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Abstract

Modeling EHR. data is of significant interest in a broad range of applications including
prediction of future conditions or building latent representations of patient history. This
can be challenging because EHR data is multivariate and irregularly sampled. Traditional
treatments of EHR data involve handling irregular sampling by imputation or discretiza-
tion. In this work, we model the full longitudinal history of a patient using a genera-
tive multivariate point process that simultaneously: (1) Models irregularly sampled events
probabilistically without discretization or interpolation (2) Has a closed-form likelihood,
making training straightforward (3) Encodes dependence between times and events with
an approach inspired by competing risk models (4) Allows for direct sampling. We show
improved performance on next-event prediction compared to existing approaches. Our pro-
posed framework could potentially be used in many different contexts including prediction,
generation of synthetic data and building latent representations of patient history.

1. Introduction

Multivariate, irregularly sampled time series data are ubiquitous in many data modalities
across healthcare, including principally Electronic Health Records (EHR) data. They are
defined in the context where a dataset contains a set of time series where each time series
contains a sequence of pairs {(¢;,e;)}., where ¢; represents the time and e; represents a
particular event type. In many cases, past sequences strongly inform which events are likely
to happen in the future and when. In the case of EHRs, each time series is a longitudinal
history of a patient’s visits, lab tests, administration of medications, diagnoses of conditions
and more. Modeling EHRs as sequences of such events and building better generative
models is of interest in a wide range of applications including prediction of future events
(e.g. conditions, readmission), building latent representations of a patient’s history and
generation of synthetic data. Prior generative approaches for modeling this kind of data
are lacking in one or more of the following key characteristics: (1) times and events are
considered conditionally independent given history which can be limiting for prediction
and simulation (2) direct sampling is not possible (3) optimization is challenging due to a
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lack of a closed-form likelihood. In healthcare, events and times are often tightly linked.
In particular, if the next event happens within minutes versus after many days, this will
change our prediction about what the next event is.

We model EHR data as a Multivariate Temporal Point Process, a probabilistic frame-
work for modeling irregularly sampled data. In this framework, both the time until the
next event and the type of event are modeled probabilistically by conditioning on a sum-
mary of the entire history prior to that point. Our main contribution is that we propose
a multivariate model which simultaneously (1) specifies dependence between events and
times inspired by competing risks (2) allows for direct sampling (3) specifies a closed-form
likelihood, making stochastic optimization straightforward.

We evaluate the model on datasets commonly used in the point process literature: a
MIMIC-IT (Johnson et al., 2016) dataset consisting of ICU visits where the events are
conditions and their timestamps and a Stack Overflow dataset which consists of two years
of data on users receiving sequences of badges on the online forum. We further evaluate
our model on synthetic EHR data from Synthea (Walonoski et al., 2018) and Synthea (Ear
Infection) generated in prior related work (Enguehard et al., 2020). These datasets are
publicly available, which allows for data transparency and for direct comparison to relevant
prior work. The model is compared against recently proposed approaches which differ in
key ways as outlined in the Related Works. We evaluate the models on both prediction of
event type given next event time as well as joint probability of next event and next time on
a held-out test set. The particular metrics we use to assess these are weighted F1/AUROC
and negative log likelihood normalized by time respectively.

Generalizable Insights about Machine Learning in the Context of Healthcare

The majority of predictive modeling approaches built on EHR longitudinal data make sim-
plifying assumptions either when modeling feature inputs or the output events of interest.
When modeling irregularly sampled time series features, the approach is often to discretize
the irregularly sampled sequence into equal bins and develop an interpolation model for
data that is missing prior to using a standard approach (e.g. LSTM) for regularly sam-
pled data (Che et al., 2018). Such an approach suffers from both loss of information and
introduction of noise. The other criticism of many prediction models, and more specifically
survival models, is that they do not handle competing risks. Without taking competing
risks into account, model estimation and prediction can be biased due to misspecification.

