
Learning from Data by Guiding the Analyst:
On the Reprrcsentation, Use and Creation of Visual Statistical Strategies

Forrest W. Young
Psychometric Laboratory

University of North Carolina
Chapel llill, NC, USA

David J. Lubinsky
Department of Computer Science

University of Witrvatersrand
Johannesburg, South Africa

Abstract

The concept of statistical strategy is introduced and used

to develop a structured graphical user interface for guid-

ing data analysts so that they can learn about the struc-

ture of their data. The interface visually represents

statistica! strategies that are designed by expert data ana-

lysts to guide novices. The representation is an abstrac-

tion of the expert's concepts of the essence of a data

analysis.

The interface consists of two interacting windows: the

guidemap and the workmap. An example is shown in
Figure I (a screen image from UiSta (Young, 1994),

software that implements the ideas in this paper).Each

window contains a graph which has nodes and edges.

The guidemap graph represents the statistical strategy

for a specific statistical task (such as describing data).

Nodes represent potential data-analysis actions that can

be taken by the system. Edges represent potential
actions that can be taken by the analyst. The guidemap

graph exists prior to the data-analysis session, having
been created by an expert. The workmap graph repre-

sents the complete history of all steps taken by the data

analyst. [t is constructed during the data-analysis session

as a result of the analyst's actions. Workmap nodes rep
resent datasets, data models, or data-analysis procedures

which have been created or used by the analyst. Work-
map edges represent the chronological sequence ofthe
analyst's actions. One workmap node is highlighted to
show which statistical object is the focus ofthe strategy'

structures the actions that the data analyst takes during
the search for meaning in the data.

Structuring Data Analysis: Young & Smith (1991)

argue that the process of data analysis is improved when

the environment structures the actions taken by the data

analyst. They suggest that an on-going data analysis
should be represented by an icon-based graphical user

interface which constructs a map of the analysis as it
proceeds. This map shows the structure of the actions

taken by the data analyst, and the data, models and anal-

ysis procedures involved in those actions. The map pre-

sents the analyst with a visualization of the structure of
the analysis session, and can be used to return to previ-
ous steps.

Our formal representation of session structure is the

workmap: Avorkmap is a directed acyclic graph cor,-

sisting of nodes and edges (as suggested by Young &
Smith, l99l), where a node represents a data-analysis
object (a dataset or a data model) or a data-analysis pro-

cedure that has been used by the analyst, and an edge

represents the chronological sequence of the objects and

procedures (the creation dependencies) during the anal-

ysis session. Taken as a whole, the workmap is a visual,

object-oriented, directly manipulable, structured repre-

sentation of the history of a data-analysis session.

Notice that a node is a self-contained unit of existing
data (dataset), statistical computation (analysis prcce-

dure), or a combination of the two (data model)'
whereas edges represent the choices, actions and deci-

sions that a data analyst made during the session. Nodes,

which are the basic building blocks of the on-going
data-analysis session, can be selected and reviewed at

1.0 Background

We hold that learning from data is a highly complex any time. The workmap visualizes the history of the on-

activity (Young & Smith, 1991) that involves repetitive going data analysis.

actions that occur over and over again in a cyclical
search for understanding (Lubinsky & Pregibon, 1988). Guiding Data Analysis: At each step of a data analysis

We believe that learnin! from data, as well as the pro- the data analyst is faced with many choices. Often, fhe

ductivity, accuracy, accessibility and satisfaction of the data analyst returns to previous steps in order to make

process, witl imprlve in an environment that guides and different choices' As stated by Lubinsky and Pregibon

Copyright @ t9f,4 by Forrest W. Young & David J. Lubinsky. All rights reserved. Contact forrest@unc.edu.

531



(1988), "Like a detective, a data analyst will experience
many dead ends, retrace his steps, and explore many
alternatives before seuling on a single description of the

evidence in front of him." We argue that data analysis
improves when it occurs in an environment that guides

the actions taken by the analyst to understand the data.

We use the Artificial Intelligence (AI) notion of strategy
as a basis for developing methods for guiding data ana-
lysts. Several statisticians have developed the notion of
a statistical strategy (as reviewed by Gale, Hand &
Kelly, 1993). In our definition, a statistbal strategy is a
fonnal representation of an expert statistician's concep-
tual structuring of 1) the data-analysis procedures to
accomplish a specified data-analysis task; 2) the data
analyst's actions (choices, decisions, etc.) that are possi-

ble with the procedures; and 3) the relationships
between the procedures and actions needed to accom-
plish the task. The data-analysis task is to understand a

specified data-analysis object (a dataset or data model).

