pat-
terns in real longitudinal EHRs. More generally, synthetic EHR methods hold the promise
to create large, realistic EHR datasets that address the needs of researchers and ensure
complete security for health systems. Recent efforts that leverage deep generative models
for synthesizing EHRs (Choi et al., 2017; Beaulieu-Jones et al., 2017; Baowaly et al., 2018),
while promising, are limited by their inability to generate sequences, instead only generat-
ing a static patient representation without temporal variation. While significant progress
has been made in generating continuous data such as images Goodfellow et al. (2014) and
audio Van Den Oord et al. (2016), generation of realistic discrete sequences, even natural
language text fragments, remains an open problem. In order to generate realistic longitu-
dinal EHRs, statistical models must account for such patient-level differences. Finally, it is
often of interest to generate EHRs of a cohort of patients suffering from either a single or
a collection of pre-specified medical conditions.

In this paper, we develop EHR Variational Autoencoder (EVA), a deep generative model
to address these challenges. Focusing on the problem of generating realistic discrete EHR
code sequences, we advance the field in several ways,

e Temporal conditional generation: We develop deep generative models that provide
conditional generation of EHR sequences specific to medical conditions of interest.

e Diverse sequence generation: We retain uncertainty in the parameters of the model
leads to diversity in sequences and is crucial for generating realistic synthetic EHRs.

¢ Efficient generation algorithm: We design a new inference algorithm that combines
stochastic gradient Markov chain Monte-Carlo (SGMCMC) and amortized variational
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inference. This allows us to efficiently perform full posterior inference over the parameters
of the model without sacrificing predictive accuracy.

e Comprehensive evaluation: Through large scale experiments on real EHR repositories
containing more than 250,000 patients and over 13 million visits, we thoroughly vet the
proposed methods and demonstrate their efficacy in generating realistic EHR sequences.
We conduct user study with a physician and also demonstrate that the generated EHRs
are realistic through predictive modeling tasks. We find that predictive models trained
on datasets augmented with synthetic EHRs improve upon those trained without, by as
much as 8% in top-20 recall.

Generalizable Insights about Machine Learning in the Context of Healthcare
EVA enables the dissemination of privacy preserving EHR data for research and development
of artificial intelligence applications in healthcare. EVA enables generation of synthetic EHR
datasets that can be easily shared across institutions and . The proposed method enables
generation of temporal EHR sequences that can be used for development predictive models.
We show the using synthetic datasets can be used to augment real datasets to further
boost the performance of predictive models. Synthetic EHR datasets can also be useful for
other application development purposes in healthcare settings. EVA enables generation of
synthetic EHR datasets that can be easily shared across institutions.

2. Generative Models for Electronic Health Records

To formalize the system, we assume the data is comprised of a cohort of IV patients. Each
patient is represented by a variable length sequence xy, 1.1, = {Zn,1,Zn2,...,Tn1,} of Ty
visits to a health care provider. Each visit x, ; is a V-dimensional binary vector, where
T ¢[v] = 1 if the v'® code for patient n was observed at visit ¢ and 0 otherwise. V denotes
the cardinality of the set of possible codes.

We consider directed latent variable models endowed with autoregressive likelihoods Bow-
man et al. (2015) for modeling x, 1.1,,. Here, each patient is modeled with a single latent
variable and the sequential dependencies in her records are captured via autoregressive like-
lihoods. Since the likelihoods specify an explicit parametric distribution over the observed
records, the discreteness of x, 1.1, presents no particular challenge to learning.

Variational Autoencoders (VAEs) refer to a particular combination of a latent vari-
able model and an amortized variational inference scheme Kingma and Welling (2013). Con-
sider a statistical model that specifies the marginal distribution of an observed data instance
x via a parameterized transformation of a latent variable z, p(z;6) = [ p(z | z;0)p(z)dz.
The parameters 6 are shared amongst all data instances, while the latent variables z, typ-
ically endowed with standard Gaussian priors p(z) = N(0,I), are data instance specific.
Given a collection of instances, D = {z1,...,z,}, the model can be learned by maximiz-
ing the marginal likelihood p(D | #) with respect to 6. Unfortunately, the marginalization
over the latent variables is, in general, intractable. To cope with fact, variational inference
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Figure 1: Graphical model summarizing the conditional dependencies assumed by the proposed
conditional model EVA.. Patient specific latent variables z,, are defined as a noisy linear
combination of disease specific representations, hg, z, ~ N(Hn, + b,,7I). Patients
are allowed to deviate from the population through individual biases b, and by using
T = Yn © o(wy,) to weight differently distinct disease representations. y, is an observed
binary vector indicating the diseases afflicting patient n and o(w,) denotes a logistic
transformation applied to each element of w,. The EHR sequence z, .7, is generated
by transforming z, using the network architecture shown on the right. The parameters
of the network are collectively denoted by 6.

instead maximizes a tractable lower bound to the marginal likelihood,
p(D;0) > L(0, 6)
= Eglenfeni) 0 p(@n | 203 0)] = KL(a(zn | 205 6) || p(20)), (1)

where ¢(z, | xn;¢) is a tractable surrogate to the true posterior p(z, | z,). Variational
autoencoders amortize the cost of inferring {z1,...,zn} by using an inference network
shared across all data instances to parameterize the approximate distribution, q(z, | z; ¢),
where ¢ denotes the parameters of the inference network. The parameters of the model and
the inference network, 6 and ¢, are learned jointly by maximizing Equation 1. Owing to
the architectural similarity with standard autoencoders Ackley et al. (1987), the inference
network and the generative model are sometimes referred to as the encoder and the decoder,
respectively.

