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1. Introduction
This paper deals with asymmetric decision
problems. An asymmetric decision problem can
be defined most easily using its decision tree
representation. In a decision tree, a path from
the root node to a leaf node is called ascenario.
We say a decision problem is asymmetic if
there exists a decision tree representation of it
such that not all scenarios include all variables
in the problem. In asymmetric decision prob-
lems, some scenarios may exclude either some
chance variables, or some decision variables,
or both. The main goal of this paper is to de-
scribe a valuation network representation and
solution of asymmefric decision problems.

Influence diagrams and valuation networks
as originally conceived were designed for
symmetric decision problems. For asymmetric
decision problems, these techniques makes an
asymmetric problem symmenic by adding vari-
ables and dummy configurations to scenarios.
In doing so, we increase the computational
burden of solving the problem. For this reason,
representing and solving asymmetric problems
has been the subject of several studies in recent
years.

In the influence diagram literature, four
techniques have been proposed by Call and
Miller U9901, Smith et al.ll993l, Fung and
Shachter U9901, and Covaliu and Oliver
ll992l, to deal with asymmetric decision
problems. Each of these four techniques is a
hybrid ofinfluence diagram and decision tree
techniques. In essence, influence diagram rep-
resentation is used to caphrre the uncertainty in-
formation, and decision tree representation is
used to capture ttre stnrcnual asymmetry infor-
mation.

In this paper, we investigate the use of val-
uation networks to represent and solve asym-
metric decision problems. The stnrcnual

asymmetry information is represented by indi-
cator valuations. An indicator valuation is a
special type of a probability valuation whose
values are restricted to either 0 or 1. Indicator
valuations enable us to redu@ the domain of
probability valuations and this contributes
greatly to improving the computational efFr-
ciency of the solution tecbnique. We use indi-
cator valuations to define effective frames as
subsets of frames of variables. All numeric in-
formation is specified only for effective fiarnes.
The solution technique is mostly the same as in
the symmetric case. The main difference is that
all computations are done on the effective
frames of variables. This contributes to the in-
creased efficiency ofthe solution technique.
Also, when restricted to effective frames, the
values of indicator valuations are identically
one, and therefore indicator valuations can be
handled implicitly and this contributes further
to the increased efficiency of the solution tech-
nique.

An outline of the remainder of the paper is
as follows. In Section 2,we give a verbal
statement of the oil wildcatter's problem [Raiffa
19681. This is an asymmetric decision prob-
lem.In Section 3, we describe the valuation
network representation method for asymmetric
decision problems and illustrate it using the oil
wildcatter's problem. In Section 4, we sketch a
fusion algorithm for solving valuation network
representations. Finally, in Section 5, we
summarize and conclude.

2, The Oil Wildcatter's Problem

The oil wildcatter's (OW) problem is repro-
duced with minor modifications from Raiffa
[1e68].

An oil wildcatter must decide either to drill
(d) or not drill (-d).He is uncertain whether
the hole is dry (dr), wet (we) or soaking (so).
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Table I. The utility matrix for the OW problem.

Wildcatter's
profit, $

(o)

Act
driU not drill

?a@
Probability

of state

State
w
Wet
Soakins

(dr)
(we)
(sa)

-70,000
50,000

200,000

0
0
0

0.50u
0.300
0.200

Table tr. Probabilities of seismic test results conditional on the amount
of oil.

P(R rO)

Seismic Test Results (R)
No Open Closed

Stnrcnue Sfucture Strucnrre

(zs) (os) (cs)

Amount
of

oil (o)

Dry
Wet
Soaking

(dr)
(we)
(so)

0.300
0.400
0.400

0.600
0.300
0.100

0.100
0.300
0.500

Table I gives his
monetary payoffs and
his subjective probabili-
ties of the various states.
The cost of drilling is
$70,000. The net return
associated with the d-we
pair is $50,000 which is
interpreted as a return of
$120,000less the
$70,000 cost of drilling.
Similarly the $200,000
associated with the d-so
pair is a net renrrn (a
reflirn of $270,000 less
the $70,000 cost of
drilling).

At a cost of
$10,000, the wildcatter
could take seismic
soundings which will
help determine the geo-
logical structure at the
site. The soundings will
disclose whether the ter-
rain below has no
structure (nsFthat's
bad, or open structure
(os)-that's so-so, or
closed stnrcture (csF
that's really hopeful.
The experts have pro-
vided us with Table tr
which shows the prob-
abilities of seismic test
results conditioned on
the amount of oil.

Figure 1 shows a
decision tree representa-
tion and solution of this
problem. The optimal
strategy is to do a seis-
mic test; not drill if
seismic test reveals no
strucfire, and drill if the
seismic test reveals ei-
ther open or closed
structure. The expected
profit associated with
this strategy is $22,500.