In this work, we model the full longitudinal history of a patient using a multivari-
ate point process model that has several advantages: (1) Irregularly sampled events are
modeled directly without discretization or interpolation (2) A closed-form likelihood makes
training straightforward (3) The model encodes dependence between times and events with
an approach inspired by competing risk (4) Direct sampling is possible. We show improved
performance with EHR data on next-event prediction compared to other approaches. Our
results provide evidence that incorporating competing risks is important for modeling EHR
data especially in the context of next-event prediction.
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2. Related Work

Neural temporal point process models have garnered substantial interest in recent years
with the emergence of neural density estimation approaches. These methods all employ the
basic framework of a temporal point process but differ in the following key categories (1)
independence assumptions between events and times (2) the probabilistic object which is
modeled (e.g. conditional intensity function, cumulative intensity, conditional probability
density) (3) the approach used to encode past history to predict next event (e.g. continuous
LSTM, GRU, etc.). As a result of the choices made in each of these categories, models have
different properties. Favorable properties as outlined in Shchur et al. (2019) include (1) a
closed-form likelihood for ease of optimization (2) direct sampling (of next event and time
given history) for ease of use (3) distributional flexibility.

In one of the earliest works in neural point processes, Du et al. (2016) use a simple RNN
to encode history, reading in data as tuples of times and events. They use the hidden state
of the RNN h; to model the conditional intensity function which has a fixed specification.
With this specification, the time until next event is a unimodal distribution. They also
model the next event as conditionally independent of next time. As such, the flexibility
of the model is restricted by the exponential specification and next time and event are
not tightly coupled. Additionally, the history encoding approach does not directly handle
irregular sampling.

The neural hawkes process (Mei and Eisner, 2016) addresses many of these issues. They
specify a multivariate point process which does take competing risks into account. Addition-
ally, they employ an approach which uses a custom continuous time LSTM architecture in
an attempt to better encode history. The main drawback of this approach is that it chooses
to model the conditional intensity function which reduces the efficiency of optimization by
requiring a Monte Carlo estimate of an integral. Additionally, sampling requires a thinning
algorithm.

Intensity-free temporal point processes (Shchur et al., 2019) take the approach of directly
modeling the conditional probability of the next event time using mixture density networks,
avoiding the issues that arise from modeling conditional intensities. This allows for direct
sampling and a closed-form likelihood. However, they model times independently of events.
Additionally, they use the same architecture as Du et al. (2016) to model history which
does not account for irregular sampling.

Several other methods (Okawa et al. (2019), Omi et al. (2019), Taddy et al. (2012),
Tabibian et al. (2017)) have been proposed which use different approaches to model condi-
tional intensity functions which suffer from similar issues as those outlined above.

In our model, we attempt to integrate the most favorable properties from prior work to
develop an approach which attempts to handle the primary dependencies of EHR data. Our
model is a multivariate point process with dependencies between events and times, directly
models the conditional probabilities of each event given history, and employs a multi-channel
neural architecture to model the irregularly sampled signal for encoding history.
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3. Background

3.1. Temporal Point Process

A temporal point process (TPP) is a random process which is meant to model a sequence
of N times (to,t1,...,tn). Such a process is defined by specifying a distribution for the
interevent times, or the times between successive events conditioned on history up until
each successive point Hy, ,. A TPP is fully specified by the joint density f(to,t1,...,tn) =
IL, f(tal .- th—2,tn—1) = [1,, f(tn|Ht,_,). The traditional method of modeling this data is
to use a conditional intensity function A*(t) = \g(t|H) where 6 is the set of model parameters
and the star denotes that the intensity is conditioned on all historical times. This intensity
function describes the instantaneous rate at which an event happens given that the event
hasn’t happened yet: A\*(¢) = limg0 miziw = % Reasoning about the intensity
function instead of the density allows for the specification of well-established self-excitation
processes, such as the Hawkes process. In the general case, with a parametric form of the
intensity specified, maximum likelihood estimation is possible but can involve certain chal-
lenges. The likelihood is as follows: 3>V | log py(ts) = SN log Ay(ti)— DtN Ay (s)ds as shown
in Rasmussen (2018). The difficulty arises in choosing a flexible parametric specification
for the intensity function that still has a closed form integral. Shchur et al. (2019) address
this issue by directly modeling pj;(t) in the setting where times and events are considered
independently.