Sequential data VAEs have been extended to modeling sequence collections, D =
{z11:1,,-..,2N,1:Ty }, and are relevant to modeling clinical encounters within patients are
sequences. A popular approach Bowman et al. (2015) is to retain a sequence-wide latent
variable z, and to parameterize the conditional distribution p(x, 1.1, | 2n;0) with pow-
erful autoregressive models, such that the distribution over the elements of a sequence is
given by [[, p(@nst | Tn1,...,Tni—1,%n;0). Various flavors of autoregressive architectures
for parameterizing the likelihoods have been explored, including long short-term memory
networks Bowman et al. (2015), one-dimensional deconvolutional networks Miao and Blun-
som (2016), and masked and dilated convolution variants Yang et al. (2017), which were
originally proposed for sequence-to-sequence machine translation.
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2.1. Electronic health record Variational Auto-encoders (EVA)

Given N longitudinal EHRs, D = {x1 1.1,,...,2N,1:Ty }, €ach patient is generated as

zn ~ N0, 1) wnem,, | 20,0 ~ p(@ner, | fol(zn)), (2)

where 2z, € RP and I is a D x D identity matrix. The likelihoods are parameterized by a
non-linear function fy — a composition of a series of one-dimensional deconvolutions and
convolutions, parameterized by a set of parameters collectively denoted 6 (Figure 1). The
deconvolution operations progressively up-sample the latent representation z, to match
the temporal resolution of the sequence, x, 1.1,. The sequential dependencies in zj 1.1,
are then modeled via a series of masked, and dilated 1-D convolutions on the up-sampled
representation. Dilation allows the effective receptive field size to grow exponentially with
depth, while the masking operation ensures that x,; is independent of future observations
Tn,>t,

p(zn,1:m, | fo(2n)) = p(n | E(fo(2n)))

- 3)

Hp(xn,t ‘ ’g(fe(xn,t—h <y Tpt—s, Zn)))a

t=2
where s = (u — 1)) ,(dg) + 1 is the number of past observations we condition on and is
specified as a function of the convolutional kernel size u, and dilation factor dy, for layer £. In
a preprocessing (see the supplement for details and alternatives) step, we group frequently
co-occurring codes and model each visit x,, ; as a categorically distributed random variable,
p(xns | €(.)) = Categorical(zy ¢ | £(.)), where ¢ is the softmax function.

Our choice of f is inspired by recent work that has found similar architectures to be
effective at text generation Semeniuta et al. (2017); Yang et al. (2017). However, our
approach differs in that we endow 6 with its own prior distribution p(6). We find that this
simple modification when combined with an inference algorithm that infers a full posterior
distribution over 6 rather than point estimates, leads to improved generative performance.
We place a standard normal prior over each element of 6, 6; ~ N(0,1). Based on this
forumlation, we can summarize the joint distribution (Figure 1) as

N
p(D,{za}n1,0) = p(0) [ [ P(z)p(@n1 | £(fo(20)))
- n=1
[Tp(zne | € fo(znis - nts zn)))- (4)

t=2

2.2. Hierarchically Factorized Conditional (EVA.)

EVA as we will see in the experiments, is able to produce realistic EHR sequences. However,
it has a few shortcomings. First, EVA does not allow for controlled generation of sequences.
While generic EHR sequences are interesting, it is far more useful to have the ability to
generate sequences of patients suffering from specific medical conditions, for instance, heart
failure or breast cancer due to their significant clinical impact and complex etiology. A
second shortcoming stems from the fact that the latent representations z, are responsible
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for modeling both differences between different clinical conditions, as well as individual
differences between patients with identical clinical conditions. EVA thus lacks knobs for fine
grained control of the generation process — one cannot use EVA to generate patients who
all suffer from the same set of ailments but with different severities.

In this section, we address these shortcomings through a hierarchically factorized con-
ditional variant of EVA, denoted EVA.. We assume that each patient has an available set of
meta-data indicating the set of clinical conditions of interest (e.g., whether patient has
heart failure or not) in addition to their EHR sequence. We encode this information
through a K-dimensional binary vector y,, where y,; = 1 indicates that patient n was
diagnosed with condition k and K denotes the number of clinical conditions of interest. We
represent each condition using a D-dimensional latent variable hy ~ N(0,Ip) and share,
H=[h,...,hk] € RP*K them across patients. Sparse linear combinations of hq, ..., hg
then engender patient specific representations z,. The sparsity stems from y,, and ensures
that only representations that are expressed by patient n contribute to z,,. To model the
heterogeneity among individuals, we allow patient specific weightings w, ~ N (0,Ix) of
the condition specific representations. Furthermore, we allow the patient representations to
systematically vary from the mean through patient-specific biases b, ~ N (0,vIx), where
v is a hyper-parameter controlling the scale of the bias

zn =Hm, + by +¢€, e~N(0,7Ip), 7 =yn® o(wy). (5)