For our data-analysis environment guidemaps are the
fonnal representation of statistical strategy. In our defi-
nition, a guidenop is a directed cyclic graph consisting
of nodes and edges. The nodes of the graph represent
data-analysis procedures, whereas the edges represent
the analyst's possible actions. The structure of the map

indicates the order dependencies between the proce-
dures and the actions that can be taken with the proce-
dures to accomplish the data-analysis task of
understanding the data-analysis object.

Notice that a guidemap node is a self-contained unit of
potential statistical computation, while a guidemap edge
represents the expert's guidance about moving from one
computation to the next. Nodes are the basic building
blocks ofpotential data analyses, i.e., of statistical stat-
egies. On the other hand, the edges in the strategy repre-
sent the data analysts's possible choices, actions and
decisions regarding the use of data-analysis procedures.
They indicate permissible paths for traversing the
nodes. Nodes can only be selected when they are high-
lighted. As a whole, the guidemap visualizes and
absaacts the essence ofan expert's statistical strategy.

2.0 Representing Statistical Strategy

Our definition of statistical strategy involves afonw"t.
representation.. Our formal representation consists of
graph structures like that shown in the guidemap win-
dow on the right side of Figure 1. The guidemap, titled
flnalgsis Cgcle, presents the overall statistical strat-
egy. This specific gurdemap is always ttre first guidemap
for a newly created multivariate dataset object. It is only
a small portion of the overall strategy, since additional
"sub"-guidemaps can be displayed by clicking on the
buttons. For example, clicking on the Link:Explore but-
ton causes the guidemap in Figr:re 2 to appear. Taken as

a whole, the set of guidemaps are our formal representa-
tion of statistical strategy.

UiSta lUorkMap GuideMap: enalusis Cucle

Itl H"lr-l

PC

EIxeto

Link

Figure 1: Forrral Representation of Statistical Strategy in the Worklvlap and GuideMap

532



The strategy concerns a specific data or model object,

thus, a data or model object is the focus of the analysis.

The focus object is represented in the worlonap window
by the highlighted (dark) icon. In Figure l, the focus

object is the "Scores&Ratings" dataset. The workmap
itself shows where this object fits into the structure of
the overall on-going analysis. The two separate win-
dows emphasize the separation between the on-going
data analysis (mapped in the workmap) and the strategy
gurding the data analysis (mapped in the guidemap).

Guidemap nodes are represented by the rectangular but-

,oz icons, and guidemap edges are represented by the

arrows. Thus, the buttons show Potential steps in the
analysis that the analyst is guided to take, whereas the

arrows indicate the flow of guidance from one step to

the next. A node is a self-contained unit of potmtial sta'
tistical computation. It may do its own computation, or
may call another strategJ.

Buttons can be "active" or "inactive". Active buttons are

highlighted (such as the Link:Explore button in Figure

1) and are ready to cause an action. Clicking on the ??

side of an active button enters a hypertext which causes

help to be displayed about the action of the button.

Clicking on the !! side of an active button enters a

hypercode which causes the button's action to be initi-
ated. Once the button's action has taken place, the high-
lighting (activation) of the buttons changes: The clicked
button deactivates, and the buttons that it points to are

activated. Inactive buttons (such as the Link:Trans-
form button in Figure l) are not ready to do anything:
Clicking on them has no effect.

There are two kinds of buttons: Flow Buttons, which
control the flow betv'een various portions of the large

structure of guidemaps, and Procedure Buttons, which
control the use ofdata-analysis procedures. In addition,
some FIow Buttons represent rePresent entire portions
of the guidemap. These are called Macro Buttons.

Flow buttons include the Link, GoTo and Return but-
tons shown in the figures. These buttons take the user to

other guidemaps. The Link button takes the analyst to a

new strategy, whereas the Return button returns to the

linked-from strategy. The Link button is a macro dalz'
analysis procedure which is itself a strategy, since this

button opens up new strategies. For example, clicking
on the !! portion of the Link:Explore button in Figure I
causes the Explore Data guidemap, shown in Figure
2, to appear. Correspondingly, clicking on the Return
button in Figure 2 (when it is highlighted) will take you

back to Figure 1. Upon return to the guidemap in Figure

1, the highlighting of the buttons will change according

to the connecting arows. That is, the Link:Explore but-

ton will de-activate, and the Link:Transform and

Link:Analyze buttons will activate. The GoTo button

changes the focus ofthe data analysis, and ofthe strat-

egy, to a new data or model object. All buttons other
than flow buttons are procedure buttons that activate
data-analysis procedures.