3.2. Multivariate Temporal Point Process

A multivariate temporal point process is defined as a random process that is used to model
event streams. An event stream is a sequence of N events {(t;,¢;)}XY; where ¢; is the time
that the ith event occurs and e; € £ is the event type chosen from a set of possible events
E. A key characteristic of a truly multivariate point process is that the events are tightly
coupled with the times. This dependence is traditionally characterized by the conditional
intensity function for each event A}(t) = lima¢yo ;P(t < T < t+ At E = e|T > t,H)
which is also known as a cause-specific hazard function. This hazard function represents
the instantaneous rate at which a given event is happening in the presence of competing
events. The hazard functions for each event completely specify a joint likelihood over the
entire sequence which can be derived as follows:
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Prior approaches which model the conditional intensity functions thus do incorporate com-
peting risks of all the events but at the cost of the necessity to take a Monte Carlo estimate of
the integral in the second term of the objective function. This specification also complicates
the sampling process as it typically requires a thinning algorithm.

4. The POPCORN Model

4.1. Construction of Objective

In our approach, which we call POint Processes for Competing Observations with Recurrent
Networks, or POPCORN, instead of modeling the conditional intensity, we directly model
the conditional probability of each event given history p*(t) = pe(t|H). We note that this is
distinct from the joint probability in (1) which is often labeled in a similar way as in (En-
guehard et al., 2020). Our model makes the assumption that the conditional probabilities
of each of the event time distributions are conditionally independent given history.

We gain several advantages from directly modeling the conditional probabilities includ-
ing the ability to directly sample and a simple, closed-form likelihood, while maintaining
flexibility by using a mixture density network to model each conditional probability.

Given this, we derive our objective as follows where p}(t) is the conditional probability
given history, S¥(¢) is the survival function given history and h}(t) is the hazard function
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If the conditional probability and the survival function can easily be computed, this
likelihood is closed-form and it is straightforward to conduct stochastic optimization. By
modeling each of the conditional probabilities separately, we can sample from this model
simply by taking a sample from all of the event distributions and taking the minimum time
as our next time and event. This is described in more detail in the next section.

4.2. Sampling and Connection to Competing Risk

In competing risk problems, a key idea is that there are latent or potential failure times
T1,...T.. A multiple decrement, or joint survival function, can be described as follows
where z is a feature vector and we have e different event types:

Q(tl,...te;Z)IP(Tl>t1,...Te>t€,Z) (3)

In this setting, the data which is observed can be described in the following way:

T =min{Ty,... T}, E={j|T; <Tp,k=1...¢e} (4)

This extends to the setting of point processes but the interpretation becomes that there
is a separate competing risk problem for each timestep for a given patient. In our case,
we can directly specify this joint survival function because we model the probabilities of
each event separately given history and assume conditional independence. This means that
the joint survival function is simply the product of each of the survival distributions of the
conditional probability densities.

Thus, sampling is straightforward: (1) Sample from each of the conditional distributions
to get a set of t1...7¢| and take the minimum. (2) This minimum provides both the time
until the next event and the event itself.
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4.3. Conditional Independence Assumption and Identifiability

The assumption of conditional independence may at first appear restrictive. However, as
Tsiatis (1975) shows: given any joint survival function with arbitrary dependencies between
events, there exists a different joint function which is specified by independent risks that
models the data just as precisely. This result makes it impossible to test whether competing
risks are independent. For our purposes, this theorem shows that given we have a sufficiently
flexible way of modeling each conditional distribution, we should be able to recover an
equivalent model to any model which incorporates dependent risks.

4.4. Mixture Density Networks and Distributional Specifications

In order to specify a flexible distributional specification for each of the conditional probabil-
ities we choose to use mixture density networks. In particular, we use a mixture of Weibull
distributions and a mixture of Fréchet distributions for all our experiments.

Mixture of Weibulls The Weibull distribution is a common distribution for specifying
survival in survival analysis because its parameters have a direct interpretation. It has
a shape (k) and a scale (I) parameter, where the shape parameter controls whether the
hazard is increasing or decreasing overtime. Thus, a mixture of Weibulls could capture
the combination of many different possible hazard shapes. We use an MLP to generate
parameters for the Weibull and the mixture weights (w) from the historical encoding. A
Softplus transform is used to ensure that the parameters are restricted to positive real
numbers and weights are normalized. The pdf for a mixture of Weibulls is the following:

p(t;l b, w) = szng];: (i)k_l exp (— <Zi>k> (5)

(k,l,w) = MLPy(hy) (6)