Here, o(wy)r = (1 4+ e %»#)~1 denotes an element-wise logistic function, and ® denotes a
element-wise multiplication. The non-zero elements of m, m,; may be interpreted as the
intensity with which patient n expresses condition k. The constraint of these intensities
to the [0, 1] interval both stabilizes training and renders the model more interpretable (by
ensuring all intensities are positive). Finally, the conditional distribution p(zy 1.1, | 2n) is
defined identically to EVA, Equation 3. The model can then be summarized as (Figure 1)

N
p(D, Z,0,H | n) = p(0)p(H) [ | p(wn)p(bn | 7)
n=1

p(zn ’ Haﬂmbn?T)p(xn,liTn ‘ fG(Zn))v (6)

where 7 = {{yn }_1, 7,7} and Z = {zp,, wn, by }_;. We set both the scale hyperparameters
7 and 7 to 0.1. A small 7 encourages the model to explain the observations via the linear
combination of condition specific codes, Hm,, + by, rather than white noise. Similarly, a
small v value encodes the prior belief that patients only exhibit small systematic differences
from the cohort at large. Given a trained model, we use ancestral sampling to generate
synthetic sequences.

We end this section by contrasting hierarchical conditional EVA against supervised
VAE Kingma et al. (2014), zn | p(2), yn ~ ), Tn | 2n,Un ~ P(@n | f(Yn,2050)), a
popular conditional variant of the VAE. In the supervised VAE the latent variable z,, must
account for both effects arising from different medical conditions as well as those arising
from individual differences among patients, learning an entangled representation. Further,
p(y) is typically assumed to be a categorical distribution. This makes it difficult to model
patients that exhibit more than one condition. In general, such patients can be modeled by



EVA

the supervised VAE by only resorting to exponentially large representations of ,. In con-
trast, EVA, is able to efficiently model such patients while learning population wide medical
condition representations in addition to patient-specific representations.

3. Learning and Inference

To address the accuracy and efficiency goals, we find it useful to treat the patient-specific
latent variables, z,, wy, by, separately from the global variables shared across all patients, H
and 6. The former grow with the dataset, and for larger datasets their sheer numbers pose
a significant computational challenge. Moreover, we need to infer these latent variables for
patients encountered at test time and, thus, require the inference process for these variables
to be particularly efficient.

Estimating patient-specific variables z,, w,, b,: We adopt amortized variational infer-
ence Gershman and Goodman (2014). Similar to VAE, we employ inference networks that
allow us to amortize the cost of inference across patients. We begin by approximating the
posterior over these latent variables with the following tractable approximation,

N
Q(Za w, b ’ D, {yn}ﬁ[ﬂ) = H Q(zm W, by, ’ Tn,1:Th yn)

n=1

N
= H H 4o, (an | xn,l:Tnayn)v (7)

n=1ac{z,w,b}

and using inference networks that condition on both the sequence x, 1.1, and the clin-
ical condition vector y,. The conditioning could be implemented by feeding the infer-
ence network with a concatenation z, 1.1, and y,. However, such an approach is prob-
lematic because of the sequential nature of x, 1.1,. It is unclear whether ¥, should be
concatenated to every z,; € 1.1, or to some pre-specified z,;, € x,1.71,. We cir-
cumvent such issues by instead adopting a product-of-experts parameterization of the
variational approximation, ¢s,(zn | Tn1:Tn,Un) = ¢(2n | Tn1:1,)0(zn | Yn) = N(zn |
Istmy, (25,11, ), 1stmg (20,17, ) )N (20 | mlp, (yn), mlp, (yn)), Where we employ a bi-directional
long short term memory (bi-lstm) network parameterized diagonal Gaussian to represent
q(zn | zn) and a feed-forward multi-layer perceptron (mlp) parameterized diagonal Gaus-
sian to represent q(z, | yn). Following standard practice, we specify the diagonal variance
parameters through a soft-plus transformation of the network outputs. It is then straightfor-
ward to combine the two distributions, by noting, N(a | p, ) = N (a | p1, X1)N (a | p2, X2),
where X1 = 271 + 95! and ¥ = B7 g 4+ 25 . We define the variational approxi-
mations for b,, and w,, analogously, arming them with their own bi-Istm and mlp inference
networks. Similar product of experts inference networks Wu and Goodman (2018) have
previously been used for multi-modal learning.