The evolving progress of the data-analysis session is

shown in the worlrnap. Each time a new object is cre-

ated, it is represented by a new icon. Whenever a new

dataset or model object is derived from an existing
dataset object, an arrow is drawn from each of the new

object's parents (usually only one) to the new object to

show the creation dependency and the flow of data into

or out of a data-analysis object or procedure.

Certain actions taken via the guidemap create new

nodes in the workmap. Anew dataset object may be cre-

ated by a mathematical procedure (such as normaliza-
tion or principal components analysis) or by a non-
mathematical operation (such as removing variables or
merging datasets). A new model object is always cre-

ated by a mathematical procedure. A procedure icon
appears between the original and nevr objecs when tlle

GuideMap: Explore Dato

E xeto
Y

List V ations

Data

Return Data

GoTo:Nev Data

Shov

Data

Figure 2: Formal Representation of
Strategy for Exploring Data

533



creation involved mathematical operations, otherwise,
no procedure icon appears. If a procedure icon appears,

the creation dependency arrow is drawn from the parent

objects through the procedure to the new object. Natu-
rally, a new object may be brought in from'butside" of
the system, in which case the new object is not con-
nected to a parent (e.g., CarRatings in Figure L).

We turn now to the workmap shown on the left side of
Figure l. The workmap shows a data-analysis session

that has already involved several major steps. In the first
step, the analyst read in the data that defined the Car-
Prefs dataset object. These data were then submitted to
a Principal Components Analysis, as indicated by the
PrnCmp procedure icon. This analysis produced the
PCA-CarPrefs model object. The analyst then
requested that a new dataset object Scores-PCA-Car-
Prefs be created by the model object. Separately, the
analyst also read in data that defined the CarBatings
dataset object. These data were normalized, as indicated
by the Norm procedure icon, creating a new dataset
object named Norm-CarRatings, which was merged
with the Scores-PCA-CarPrefs dataset object to
obtain another dataset object named Scores & Ratings.
This dataset is the current focus ofthe statistical strat-
egy, as is indicated by its highlighting.

The workmap and guidemap graphs differ in several
respects. First, the structure of the guidemap graph
doesn't change, it remains as shown throughout the anal-
ysis, although its highlighting changes. The workmap
graph, on the other hand, grows as new data and model
objects are created and as new analysis procedures are

used (both structure and highlighting change). Second,
the guidemap is a (potentially) cyclic graph, whereas the
workmap is an acyclic hierarchical tree graph. This rep-
resents Lubinsky and Pregibon's (1988) observation that
actions taken during data analysis are not hierarchical,
but are cyclical, although the resulting analysis is hierar-
chical. Third, the guidemap (as represented by the initial
guidemap shown in Figure 1, and all its sub'guidemaps)
has an entry point but no exit point, whereas workmaps
have both entries and exir. This represents the fact that
a stategy has a beginning step but no final step. The lack
of an exit from a strategy reflects the fact that a strategy
is cyclic. However, analysts can quit a strategy when-
ever they choose by using the window's close box.

3.0 Using Statistical Strategies

Lets consider how the guidemap in Figure I works. First
of all, note that all of the buttons in the guidemap in Fig-
ure 1 are macrobuttons: Whenever one of them is used a

new strategy map will replace the orre shown in the fig.
ure. When the new strategy map is completed, the user
will once again be shown the map in the figure, although
it's pattern of highlighting will have changed as indi-
cated by the arrows. Thus, after exploring the data, the
transfomration and analysis (i.e., model fitting) buttons
become higtrlighted.

Since Link:Explore button is a macro button, when it is
used the map in the window changes to the Explore
Data guidemap shown in Figure 2. Now, as indicated
by the button highlighting, the analyst has a choice of
three actions: show the datasheet" list variable namcs or
list observation labels. When the user chooses any one
of these three actions, the action takes place and the
chosen button turns gray, since it is no longer a recom-
mended action. The other two buttons remain high-
Iighted. Notice that the just-used button is connected to
a short vertical arrow rather than to another button. This
short verticd arrow is called an andicon because it is an

"and gate" that restricts the flow of guidance from one
action to the next All of the buttons that are connected

to an and icon must be used before guidance can flow
through it to the buttons that follow it.