Mixture of Fréchets The Fréchet distribution is also known as the Inverse Weibull and
has similar properties to the Weibull in that it is defined on the positive reals, has shape
(o) and scale (s) parameters and has a favorable form for the pdf and cdf which make it
amenable for likelihood-based optimization. The primary distinction is that the Fréchet
has heavy tails which can make it more stable for optimization purposes and more robust
to outliers in the data. We define this mixture in a similar way:

p(t; 8,y w) = gwj; (;) o exp <— (;) W) (7)

(at, s, w) = M LPy(hy) (8)

4.5. Encoding History with Multi-Channel LSTM

In order to encode history, we use a multi-channel LSTM architecture which is shown in
Figure 2. Each event has its own dedicated LSTM which captures its irregular dynamics.
The inputs to each LSTM are the time differences since the last observation of the event
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Figure 1: Summary of the POPCORN Model: The hidden encoding of history is
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Figure 2: Multi-Channel LSTM for encoding history. Each event has its own distinct

LSTM which keeps track of the progression of interevent times for that particular
event. The regularly-sampled LSTM periodically collects the hidden states of all
other channels to model dependencies across the channels overtime. At any given
time, we may then collect all most recent hidden states, concatenate them and
encode them as a single vector representing history.
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At = t.; — te;—1 wWhere t;; represents the absolute time of the ith observation of the jth
event. Additionally, we have an LSTM channel dedicated to modeling dependencies across
the rest of the channels over time. This LSTM takes as input the concatenated hidden
states from each of the event-specific channels at a regular interval which is pre-specified.
At each subsequent timestep, we can then extract all the hidden states of each LSTM and
the regularly-sampled LSTM at that specific time and concatenate them. We use them as
input into an MLP to create a hidden encoding of the history.

The basic motivation behind using such an approach is to capture the nature of the
irregular sampling for each event. Additionally, such an approach may mitigate the problem
of vanishing gradients especially for events which are rarely observed.

4.6. Handling Multiple Events at a Given Time

In general, multiple events at a given time are assumed to never occur in the context of point
processes. EHR data, however, contains events which have the same timestamp largely as
a function of documentation practices. We handle this by adjusting our objective function
to allow a subset of the events to occur at a given time. We use an indicator vector to
represent which events are present and which are absent.

The multi-label objective is as follows:

€]
P(T;=t,E;=1.) = | [[ P(Bi =e|Ts =t)"<(1 = P(E; = ¢|Ts = £))" ") | P(T; = 1)
e=1

€]
= H P(E;=e,T; =t)'(P(T; =t) — P(E; = ¢, T; = )17t} (9)
e=1

This is effectively converting what was a categorical cross entropy to a binary cross
entropy. We note that Enguehard et al. (2020) construct a similar loss for this situation.
However, in their loss they are not modeling a conditional probability as we are but rather
a joint probability as in Equation 1. They, instead, construct the following likelihood:

€]
P(T,=t,E;=1.) = [[ P(Bi=e,T; =)' (1 —min(P(E; = ¢, T; = t),1))'" ') (10)
e=1

This likelihood assumes that the joint density can be treated as discrete and is con-
strained to be between 0 and 1. Thus, it requires bounding the joint density to compute.
Due to this discrepancy and the lack of bound on the first term, it is difficult to compare
our models on the NLL metric.

The general framework of point processes does not allow for simultaneous events. This
likelihood provides one simple approach towards doing so. We note that there is related
research (Solo, 2007) on how to handle ties in a more principled fashion and plan on incor-
porating these approaches in future work.
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Table 1: Dataset Description

Dataset Events Task Type Avg. Length Train Val Test
MIMIC-II 75 Multi-class 4 585 65 65
Stack Overflow 22 Multi-class 72 5307 1326 1326
Ear Infection 39 Multi-label 2 8179 1022 1023
Synthea Full 357 Multi-label 43 10524 585 585

5. Experiments

5.1. Datasets

We run our experiments on four datasets in total. These are exactly the same datasets and
dataset splits that were used in the work most closely related to our’s (Enguehard et al.
(2020)). We made the decision to use both common benchmarks used in the point process
community and synthetic EHR data to encourage transparency and reproducibility. This
also allows us to compare reported metrics directly.

MIMIC-II This is a dataset that has been used for benchmarking point processes meth-
ods in numerous past works. It consists of a sequence of hospital visits where each event
is a different disease diagnosis. The average length of each sequence is relatively small (4)
making this less of a longitudinal dataset than the full Synthea dataset.