Estimating global variables H and 6: Since the global variables H and 6 are shared
across patients, amortization is unnecessary. Instead of limiting ourselves to crude approxi-
mations for H and 6, we explore the the full posterior over these variables through stochastic
gradient Markov chain Monte Carlo (SG-MCMC). In order to proceed, SG-MCMC methods
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need gradients of the marginal density, p(D, 6, H | n) with respect to H and 6,
VQ,H In p(Da 07 H | 77)

=VemIn / p(D,0,H, {wy, zn, by }_, | n)dw,dz,db,

N
% Z Vo In p(xn,l:Tyme ‘ ZZ)

n=1

+ Vi In p(z, | b, yn, H) + Vg In p(6) + Vi In p(H),

where, wy, ~ ¢, (wy, | xn,lszyn)? by, ~ 4, (bn | $n71:T7L7yn)a and z; ~ qg. (2n | Tn,1:T0 s Yn)-
Then, we arrive at the approximate proportionality through a single sample importance
sampling estimate of the intractable integrals over wy,, b,, and z,. The derivation is available
in the supplement. With the gradients in hand, we use preconditioned-SGLD Li et al. (2016)
to sample from the marginal posterior, p(f, H | D, n).

Finally, to learn the inference network parameters, we minimize the Kullback—Leibler
divergence between the variational approximation specified in Equation 7 and the marginal

posterior over patient-specific variables KL(q(w, z,b | D)||/p(w,z,b | 0,H,n)p(d, H |
D,n))dfdH, or equivalently by minimizing,

J(¢w7 (bZa (Z)b | Hsa 98) = _Eq(z) [Z In p(xn,lzTn ‘ Zn 95)]
~ Eq(2)a()a(w) ) 10 p(zn | bn, wn, B, 7)]
- Z H(Q¢z (Zn ‘ xn,l:Tnayn))

+ ZKL(Q%(bn | Zn,1:m,Yn) (| P(0n | 7))

n

+ > KL(gp, (wn | 17,5 9n) || p(wn)), [b]

where H(q) is the entropy of the approximation ¢(z) and 6°, H® ~ p(6, H | D,n). Putting
it all together, our algorithm proceeds by cycling between a pSGLD step and an ADAM
gradient step to minimize Equation 8, alternating between minimizing the posterior diver-
gence of the local variables and sampling from the posterior of the global variables. We use
standard reparameterized gradients Kingma and Welling (2013) to handle the intractable
expectations in Equation 8. Both steps are amenable to mini-batching and we use only
a mini-batch of D in practice. A sketch of the algorithm is available in the supplement.
Inference in the unconditional model EVA is simpler and only requires a few minor tweaks
— we only need to sample 6 via SG-MCMC and since no meta-data y is available, the
variational approximation does not require a product-of-experts structure.

We use SG-MCMC to sample the global variables. This requires the gradient of the
marginal distribution p(D,0,H | n). We use an importance sampling approximation to
estimate, Vg In p(D,60,H | n). The steps in the inference algorithm are summarized in
Algorithm 1.
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Algorithm 1: EVA, inference
Input : D = {zn1m, i1, {Yndnn
0, ow, ¢, op H, n < Initialize parameters
for A fixed number of iterations do
Dy = {zn,1:T,, }ﬁ/le + Random minibatch of M patients
For n € D), Sample local variables from their variational approximations, w; ~
q¢w(wfl ’ Ty Yn), by ~ q¢b(bfz ’ TnyYn), and z; ~ 4o (2 ’ T Yn)
Use w;, b5, x5 to form an one sample importance sampling estimate of the marginal
p(H, 0 ’ {xn71:TTL}TLM:].7 77)
Sample 6°, H* ~ p(H, 0 | {xn,lzTn}ﬁip n)
Update g, d, @y < ADAM(I (G, b, 6y | H, 69))

end
Output: 6, ¢y, ¢., dp, H

4. Related work

Generative Models have seen a resurgence in interest of late. Latent variable based
deep directed models — Generative adversarial networks (GAN) Goodfellow et al. (2014),
variational autoencoders Kingma and Welling (2013) and their variants have been effective
at generating a wide variety of content from natural images to chemical structures Gémez-
Bombarelli et al. (2016). While similar, there are important distinctions between the two
model classes. VAEs specify an explicit parametric distribution over observations, GANs, on
the other hand, are likelihood free and define a stochastic procedure for directly generating
the data. Learning in GANs proceeds by comparing the generated data with real data
and backpropagating gradients to guide the stochastic data generating procedure. Non-
differentiability induced by discrete data make a direct application of GANs intractable.
While a few adaptations of GANs to discrete data have been attempted Yu et al. (2017), by
and large the problem remains challenging. In contrast, generating non-continuous data in
the VAE framework is tractable as long as an appropriate discrete density can be specified
for the data. Autoregressive distributions, when suitably defined, are able to account for
correlations exhibited by the data and prove convenient for specifying flexible densities
over spatio-temporal sequences Salimans et al. (2017). VAE models combined with such
autoregressive densities have shown promise in generating discrete text fragments Bowman
et al. (2015); Hu et al. (2017); Yang et al. (2017). Our models, EVA and conditional EVA,
are both examples of this category.

Conditional variants of VAEs Kingma et al. (2014); Narayanaswamy et al. (2017) have
previously been explored to learn from limited labeled data Kingma et al. (2014) and recover
disentangled representations Narayanaswamy et al. (2017) Our work extends these models
by introducing hierarchically factorized latent variables, with the upper level of the hierarchy
shared across the population. By explicitly disentangling factors of variations stemming
from medical conditions from those arising from individual differences among patients, the
representations learned by our models are easier to intuit. Controlled generation has also
been explored in Hu et al. (2017), unlike us they do not attempt to infer population wide
latent variables and have to rely on continuous relaxation to discrete data. Others have
explored hierarchical VAEs Hsu et al. (2017), but they are non-conditional and unable to
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exploit available meta-data. Also tangentially related are temporal extensions of VAEs that
endow each time step of a sequence with its own latent variable Chung et al. (2015). Such
models primarily care about modeling the temporal dynamics of the sequences but do not
attempt to recover sequence level or population level representations.