Note how the strategy has guided the analysc As shown
in Figure 1, the analyst must explore the data first, and
must analyze the data before inspecting the model. In
Figure 2 the analyst must look at the data and their iden-
tifying information before visualizing the data or getting
summary statistics. On the other hand, the data analyst
has choices: In Figure L, it is not required, though it is
possible, to transform the data before fitting the model.
In Figure 2 it is possible to visualize the data before see-

ing summary statistics, or to reverse this order.

It should be emphasized that portions (or all) of the data
analysis can be created directly in the workmap win-
dow, without using the guidemap window, whenever a

sufficiently sophisticated data analyst wishes. Entire
data analyses can be created from the workmap without
ever seeing a guidemap. This is done by clicking the
mouse on the body of an icon to obtain a pop-up menu
of actions that the icon supports (the upper portion of
the icon is used to drag the icon, or the whole Eee below
the icon, to a new location). These menu-items are also
accessible from menubar menus. Analysis procedures
are accessed from an optional toolbar (that can be

shown in the workmap) or from the menubar.

It should also be emphasized that a previous portion of
ttre data analysis can be revisited at any time by simply
clicking on the appropriate workmap icon. Then, the
analysis can be continued in a new direction by simply

534



taking different steps than were taken previously. The

workmap graph provides a very convenient and simple

way of backtracking, a feature that can be very hard

with conventional systems which do not keep a full his-

tory of a data analysis session. This can be done across

sessions by saving (portions oO the workmap and

reloading it in a later session.

Also, note that when the data analyst is performing the

analysis directly from the workmap, guidance is avail-
able at anytime by simply requesting that the guidemap

be shown. When so requested, the appropriate portion of
the guidemap structure is displayed in the guidemap

window. Thus, it is possible for the data analyst to use

guidance when needed, and to avoid it otherwise.

Finally, portions (or all) of the data analysis can be per-

formed with neither guidemaps nor workmaps, as may

be desired by sophisticated users. This can be done in
three distinct ways. One is to use menubar menus (the

menubar is always displayed). Another is to type state-

ments in the underlying data-analysis language. The

third is to use scripts. Note that we can display the work-
map at any time to see the entire history of the analysis,

even though we have not been displaying it during the

analysis. All of the information necessary to construct

the workmap is created as the analysis session unfolds,

even when the worlrnap is hidden. Also note that in any

of the above situations we can display the guidemap so

that we can use an expert's advice as to how to proceed

with the analysis.

4.0 Creating Statistical Strategies

The guidemaps that embody statistical strategy are cre-

ated while in "authoring" mode, a mode which provides

the author with visual programming tools used to create

the guidemaps. In this mode there is an Author's Work'
Bench window in which new guidemaps are created. In
addition, a Tools menu is added to the menubar, and the

action of all menu items is enhanced. The enhanced

menu items and the Tools menu items become
"guidetools" that the expert uses to create guidemaps.

Procedure buttons are created by using those menu
items that are needed to perform the specific type of data

analysis for which guidance is being created. When in
authoring mode, the action of the menu items is
enhanced so that, i.n addition to the analysis action tak-
ing place, a button is placed on the author's workbench
(the button's title is the szlme as the menu item's name).

Note the basic design philosophy underlying the cre-
ation of statistical strategies: The expert creates the gur-

demap's data-analysis procedure buttons by using the

menu system in exactly the same way that s/tre would
use it when it is not in authoring mode. Since the system

is in authoring mode, buttons appear in the workbench
window. Otherwise, everything is the same as when the

system is not in authoring mode. This design feature
means that the expert is free to perform whatever analy-

sis is desired, using whatever data-procedures are

appropriate, without any new authoring "features".

On the other hand, flow buttons, which do not corre-
spond to data-analysis actions, are created by using the

Tools menu, requiring that the expert use new authorirg
features. There is a menu item for each type of flow but-

ton shown in previous figures, as well as items that
cause a guidemap to automatically tink to or return from
another guidemap, and an item to indicate which but-
tons are initially activated. Buttons and icons can be

connected together with an arrow drawing tool and can

be dragged to new locations to give the guidemap a

pleasing layout. Finally, the expert creates the help
information that is displayed by the ?? side of a button

with an ordinary text editor.