Stack Overflow This dataset represents two years of user awards on a question-answering
website. Each event is a user receiving a badge (of 22 different types) and when they received
this badge. Although this dataset is not health related, it is used in almost every other
point process paper as a benchmark and as such we used it to test the generalizability of
our model.

Synthea: Ear Infection This dataset is simulated based upon the Synthea (Walonoski
et al., 2018) EHR simulator which leverages a Markov process with several states informed
by the input of human experts and population summary statistics. There are several mod-
ules in this simulator— this dataset leverages the Ear Infection module which is a simplified
version of the full simulator that contains patients who experience ear infections. It con-
sists of encounter types, conditions and medications associated with ear infections and any
comorbidities associated with age of onset. This dataset is meant to be a simplified version
of the full EHR simulation which has clear dependencies between time and next event.

Synthea: Full Simulation The full Synthea simulation consists of much longer longi-
tudinal sequences (on average 43) of encounters, conditions and medications administered.
Some of the most frequent events in this dataset include ER admission, viral sinusitis,
insulin administration, and prenatal visits (among the 357 different event types).

5.2. Metrics

F1 and AUROC In order to evaluate how well our model does on next-event prediction,
we use a weighted F1 score in the multi-class case (where only a single event can be observed

10
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Table 2: Hyperparameter Settings for Reported Models
Dataset Batch Size Distribution No. Mix Hidden Enc Hidden LSTM

MIMIC-II 16 Weibull 2 16 8
Stack Overflow 32 Fréchet 4 16 8
Ear Infection 16 Fréchet 2 16 8
Synthea Full 16 Weibull 4 16 8

at a given time) and weighted AUROC in the multi-label case (where multiple events can be
observed at a given time). It should be noted that this is next-event prediction conditioned
on the next time (as has been conventionally reported in past work).

Negative Log Likelihood We additionally report Negative Log Likelihood (NLL) nor-
malized by time for the multi-class datasets (as this metric is not directly comparable with
baselines for multi-label cases, see Section 4.6). The NLL is a measure of how well the
model is capturing both time and event.

5.3. Hyperparameters

We list the most important hyperparameter settings in Table 2 which include batch sizes,
distributional specification, number of mixture components, hidden embedding size and
hidden size inside the channel LSTMs. We use the Adam optimizer with a learning rate of
le-3 for all our runs, running every model for 100 epochs with early stopping criteria based
on validation NLL.

6. Results and Discussion

Overall Findings Performance on the metrics is shown in Table 3 and Table 4 aggregated
across five different splits, with sample standard deviation values over the splits in paren-
thesis. The results show that our model is able to achieve strong performance across all the
datasets, particularly on next-event prediction. We compare our models against 4 baselines
which are reported in Enguehard et al. (2020): Conditional Poisson (CP), RMTPP (Du
et al., 2016), a Log Normal Mixture model (Shchur et al., 2019) and the best performing
Neural TPP model (Enguehard et al., 2020) for each dataset.

For the multi-class problems, our model performs competitively on F1 and NLL/time,
achieving a better F1 score on the MIMIC-II dataset. For the multi-label case, our model
performs equally well on AUROC on the Synthea Ear Infection dataset and significantly
better on the full Synthea dataset over all baselines. As mentioned before, it is not possible
to directly compare our results on the NLL/time metric as the likelihood functions are not
exactly the same.

Our model outperforms CP, RMTPP and the LogNormMix on next-event prediction for
all tasks. All of these baselines consider time and event independently. This provides strong
evidence that for EHR data, incorporating this dependence is important. Furthermore,
our assumption of conditional independence of event time distributions does not constrain

11
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Table 3: Results on MIMIC and Stack Overflow

MIMIC-II Stack Overflow
Model F1 Score NLL/time F1 Score NLL/time
cp 691 (.083)  6.78 (1.99)  .325 (.004)  .553 (.003)
RMTPP 709 (.076)  4.24 (2.66)  .284 (.004)  .592 (.006)
LogNorm Mix  .705 (.170)  6.33 (.370)  .314 (.003)  .548 (.004)
Neural TPP 648 (.098)  4.61 (2.49) .342 (.006) .543 (.005)

POPCORN (Ours) .772 (.046) 5.07 (1.17)  .330 (.005) .542 (.003)

Table 4: Results on Synthea Datasets
Synthea (Ear Infection) Synthea (Full)

Model AUROC Score AUROC Score
CP 792 (.009) .850 (.014)
RMTPP .675 (.068) 616 (.043)
LogNorm Mix 767 (.007) 770 (.010)
Neural TPP .857 (.005) 822 (.006)
POPCORN (Ours) .853 (.008) .886 (.008)

model performance on next-event prediction as compared to the Neural TPP approaches
which consider dependent competing risks. This provides some empirical evidence that
for a sufficiently flexible specification of conditional distributions, we can effectively model
EHR data despite this assumption. More work is needed to understand the effect of such
an assumption on NLL / time.