Synthetic EHR generation In spite of the widespread adoption of EHR systems by
health care systems, this data remains largely siloed owing to patient privacy concerns.
Synthetically generated EHRs hold the promise of alleviating such issues and have received
some attention in the past. Systems that rely on hand-engineered rules Walonoski et al.
(2017); McLachlan et al. (2018) and that are tailored to specific disease conditions Buczak
et al. (2010) have previously been explored. However, these tend to be brittle and are
difficult to generalize beyond the particular diseases considered while developing the system.
More closely related to our work are recent efforts that leverage deep generative models for
synthesizing EHRs (Choi et al., 2017; Beaulieu-Jones et al., 2017; Baowaly et al., 2018;
Esteban et al., 2017; Yoon et al., 2019). While promising, these approaches are limited by
their inability to generate sequences, instead only generating a single patient representation
aggregated over time. They thus lose important temporal characteristics of real world
longitudinal EHRs. Our work extends this line of work by generating sequential health
records.

5. Experiments

In this section, we vet the proposed methods along different aspects:
e Capturing EHR statistics: the degree to which they model real world EHRs,

e Usefulness of synthetic EHR: their ability to generate realistic and useful synthetic
data,

e Privacy: assessment of the privacy preservation.

We begin by describing our experimental setup and data and then proceed to describing
the experiments and baselines.

Source data The data used in this study was sourced from Sutter Health Palo Alto
Medical Foundation. It consists of 10-years of longitudinal medical records of total 258,555
patients with 207,384 training and 51,171 testing amounting to over 13 million visits. This
dataset was cleaned and preprocessed to obtain patient level sequences. A detailed descrip-
tion of the preprocessing as well as summary statistics describing the data are available in
the supplement.

Methods for comparison We compare several approaches proposed for modeling se-
quential data:

e LSTM: Our first baseline consists of a language LSTM model. For a controlled compar-
ison, we use bi-directional LSTM networks to parametrize the inference network for all
models.

10



EVA

e VAE-LSTM: We also compare against VAE based models that have been used for model-
ing discrete sequences. This includes, VAE with an LSTM decoder (VAE-LSTM) Bowman
et al. (2015)

e VAE-Deconv: We replace LSTM with a deconvolution network to develop a variant called
VAE-Deconv Semeniuta et al. (2017).

e EVA: This model is our proposed model (Section 2.1).

e EVA.: This is the conditional variant of EVA (Section 2.2).

In all subsequent experiments, we split the real data into a 80/20 train/test split. We
train the various generative models only on the training split holding out the remaining for
evaluation. For EVA. we model the ten most prevalent conditions in the real dataset and
lump all other conditions into a “background condition”.

10 L p-oe Va 10 L poars Va 10 L poom Va 10 L s s
0s : 0 ’ 0 ’
06

06 06

04 04 . 04 o

Real EHR

02 02 02

00 0o 00
00 02 04 08 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 08 08 10

LSTM "VAE-LSTM EVA Conditional EVA

Figure 2: Comparison of bigram statitics of generated and real EHR codes. It confirmed that EVA
generates data that capture better correlations in the EHR data.

5.1. Capturing EHR statistics

Our models EVA and EVA, produce higher test log-likelihoods, which suggests that the pro-
posed models better capture statistical regularities of EHRs. After training on real dataset,
we generated synthetic EHR sequences, equal in number to the number of training se-
quences. We then calculated the marginal probability of occurrence of bi-gram tokens.
Figure 2 provides a comparison of these statistics between the real and synthetic data
through a scatter plot and pair-wise Pearson correlation coefficients (p). More comparisons
are available in the supplement. It is easy to see that our models provide improvements
over competing approaches with much higher Pearson correlation.

5.2. Usefulness of synthetic EHRs

Classification models are often developed on EHR data to predict whether a patient will
develop a certain disease. To evaluate the utility of our synthetic EHRs, we tested how well
such prediction tasks are supported by the synthetic longitudinal EHR data. To do so, we
set up a task for predicting P(2nt | Tnt—1,...,%n,1)— a patient’s future condition given
her history. We generated 258, 555 synthetic patient sequences from the different generative
models trained on an identical number of real patients. We held-out 20% of the data for
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testing and trained a Long short-term memory network(LSTM) model on the remainder.
We repeated this process five times each with a separate random split. We also repeated
the process for real data to obtain an estimate of the upper-bound on performance.
Accurate temporal prediction: Following Choi et al. (2016) we measure the performance
in predicting x,; using the top-k recall metric. This is defined as the ratio between the
number of true positives in the top k predictions and the total number of true positives.
Again following Choi et al. (2016), we evaluate the different models at & = 20 and k& = 30.
Figure 3 (1) summarizes the results. It can be seen that all VAE-based models significantly
improve upon the sequence to sequence LSTM baseline. Moreover, EVA and EVA, are better
than the competing VAE models and are closest to real data performance. Finally, we note
that an LSTM trained on three million patients generated from EVA and EVA. outperforms
variants trained on (smaller) real data.