5.0 System Architecture

In this paper we have discussed our concepts concerning

re p re s e nt in g, usin g and c re at in g statistical strategies,

We have also presented a structured graphical user inter-

face which implements our concePts. In this section we

discuss the architecture of our implementation, focusing

on the architecture for representing statistical strategy.

See Young & Lubinsky (1994) for a discussion ofthe
architecture for using and creating statistical strategies.

Our implementation, which we call UiSta (for Visual

Statistics), is written in Lisp using the Lisp-Stat system

for statistical computation and dynamic graphics (Tier-

ney, 1990). UiSta adds our structured graphical user

interface to LispStat's statistical engine, object system'

graphical system and windowing environment. Uista
uses the Lisp-Stat object-oriented programming system

to implement the interface.

The representation of our concepts about statistical
strategy (i.e., the interface) is built on a foundation of
three interacting object families. These families are sta-

tistical objects (data model and transformation objects);

map window objects (workmaps and guidemaps); and

icon objects (data, model, procedure and guide icons).

While the statistical object system is invisible to the

user, it is the foundation upon which workmaps and

535



Model-Proto Data-Proto Transf-Proto

Multivariate
Data Proto

Relationa!
Data Proto

Tabular
Data Proto

Muftivariate
Model Prcto

Relational
Model Proto

L rtros

Tabular
Model Proto

Lnuovn
Transf Proto

Relational
Transf Proto

Tabular
Transf Proto

E

Hes

PCA

CA

- Norm

- Transp

- Orthog

- Sort

- Ranks

E

Corr

Cov

Dist

Figure 3: Statistical Object Prototype Structure

guidemaps are built. We discuss the three object families
in the remainder of this section.

Statistical Objects: At the heart of the ViSta architec-
ture for representing statistical strategy is a system of
statistical object prototypes. These prototypes are orga-
nized as a mixed hierarchy, as shown in Figure 31. The
most fundamental statistical object prototype is Data-
Proto. It contains information and methods that are
needed by all statistical objects. The information
includes data, the object's title, the object identification
of the associated icon object, the parents and children of
the object (in the sense of which other objects are above
or below in the workmap and guidemap), whether the
object needs computing, etc. The methods include meth-
ods for storing the information about the object, for cre-
ating the object's icon and connecting lines in the
workmap, etc. The other two main classes of statistical
objects are Model-Proto, which has information and
methods for the dialog boxes that obtain model options,
and Transf-Proto, which has an exm information slot
for the transforrred data.

Inheriting from Data-Proto are three specialized data
prototypes for multivariate, relational and tabular data.
These three prototypes have information and methods
that are unique to their type of data. For example, the
multivariate prototype has inforrration and methods for

l. The stnrcture that exists at the time of this writing is a sim-
ple hierarchy. It is being modified to the mixed hierarchical
structure described in this section. The mixed hierarchical
structure, based on multiple inheritance, simplifies several pro-
gramming aspects.

the number of rows and columns, whereas the tabular
prototype has information and methods concerning the
number of ways and the number of levels of each way.

Inheriting from both the Model-Proto and the Data-
Proto are three kinds of model prototypes designed for
modeling multivariate, relational and tabular data.
These prototypes multiply inherit from their specific
type of data as v,rell as from model-proto since the;.r

need the infonnation and methods of both. The same
type of multiple inheritance applies to the three kinds of
transforrration prototypes as well.

Finally, inheriting from each of the three model proto-
types are prototypes for specific types of models. At the
time this is being written, these currently include multi-
variate model prototypes for multivariate multiple
regression analysis, principal component analysis and
correspondence analysis, a relational model prototype
for multidimensional scaling, and a tabular model proto-
type for analysis of variance. There are also the specific
transformation prototypes shown in Figure 3.

In previous sections of this paper we discussed data and
model objects. These are specific instances of one of the
data or model prototypes. Our discussion used examples
of MV-Data-Proto (for multivariate data) and PCA-
Model-Proto (for a principal componena model). The
icons for these models are shown in Figure l.