AUROC by Event Type In order to examine which events the model is predicting best
on the Synthea (Full) dataset, we visualize AUROC by event type in Figure 3. We can see
that at a higher level, the model is able to predict medications most easily while conditions
arehjo more difficult. In particular, for conditions which are potentially less predictable such
as a concussion or appendicitis, the model does not perform as well. Medications which
are commonly administered or prescribed for specific diseases (e.g. insulin for diabetes or
furosemide for heart disease) are easier for the model to predict.

Model Performance by Length of History In order to evaluate our performance over
long sequences of longitudinal data, we investigated how AUROC varied as a function of the
number of observations seen on the Synthea (Full) dataset. We see in Table 5 that without
any history and for shorter sequences, prediction is much more difficult. The longer the
sequence, the more dependencies are able to be learned overtime. After collecting enough
data about a particular patient’s history (between 10-20 observations), the model is better
able to reason about what comorbidities and medications a patient likely has and is likely
to have in the future. The assumption of conditional independence is also mitigated by

12
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AUROC by Event Category
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Figure 3: AUROC by Event Type: We observe that conditions are generally harder to
predict than encounters and medications for the model.
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Table 5: Performance by Sequence History Length on Synthea (Full)
Sequence Interval 0-1 0-5 0-10 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90

AUROC 601 648 723 .807 .835 .848 .857 .864 .869 .872 .876

the collection of more history which shows that for longer longitudinal sequences, such an
assumption may be reasonable.

7. Conclusion

In this work, we presented a multivariate point process model for EHR data which has a
number of advantages: (1) it specifies a dependence between event and time (2) allows for
direct sampling and (3) specifies a closed-form likelihood, making optimization straightfor-
ward. We demonstrate that our approach matches or outperforms baseline approaches on
the task of next-event prediction on all three clinical datasets. In particular, we outperform
all baselines which do not take dependence between event and time into account for pre-
diction. This dependence, while may be less important in certain datasets, is important to
incorporate when modeling EHR data. Results also show that our model, which assumes
conditional independence of event time distributions, performs similarly or better than Neu-
ralTPP, as expected based on the theoretical results of Tsiatis (1975). Given the significant
advantages (such as direct sampling and closed-form likelihood) that such an assumption
enables, we believe that our approach should be strongly considered when such properties
are particularly desirable. In future work, we aim to investigate different methods of han-
dling ties which may reflect more closely the reality of the documentation process, evaluate
our model on real longitudinal EHR data, and explore related applications such as encoding
latent representations of history. Furthermore, we seek to evaluate our approach’s ability
to generate realistic samples of data and its performance on time-to-event with alternative
metrics.

8. Limitations

Our study contains a number of limitations. We are unable to directly compare our approach
to baselines (for multi-label scenarios) on the NLL metric. Additionally, we primarily
leverage synthetic EHR data which is favorable from the perspective of reproducibility but
represents a gap in evaluation which must be filled in future work by evaluating on real-
world data. We also note that our approach to handling ties, while is simple and empirically
performative, does not handle them in the most principled way. In future work, we look
forward to addressing these limitations.
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Appendix A. Baselines

All the baselines we compared against are described in detail in Enguehard et al. (2020).
We describe them briefly as follows.

Conditional Poisson The conditional poisson model assumes that the event intensities
are constant overtime (and thus assumes exponential event distributions specified by a
parameter). This model also assumes that the next event and next time are conditionally
independent.

X (t) = MLP(hy) (11)

The MLP takes the historical encoding and transforms it to a constant which is then
used to specify the closed-form likelihood.