Beating Data via Data Augmentation: To further investigate whether augmenting
limited real EHRs with synthetic ones is beneficial, we selected, uniformly at random, a 7000
patient cohort from the test split of the real dataset. We then augmented this data with
varying amounts of synthetically generated data and repeated the predictive experiments.
The results are shown in Figure 3 (2). Here, it can be seen that when we use only synthetic
data, we need about an order of magnitude larger dataset to exceed real data performance.
However, augmenting the 7K real patients with only an additional 7K synthetic records
already outperforms the real data. Finally, when the amount of synthetic data grows, the
effect of augmentation wanes. This is because the resulting dataset is dominated by the
synthetic data. At 1M, the synthetic records outperform the real data by about eight
percent.
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Figure 3: 1) top-k recall performance of EVA as compared to baselines 2) top-20 recall performance
of EVA as a function of the number of synthetic records, 3) a comparison of proportion
specific codes generated by EVA and EVA.; 4) User study results of a clinician, rated on
a 10 point scale, with 10 being most realistic and 1 being least realistic. The error bars
indicate two standard deviations. Both EVA and conditional EVA improve significantly
over the competition both in terms of matching marginal statistics of real EHRs and
improved predictive performance. EVA, is able to generate condition-specific EHRs.

5.3. Benefits of conditional generation

Thus far, we have seen that EVA. and EVA perform similarly in generating realistic, but
generic, EHR sequences. The conditional model; however, is more interesting because of its
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Figure 4: tSNE plots to illustrate latent space learned by EVA and EVA. (right). As we note the
clusters learned by EVA (left) have no clear separation, while the clusters present in
embedding space of EVA, indicate a disentangled representation of the latent space. EVA,
clusters are binned by different conditions. The numbers indicate the following disease
conditions, 1: Diabetes mellitus , 2: Cancer of brain and nervous system, 3: Epilepsy,
convulsions, 4: Chronic kidney disease, 5: Cough/Cold, 6: Fever, 7: Viral infection, 8:
non-epithelial cancer of skin, 9: heart failure, 10: Hypertension with complications and
secondary hypertension, and 11: Background with none of the above conditions.

ability to generate condition specific EHRs. Figure 3(3) contrasts the statistics of records
generated by EVA against those generated by EVA,. conditioned on four common conditions,
heart failure, essential hypertension, acute kidney failure, and type 2 diabetes mellitus.
From the large proportion of condition specific codes, it is evident that EVA. is effective
at controlled EHR generation. To further test whether condition specific EHR generated
by EVA. can outperform generic EHRs generated by EVA, we considered the problem of
predicting whether a patient will have an heart failure given her history. To do this, we
need a dataset of cases, patients with heart failure, and controls, patients without heart
failure. The real dataset contains 3800 heart failure cases and 280,000 controls. We used
EVA. to match these numbers and generated cases by conditioning on the heart failure
condition and controls by conditioning on the background condition. An LSTM trained on
this data produced an area under the ROC curve (AUC) score of 74.66, which is comparable
to the real data score of 76.75. Generation of such data with cases and controls cannot be
achieved using EVA because it can only produce generic EHR sequences, but the heart failure-
specific sequences generated by EVA. result in improved performance. Figure 4 provides a
visualization of the latent space recovered by the two models. While the representations
produced by EVA. cluster with respect to the medical conditions, no such clustering is
observed for EVA.

5.4. Clinical User Study

We also performed qualitative evaluation of the synthetic EHR sequences by recruiting
clinical experts for a user study We presented clinicians with fifty real and fifty EVA generated
synthetic patient records selected at random. The clinician was not made aware of whether
a record was real or synthetic, and asked to judge whether the record seemed realistic.
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Table 1: Average Jaccard Similarity Index
Model Jaccard Coefficient
LSTM 0.3874
VAE-LSTM | 0.3156
VAE-Deconv | 0.2631
EVA 0.2167
EVA, 0.2235
Real EHR 0.1835

Records were rated on a ten point scale with one being least realistic. Figure 3(4) provides
the results of this analysis. We find that clinicians find EVA generated records just as realistic
as real patient records. Although the average score is just around 6 out 10, it is mainly
due to the details associated with EHR structured data are not available, which raise the
importance of further research in generating more detailed data such as clinical notes in
future.