Note the following interesting aspect of our architec-
ture: The analysis procedures discussed in previous sec-

tions of the paper correspond to what we refer to here as

536



model prototype.t, whereas the models that we discussed

earlier are instances of model prototypes. Thus, models

are instances ofprocedures! This is as it should be - an

analysis procedure is a collection of methods (in Lisp ter-

minology) waiting to be applied to infonnation, whereas a

model is the specific instance of having applied those

methods to a specific collection of data. Also, an analysis

procedure has empty information slots (in Lisp terminol-
ogy), whereas a model has information slots that have

been filled with the results of applying the methods to

some data. Note also that this simplifies updating analysis

sessions with new or revised data: Whenever new data are

at hand, all models can be easily updated simply by updat-

ing their data information and reapplying their methods.

Map Objects: The workmap and guidemap object struc-

ture is quite simple: It consists of a iconmap-proto from
which inherits the workmap-proto, from which inherits

the guiclemap-proto. The iconmap-proto contains all of
the information-slots and methods that are needed by all
icon maps. These include, for example, slots and methods

for the number of icons, the entire list of icons, a list of
connections between icons, the identification of which

icon is highlighted, etc. There are also methods for draw-

ing the map, for dealing with mouse-clicks, for adding

new icons, etc. The workmap-proto has information-
slots and methods for keeping track of each type of icon
(defined below) for updating menus (which maintain lists

of data and model objects), operating the toolbar, etc. The

iconmap-proto has its own methods for redrawing and

dealing with mouse-clicks, for the actions of icons, for
storing old guidemaps for later use, and for reading, creat-

ing and linking to new guidemaps.

Icon Objects: The icon structure is also very simple:
There is a basic icon-proto which has information-slots
and methods for icon bitmaps, location, titles. Inheriting
from icon-proto are seven specific icon prototypes one

for each of the three kinds of data objects, one each for
procedures, models, guide-buttons, and and-icons. Each of
these has its own bitmap. Some have specialized methods

that are appropriate to the specific icon.

6.0 Discussion

In this section we discuss the relation of our work to con-

cepts with their origins in computer and cognitive science:

hypertext" visual programming, and cognitive processing.

6.1 Hypertext and HyPercode

Hypertext (or, more generally, hypermedia) is a generic

approach to linking and structuring all forrrs of computer-

ized materials so that non-linear; dynamic docurnents can

be constructed (for more information, consult Woodhead

(1990) or Martin (1990)). Hypermedia consist of nodes

that are connected by links. The nodes contain the materi-

als, which may be text, diagrams, animations, images,
video, sound, computer programs or any other computer-

ized infomration. The links provide a mechanism for non-

linear navigation among the nodes. The nodes may be

linked together into web, hierarchical, cyclic, or other
structures. Hypemredia always have tools for navigating
the link structure anri for displaying the node material.

Clearly, our help system is a hypertext: The guidemap but-

tons are the nodes that contain the help text, and the

arows are the links between the nodes. In addition, the ??

side of a guidemap button is the tool that accesses and dis-

plays the hypertext. The buttons also navigate the hyper-

text. Finally, the structure of the hypertext is shown by the

stnrcture of the guidemap.

Of much more interest js the fact that our guidance sl,stem

is a "hypercode", a form of hyperrredia where the materi-

als are computer progruns. Note that the structure of the

hypercode is represented by the structure of the guidemap,

and that the hypercode is navigated by clicking on the !!

side of guidemap buttons. When the naive analyst clicks
on the ! ! side of a button, the button not only navigates to a

particular piece ofhypercode, but also causes the execu-

tion of that piece of code. Thus, from the point-of-view of
the naive user, the guidemaps display the structure of the

guidance hypercode, provide a means of navigating
through it, and a means of executing pieces of it. (Note

that the guidemaps also display the structure ot'he help

hypertext, provide a means of navigating through it, and

for displaying pieces of it. Thus, both the hypertext and

hypercode are seartlessly unified.)

It follows that the expert user's process of authoring
guidemaps is, in fact, a Process for writing hypercode. As

described above, authoring involves creating two kinds of
buttons: action buttons and flow buttons. When an action

button is created, the code that is written is a ViSta func-

tion which parallels a data-analysis menu item and which

causes a data-analysis step to take place. On the other

hand, when the author creates a flow button, the code that

is written consists of standard Lisp flow control functions.

Thus, authoring guidemaps is computer programmlng.

However, it is not the usual type of programming in which

the programmer types statements. Rather, it is one in
which the statements get generated automatically when the

author (programmer) selects a button. This form of com-

puter programming is known as visual programming,

which is discussed in the next section.