RMTPP The RMTPP model (Du et al., 2016) uses the following specification:
N (t) = exp (v”hj +w(t —t;) + bt) (12)

exp(Vy . hj +by)
Pyjs1 = klhy) = A (13)
Zk 1exp(V h; +b;)

where v' (column vector), w' (scalar), b* (scalar) and V¥ (matrix of size k by |h;| ) and
bY are all parameters of the model.

Additionally, h; is the historical encoding which they obtain using an RNN which takes
in tuples of the historical sequence.

Such a model has a more complicated intensity function than a conditional poisson but
still requires the intensity to have an exponential formulation which results in a closed-form
Gompertz likelihood. This model also models next events and times independently as shown
above.

Log Normal Mixture The Log Normal Mixture model (Shchur et al., 2019) leverages a
mixture distribution to directly model the event distribution as follows:

(logT — ,U,k)2>
p(T|w, i, w exp | ————— 14
’ ik Z kTSk\/Qﬂ' b < 23% ( )

k=1

where w are the mixture weights, p are the mixture means and s are the standard
deviations.
These mixture weights are parameterized by an embedding of past history as follows:
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w; = softmazx(Vyh; + by)
s; = exp(Vshi + bs)
Wi = Vuhi + bu

and {Vi, Vi, Vi, by, bs, b, } are learnable parameters.
The next event is modeled independently:

7 = softmaz(VPtanh(V D h; + b)) 4+ 52)) (15)

where {Vﬂ(l), V7r(2), b&l), b§?)} are parameters of the network and 7; is the categorical proba-
bilities over the next events.

In order to encode history, they use the same architecture as RMTPP. The main ad-
vantage of this model over RMTPP is that they have a much more flexible distribution for
the intensity (and thus for the event distributions).

Neural TPPs The Neural TPP models are a class of models which specify an encoder,
decoder architecture. The encoder architecture encodes past history into a hidden vector
and the decoder architecture specifies either (1) an analytical conditional intensity function
for each event or (2) a cumulative conditional intensity function for each event. Within
this framework, they have 2 encoder architectures and 4 decoder architectures which can
be used interchangeably. For the encoders, they use either a standard GRU network or a
Self-Attention (SA) network. For the decoder networks, they use either MLPs or attention
networks to generate a conditional intensity or cumulative intensity. For further details,
please refer to the appendix of Enguehard et al. (2020).

Appendix B. Synthea Dataset Details

Synthea Ear Infection As mentioned above, this dataset is simulated based upon the
Synthea (Walonoski et al., 2018) EHR simulator which leverages a Markov process with
several states informed by the input of human experts and population summary statistics.
The ear infection module consists of encounter types, conditions and medications associated
with ear infections and any comorbidities associated with age of onset. Table 6 shows all
possible encounters/conditions/medications that are in this dataset along with their relative
counts in a single fold of the training data.

Synthea Full Dataset The full Synthea simulation consists of much longer longitudinal
sequences (on average 43) of encounters, conditions and medications administered. Table 7
includes the top 10 event names, types, codes and relative counts within each event category
for a single fold of the training data.