5.5. Diversity within visits

As a measure of high quality EHR data generation algorithm, EVA should be able to generate
diverse yet relevant patient visits sequences. To evaluate the diversity of visits within
a single patient in our data, we measured Jaccard Similarity index between visits. We
calculate Jaccard similarity index from one visit to next visit and finally average over the
entire sequence. The lower Jaccard Similarity index, the more diverse result is. The average
Jaccard similarity index for real EHR is 0.1835 and for synthetic EHR data generated by
EVA and EVA, are 0.2167 and 0.2235, which are close to the real EHR. Comparatively other
baselines achieved much higher average Jaccard similarity index as shown in Table 1.
Weight uncertainty in §: We find that inferring a distribution over 6, rather than a point
estimate, is crucial for the generation of diverse and hence realistic sequences. The point
estimate variants produce sequences with unnaturally many repeated tokens in a sequence.
To quantitatively evaluate this effect, we generated 250k synthetic EHRs from EVA and its
point estimate variant. For each sequence we computed the ratio of the number of unique
tokens to the total number of tokens in the sequence, which we averaged over all sequences.
The EVA point estimate produced a score of 0.2786 +0.08, while the Bayesian variant scored
0.3214 + 0.07 and real EHRs exhibit a ratio of 0.3845 4+ 0.08. We also present some sample
patient data illustrating generated EHR sequences in Table 3.

5.6. Privacy Risk Evaluation

EHR de-identification or generation tasks always have the privacy risk where there is often
way to retrieve the underlying original records. While intuitively by training EVA on training
data and generating samples overcomes 1-to-1 mapping from original data to generated data,
we wanted to formally evaluate privacy preserving aspects of the generated data. In this
section we have performed a formal assessment of EVA ’s privacy risks.

Presence disclosure occurs when an attacker can determine that EVA was trained
with a dataset including the record from patient x. We assume the attacker will check if
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Figure 5: Sensitivity and precision vs. number of patients known to the attacker.

any synthetic record matches records from x by ignoring the visit orders'. If matches, the
attacker will assume x is in the training data. We assume a prior probability 0.8 that x
is in the training data. In practice, the prior probability can be much lower in that case
the successful attack will be much harder. We use sensitivity and precision as metrics
of attack success. Figure 5 depicts the sensitivity (i.e. recall) and the precision of the
presence disclosure test when varying the number of real patient the attacker knows. In
this case, x% sensitivity means the attacker has successfully discovered that x% of the
records that he/she already knows were used to train EVA. Similarly, x% precision means,
when an attacker claims that a certain number of patients were used for training EVA, only
x% of them were actually used. Since the prior success probability is 0.8, we want to assess
whether the attacker can gain additional knowledge by improving sensitivity and precision
above 0.8.

Figure 5 shows that with attacker can only discover 20% percent of the known patients
to attacker were used to train EVA, which is much lower than a prior 80%. Similarly
Figure 5 shows that, the precision is around 70% which is again lower than the prior
precision 80%. In fact, this indicates that by analyzing the synthetic data the attacker
do not gain any additional knowledge to improve their success probability (the precision
and sensitivity actually reduced). This confirmed that the synthetic data are not useful for
presence disclosure attack. Note that how many real patients known to the attacker do not
change the attacker’s performance.

5.7. Sample Data and Generated Data

We present two sample patient records generated by RNN and EVA in this table 2 and 3,
respectively. Here we presented diagnosis(D), Rx/medication(R), Procedure(P) codes of
two patients across 6 clinical visits. We observe that the records generated by EVA are
considerable more diverse in terms of clinical events than the one generated by LSTM. In
fact, the ones generated by LSTM has large percentage of repeated events across visits than
the ones generated by EVA. This provides an intuitive demonstration of the effectiveness of
EVA in generating diverse records.

1. If the visit order is enforced in matching, the matching probability will decrease hence the attack success
probability.
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Table 2: Example records generated by LSTM

visit-1

D:Other screening for suspected conditions
P: Pathology
D: Cardiac dysrhythmias

visit-2

D: Medical,examination/evaluation

visit-3

R: Beta blockers
P: Pathology

visit-4

visit-5

D: Other screening for suspected

D:conditions not mental disorders or infectious disease
: Beta blockers

: Cardiac dysrhythmias

: Beta blockers

: Cardiac dysrhythmias

visit-6

: Beta blockers
: Beta blockers

T oo wo

Table 3: Example records generated by EVA

visit-1

D:Disorders of lipid metabolism

D:Immunizations and screening for infectious disease
D:Other liver disease

D: Peripheral and visceral atherosclerosis

visit-2

R Antidepressants

R Antihypertensive

D: Hyperplasia of prostate
D: Mood disorders

visit-3

R: Antihyperlipidemic

D Coronary atherosclerosis and other heart disease
: Beta blockers

: Antihypertensive

visit-4

: Misc. Hematological

: Disorders of lipid metabolism

: Hyperplasia of prostate

Coronary atherosclerosis and other heart disease
Mood disorders

visit-5

: Disorders of lipid metabolism

Other liver diseases

Coronary atherosclerosis and other heart disease
: Peripheral and visceral atherosclerosis

: Other upper respiratory disease

: Medical examination/evaluation

visit-6

: Hypnotics
: Mood disorders

wh~ivivivivivlvivlvlwlwles]psied

6. Discussion & Conclusions

The findings from this study suggest that synthetic, but realistic, longitudinal EHR data can
be generated. This is notable because it can enable the dissemination of privacy-respective
data for research and development of artificial intelligence applications in healthcare. Our
experimental results further show that synthetic sequences of EHR data can be used as a
drop-in replacement for real data without significantly sacrificing performance for building
sequence models, such as one might do with a recurrent neural network.A combination
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of real and synthetic data outperforms either in isolation. Moreover, a user study with a
clinician confirmed that the generated EHR sequences are realistic.