537



6.2 Visual Programming & Program
Visualization

Visual programming and program visualization are very
active areas ofresearch in computer science. There goal
is to simplify programming, and to make progrartming
accessible to a wider audience. They attempt to reach

this goal by combining the disciplines of interactive
graphics, computer languages and software engineering
to take advantage of a person's non-verbal visual capa-

bilities and a computer's interactive graphical capabili-
ties.

Conventional textual computer languages process pro-
gram instructions that exists in nongraphical (textual)
streams. Visual programming, by contrast, refers to a
way for people to create programs using graphical meth-
ods (although the visual program is translated into a tex-
tual program).

Program visualization, on the other hand, is an entirely
different concept Here, the program is specified in the

usual textual manner, but is then illustated visually in
some fonn. Thus, the progam is specified as text and

translated into graphics. Note that this reverses the pro.
cess involved in visual programming, where the pro-
gram is specified as graphics and is translated into text.

Guidemaps and workmaps are simple examples of
visual programming and program visualization.
Guidemaps are visual programs which have been cre-
ated by an expert using a visual authoring system, and

which are "ex@uted" by the novice. Workmaps are prc.
gram visualizations which have been created textually
(or visually). In fact, when a workmap is saved and re-
executed, it becomes a visual program as well as a pro-
gram visualization.

The earliest visual languages were computerized flow-
charts. More recently, visual languages are formally
based on graph theory, consisting of nodes and edges
(note the connection with hypertext). Often the edges

are directed (and called arrows). There are graphs such

as "higraphs", which allow nodes to contain other nodes

and which perrrit arrows to split and join, or "colored
petri nets" which allow parallel processing systems to be

constructed. A number of visual programming systems
use dataffow diagrams. Here the operations are typically
put in nodes, and the data flow along the alrows con-
necting the nodes.

We have based guidemaps on directed cyclic graphs and
workmaps on directed acyclic dataflow diagrams
(Young & Smith, 1991). Our developments are limited,
however, in that we have not developed looping or con-

ditional branching. Thus, one can argue that our work-
maps and guidemaps do not constitute a full visual
progmmming language, since the abstract delinition of a
computer language requires the inclusion of these capa-
bilities.

We recommend investigating the possibility of develop-
ing (or using an existing) visual dataflow language as

the basis for a structured graphical interface for per-
forming and guiding data analysis. Two interesting
existing systems are VisaVis (Poswig, Vrankar &
Morara, 1994) and Khoros (Rasure & Williams, 1991).

Both are functional visual programrr:ng languages witir
looping and conditional branching. Khoros is also a
dataflow language.

6.3 Cognitive Processes and Data Analysis

Young & Smith (1991) present a structured graphical
user interface for data analysis that, like ours, is also
designed to improve the data analysis process. One of
the cornerstones of their presentation is that the struc-
nre of the data-analysis environment should reflect the
various modes of cognition used by data analysts during
data analysis. This idea leads them to propose thal tire
data-analysis environment should have visible system
modes (windows) which correspond to the cognitive
modes assumed to be active in the data analyst during
the process ofanalyzing data.

Their fundamental assumption is that data analysts
adopt differentcognitive rrcdcs of behavior and thought
at different stages of the data-analysis process. They
propose three cognitive modes: An exploratory mode
that is active when adata analyst explores data, and
which is supported by graphical user interface like our
guidemap; A confinnatory mode that underlies confir-
matory data analysis and is supported by an alpha-
numeric interface like our language window (see Young
& Lubinsky, 1994\; A structure mode which is used to
construct, maintain and revise a meaningful structure of
the overall data-analysis session, and which is supported

by a graphical user interface like our workmap.

While we agree with Young & Smith's assumption that
data analysts have different modes of cognition during
data analysis, we have taken the position that modes of
cognition are a function of the level of data-analysis
expertise rather than a function of the specific data-anal-

ysis activity occurring at a given moment of a data-anal-

ysis session. Our informal observations lead us to
believe that the same cognitive modes are used by nov-

ice, competent, experienced and expert data analysts,

but that the distribution of time spent in the various

538



modes changes as the data analyst becomes more expe-

rienced with a particular aspect of data analysis.