Appendix C. Code

The code for the POPCORN model and data is provided at the following link: https:
//github.com/sbhave77/POPCORN.
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Event Name Event Category Event Code Count
Encounter for symptom encounter SNOMED-CT_185345009 10282
Otitis media condition SNOMED-CT_65363002 10282
Acetaminophen 160 MG Chewable Tablet medication RxNorm_313820 4384
Amoxicillin 250 MG Oral Capsule medication RxNorm_308182 2992
Aspirin 81 MG Oral Tablet medication RxNorm_243670 2972
Ibuprofen 100 MG Oral Tablet medication RxNorm_198405 2217
Penicillin G 375 MG/ML Injectable Solution medication RxNorm_105078 1713
Doxycycline Monohydrate 50 MG Oral Tablet ~ medication RxNorm_1652673 912
Cefuroxime 250 MG Oral Tablet medication RxNorm_309097 871
General examination of patient (procedure) encounter SNOMED-CT_162673000 755
Ampicillin 100 MG /ML Injectable Solution medication RxNorm_789980 734
Cefaclor 250 MG Oral Capsule medication RxNorm_309045 645
Clopidogrel 75 MG Oral Tablet medication RxNorm_309362 590
Nitroglycerin 0.4 MG/ACTUAT Spray medication RxNorm_705129 424
Amoxicillin 500 MG Oral Tablet medication RxNorm_308192 406
Coronary Heart Disease condition SNOMED-CT _ 53741008 360
Simvastatin 20 MG Oral Tablet medication RxNorm_312961 348
Acetaminophen 325 MG Oral Tablet medication RxNorm_313782 347
Amlodipine 5 MG Oral Tablet medication RxNorm_197361 341
Stroke condition SNOMED-CT_230690007 307
Alteplase 100 MG Injection medication RxNorm_1804799 270
1 ML Epinephrine 1 MG/ML Injection medication RxNorm_1660014 265
Atropine Sulfate 1 MG /ML Injectable Solution medication RxNorm_1190795 265
Cardiac Arrest condition SNOMED-CT_410429000 265
History of cardiac arrest (situation) condition SNOMED-CT 429007001 257
3 ML Amiodarone hydrocholoride 50 MG/ML  medication RxNorm_834357 251
Warfarin Sodium 5 MG Oral Tablet medication RxNorm_855332 211
Digoxin 0.125 MG Oral Tablet medication RxNorm_197604 211
Verapamil Hydrochloride 40 MG medication RxNorm_897718 210
Ibuprofen 200 MG Oral Tablet medication RxNorm_310965 202
Atrial Fibrillation condition SNOMED-CT 49436004 202
Well child visit (procedure) encounter SNOMED-CT_410620009 173
Naproxen sodium 220 MG Oral Tablet medication RxNorm 849574 160
Myocardial Infarction condition SNOMED-CT 22298006 144
History of myocardial infarction (situation) condition SNOMED-CT_399211009 134
Captopril 25 MG Oral Tablet medication RxNorm_833036 128
Atorvastatin 80 MG Oral Tablet medication RxNorm_259255 104
12 HR Cefaclor 500 MG Oral Tablet medication RxNorm_309043 55
Doxycycline Monohydrate 100 MG Oral Tablet medication RxNorm_1650142 48

Table 6: List of all possible events in Ear Infection dataset with event types and codes
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Event Name Event Category Event Code Count
Viral sinusitis (disorder) condition SNOMED-CT_444814009 32379
Acute viral pharyngitis (disorder) condition SNOMED-CT_195662009 19169
Normal pregnancy condition SNOMED-CT_72892002 16233
Acute bronchitis (disorder) condition SNOMED-CT_10509002 15901
Otitis media condition SNOMED-CT_65363002 8710

Streptococcal sore throat (disorder) condition SNOMED-CT 43878008 5616

Sprain of ankle condition SNOMED-CT 44465007 3641

Anemia (disorder) condition SNOMED-CT_ 271737000 2880

Body mass index 30+ - obesity (finding) condition SNOMED-CT_162864005 2750

Prediabetes condition SNOMED-CT_15777000 2062

Encounter for symptom encounter SNOMED-CT_185345009 89739
General examination of patient (procedure) encounter SNOMED-CT_162673000 72374
Encounter for check up (procedure) encounter SNOMED-CT_185349003 23610
Consultation for treatment encounter SNOMED-CT_698314001 23390
Emergency room admission (procedure) encounter SNOMED-CT_50849002 22673
Prenatal initial visit encounter SNOMED-CT_424441002 16233
Follow-up encounter encounter SNOMED-CT_390906007 13545
Encounter for problem encounter SNOMED-CT_185347001 11072
Encounter Inpatient encounter SNOMED-CT_183452005 7911

Well child visit (procedure) encounter SNOMED-CT_410620009 5988

Hydrochlorothiazide 25 MG Oral Tablet medication RxNorm_310798 27383
insulin human isophane 70 UNT /ML medication RxNorm_106892 20105
amLODIPine 5 MG medication RxNorm_999967 17760
Acetaminophen 325 MG Oral Tablet medication RxNorm_313782 17173
24 HR Metformin hydrochloride 500 MG medication RxNorm_860975 17170
Atenolol 50 MG Oral Tablet medication RxNorm_746030 16524
NDA020503 200 ACTUAT Albuterol 0.09 MG medication RxNorm 2123111 14255
120 ACTUAT Fluticasone propionate 0.044 MG medication RxNorm_895994 14255
Simvastatin 10 MG Oral Tablet medication RxNorm_314231 12214
Hydrochlorothiazide 12.5 MG medication RxNorm_429503 10509

Table 7: List of top 10 most frequent events by category in Synthea (Full) dataset with

event types and codes
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