Still, there are opportunities for advancement in the generation of synthetic longitudinal
discrete data. In particular, though our models are adept at generating EHR sequences,
they make no attempt at modeling time gaps between visits. Modeling such gaps is chal-
lenging because they are influenced by factors beyond physiology, including social- and
economic-determinants of health and the healthcare insurance plan of the patient. Future
investigations could addressing this by incorporating additional data sources and modeling
the inter-arrival time of clinical visits.
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Appendix A. Supplement
A.1. EHR Preprocessing

In this section, we describe the preprocessing procedure used by our models. We note that
we also experimented with a variant that does away with this pre-processing and instead
models each visit z,; as a collection of independent Bernoulli distributions. However,
we had trouble learning this variant and it performed significantly worse in preliminary
evaluations. This preprocessing step is also described in algorithm 2.

Creation of vocabulary : Since longitudinal EHR data can represented as sequence of
visits where each visit consist of few different ICD-9 codes, we combine the ICD-9 codes into
a visit representation. For example a patient can be represented as this [[c1, c2, ¢3], [ci0,
c34], [c21,¢34]], where [c1,c2,c3] is a visit. We first identify all the unique visits combinations
such as this [c1,c2,c3] and calculate the frequency of all these visit combinations. We select
top 50,000 most frequent visit combination as our vocabulary.

Replacement of less frequent visit combination : In order to be train the algorithm,
we first decided to use a vocabulary of size 50k. Since the total number of unique combi-
nation of visits is around 2 million but many of them only appear once in the entire EHR
dataset, we decided to replace those visit combinations with visit combination from top
50k visit combination. The replacement was done by finding the best matching intersection
between the sets in top 50k vocabulary with rest of the set in the unique combination sets.

Algorithm 2: EHR preprocessing

Input: Longitudinal EHR dataset D = {Py,..., Py} and Patient P, is combination of visits
Vi
Output: Modified EHR Dataset D where D = { P}, ..., Py} and Patient P; is combination of
visits in Visit Vocab W

Unique visits UV < Collect all unique visits combination in D
Visit Vocab W <— Sort visits by frequency of occurrence in UV and select top 50,000 visits

Replacement Dictionary RD < Find replacement of visits not in Visit Vocab W by finding
closest matching Visit in Visit Vocab W
foreach P; in [Py,...,Py] do
foreach V; in P; do
if V; in W then

| keep V;
else
| replace V; by finding replacement from RD
end
end
end

A.2. Additional Experiments and Data

We begin this section by summarizing the datasets used.
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Table 4: Basic statistics of dataset used

Dataset ‘ Real dataset
# of patients 258,555
# of visits 13,920,759
Avg. # of visits per patient 53.8
# of unique ICD9 codes 10,437
Avg. # of codes per visit 1.98
Max # of codes per visit 54
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Figure 6: Additional scatter plots comparing the marginal (uni-gram) statistics of codes in real and
synthesized EHRs.

Implementation Details For training models, we used Adam (Kingma and Ba, 2014)
with a batch size of 32 samples, on a machine equipped with Intel Xeon E5-2640, 256GB
RAM, eight Nvidia Titan-X GPU and CUDA 8.0.

Hyperparameter Tuning: We define five hyper-parameters for EVA:

e learning rate e;: [ 2e-3,1e-3, Te-4]

e dimensionality r of the LSTM hidden layer h; from Eq.: [100, 200, 300, 400, 500]

dropout rate for the dropout on the LSTM hidden layer: [0.0, 0.2, 0.4, 0.6, 0.8]

e convolution kernels [3,5,7,10,15]

e dilation kernels [1, 2, 4, 8, 16]
The hyperparameters used in the final model were searched using random search. In order
to fairly compare the model performances, we matched the number of model parameters to
be similar for all baseline methods.
A.3. Scatter Plots for uni-gram statistics
We have compared the marginal distribution of codes along with with the marginal statistics
to evaluate how well EVA mimics real EHR data distribution6.
A.4. Additional details for EVA, experiments

To evaluate EVA. we generated several condition specific datasets. The conditions were —
Heart Failure, Acute Kidney Failure, Essential Hypertension, and Daibetes Mellitus. In
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order to determine which codes in the generated cohorts were relevant to the particular
condition we used the following ICD9 mapping based on clinical input.

e Daibetes Mellitus: 250.00, 362.00, 357.00, 648.00, 249.00, 584.00
e Heart Failure: 428.00, 402.00, 398.00, 404.00
e Essential Hypertension: 401.00, 642.00

e Acute Kidney Failure: 584.00, 669.00

A.5. Informative latent space

Informative latent space: We find that the using a feed forward architecture for the autore-
gressive likelihoods rather than a recurrent one helps alleviate the issue of KL collapse. For
EVA, KL accounts for 22% of the ELBO while for EVAc it accounts for 28% of the ELBO.
Additionally, Figure 3 in the supplement qualitatively demonstrates that the local latent
variables (z) are informative and cluster based on patient condition.
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