Thus, we argue that a well-structured data-analysis envi-

ronment should have system modes (i.e., windows) that

reflect the variation in cognitive modes that data ana-

lysts employ, and that the frequency of employment of
such cognitive (and, therefore, system) modes is a func-

tion of the experience of the analyst. We also argue that

a specific data analyst does not necessarily always oper-

ate at the same level of expertise throughout an entire

analysis. Thus, someone may be very experienced with
exploring data, but at the same time be less competent

when it comes to performing a principal components

analysis, and totally unfamiliar with time series analysis.

Therefore, we have designed our data-analysis environ-

ment to permit an analyst to effortlessly switch between

the various interfaces, and to have these interfaces be

mutually complementary.

Perhaps the truth of the matter combines Young &
Smith's assertion that the user's cognitive mode depends

on the specific type of statistical activity that is under

way, as well as on our assumption that the user's cogni-

tive mode depends on the level of expertise of the ana-

lyst for the specific type of statistical activity that is

taking place. In any case, this is a matter for future
empirical research, research which could yield improve-

ments in the quality, satisfaction and productivity of the

data-analysis process.

7.O Conclusion

Understanding and representing statistical strategy is a
relatively new area ofresearch that isjust now gaining

momentum. Within this area of research, it appears that

our visual approach to statistical strategy is new and

unique, and is firmly based on curent computer science

thinking. As the capability of computers contiuues to

increase, while their price continues to decrease, the
audience for complex software systems such as data-
analysis systems will become wider and more naive.
Thus, it is imperative that these systems be designed to
guide data analysts who need the guidance, while at the

same time be able to provide full data-analysis power.

An efficacious way of doing this is certainly needed, and

we believe that our visualized statistical strategies have

the potentid for great payoff in the improvement of the

quality, satisfaction and productivity of statistical data

analysis.

Naturally, we hope that our visual methods for guiding
naive data analysts by visually representing, using and

creating statistical strategies will prove useful. Of much

greater importance, however, is our basic poinr Con-

centrated attention should be given by computational
statisticians to the representation, usage and creation of
statistical strategies. We believe that such strategies

should be available to guide and structure the data-anal-

ysis process so that relatively naive users can perforut

high-quality data analyses. And we believe that guid-

ance systems should be empirically tested to see if they

deliver on their promise.

8.0 References

1. Gale, W.A., Hand, D.J. & Kelly, A.E. (1993) Statisti-
cal Applications of Artificial Intelligence. In: C-R.

Rao, Handbook of Statistics : Computational Statis -

ac& Amsterdam: Elsevier N-orth-Hollan d, 9, 535'
576.

2. Lubinsky, D.J. & Pregibon, D. (1988) Data Analysis
as Search. J ournal of Econometic s, 38, 247 -268.

3. Martin, J. (1990) Hyperdocuments and. how to create

them.hentce Hall, Englewood Cliffs, NJ

4. Myers, B.A. (190) Taxonomies of Visual Progrart-
ming and Program Visualization. Journal of Viswl
I-anguages and Computing, l, 97 -123.

5. Poswig, J., Vrankar, G. & Morara,C- (1994)
VisaVis: A Higher-order Functional Visual hogram-
ming Language. Journal of \lsinl l-anguages and

Compurtng,5, 83-111.

6. Rasure, J.R. & Williams, C.S. (1991) An Integrated
DataFlow Visual Language and Software Develop
ment Environment Joumal of Vsual languages and

Computing,2,2l7-246.

7. Tierney, L. (1990) Lisp-Stat: An Obiect-Oiented
Environruent for Sntistical Computing & Dynamic

Graphics.Addison-Wesley, Reading, Massachusetts.

8. Woodhead, N. (1990) Hypertext & Hypermedid:

Theory and Applications' Addison-Wesley. New
York.

9. Young, F.W. (1994) Vista - The Visual Statistics
System. Psychometric lab Memorandum 94-1.

UNC Psychometrics Lab, Chapel Hill, NC.

10.Young, F.W. & Lubinsky, D.J. (1994) Guided Data
Analysis: On the Representation, Use and Creation

of Visual Statistical Strategies. Psychometric Lab

Repon 94-l. LJNC Psychometrics Lab, Chapel Hill,
NC.

11. Young, F.W. and Smith, J.B. (1991) Towards a

Structured Data Analysis Environment A Cogni-
tion-Based Design. In: Buja, A' & Tukey, P.A. (Eds.)

Computing and Graphic s in Statistic s, 36, 253-279.
New York Springer-Verlag.

539