Notice that the OW
problem is asymmetric.
This problem has 16
scenarios. Of these, 9

Figure 1. Decision tree representation and solution of the OW
problem.
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Figure 2. A valuation network for the OW problem.

scenarios include all four variables, 3 scenarios
include only variables T, R, and D, 3 scenarios
include only variables T, D, O, and one sce-
nario includes only variables T and D.

3. Valuation Network Representation

In this section, we describe the valuation net-
work representation technique and illustrate it
using the oil wildcatter's (OW) problem.

A valuation network representation is spec-
ified at three levels-graphical, dependence,
and numeric. This is somewhat analogous to
Howard and Matheson's [1981] relational,
functional, and numerical levels of specification
of influence diagrams. The graphical and de-
pendence levels have qualitative (or symbolic)
knowledge, whereas the numeric level has
quantitative knowledge.

3.1 Graphical Level

At the graphical level, a valuation network rep-
resentation consists of a graph called a valua-
tion network Figure 2 shows a valuation net-
work for the OW problem. A valuation net-
work consists of two types of nodes - vari-
able and valuation. Variables are further classi-
fied as either decision or chance, and valuations
are further classified as either indicator, or
probability, or utility. Thus in a valuation net-
work, there are in all five different types of
nodes - decision, chance, indicator, probabil-
ity, and utility.

Decision Nodes. Decision nodes corre-
spond to decision variables and are depicted by
rectangles. In the OW problem, there are two
decision nodes labeled T, and D. T represents

the seismic test decision, and D repre-
sents the drill decision.

Chance Nodes. Chance nodes
correspond to chance variables and are
depicted by circles. In the OW problem,
there are two chance nodes labeled R
and O. R represents the seismic test re-
sult, and O represents the amount of
oil.

kt Sp denote the set of all decision
variables, let $p denote the set of all
chance variables, and let $ denote
$pu$x.

Indicator Valuations. Indicator
valuations represent qualitative con-
straints on the joint franres of decision
and chance variables and are depicted
by double-triangular nodes. The set of

variables directly connected to an indicator val-
uation by undirected edges constitutes the do-
main of the indicator valuation. In the OW
problem, there are two indicator valuations la-
beled 11, and t2. t1's domain is {T,R}, and
t2's domain is {D, O}.tr represents the con-
straint ttrat seismic test result is not available if
the oil wildcatter decides not to do the seismic
test. 12 represents the constaint that the amount
of oil is only revealed if the oil wildcatter de-
cides to drill.

Utility Valuations. Utility valuations
represent factors of the joint utility function and
are depicted by diamond-shaped nodes. The set
of variables directly connected to a utility val-
uation constihrtes the domain of tlre utility val-
uation. Depending on whether the utility func-
tion decomposes additively or multiplicatively,
the factors are additive or multiplicative (or
perhaps some combination of the two).In the
OW problern, there are trro additive utility val-
uations labeled o1, ond o2. o1's domain is
{T}, and o2's domain is {D, O}.tlr represents
the profit from the seismic test decision, and r'l2
represents the profit from the drill decision.

Probability Valuations. Probability
valuations represent multiplicative factors of the
family of joint probability distributions of the
chance variables in the problem, and are de-
picted by riangular nodes. The set of all vari-
ables directly connected to a probabitty valua-
tion constitutes the domain of the probability
valuation. In the OW problem, there are two
probability valuations labeled o, and p.o's
domain is {O}, and p's domain is {R, O}.
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Information Constraints. The specifi-
cation of the valuation network at the graphical
level includes directed arcs between pairs of
distinct variables. These directed arcs represent
information constraints. Suppose R is a chance
variable and suppose D is a decision variable.
An arc R+D means that the tn:e value of R is
known to the decision maker (DM) at the time
the DM has to choose an alternative from D's
frame, and, conversely, an arc from D+R
means that ttre tnre value of R is not known to
the DM at the time the DM has to choose an al-
ternative from D's frame.

3.2. Dependence Level

Next, we specify valuation network represen-
tation at the dependence level. Like the graphi-
cal level, the dependence level involves only
qualitative (or symbolic) knowledge.

Frames. Associated with each variable X
is afranu tlfy. We assume that all variables
have finite frames. In the OW problem, llf1=
{t, -tl, where r denotes do seismic test, and -,
denotes not do seismic test; 'l,f p = {ns, os, cs)
nr), where zs denotes no structure, os denotes
open structure, cs denotes closed structure, and
zr denotes no result; tlf D = {d, -dI, where d
denotes drill, and -d denotes not drill; Ulo =
{dr, we, so, ukl where dr denotes dry, we de-
notes wet, so denotes soaking, and uk denotes
unknown.

Configurations. We often deal with non-
empty subsets of variables in $. Given a non-
empty subset h of S, let '1116 denote the
Cartesian product of 'ltfl for X in h, i.e., '[lf 6
= x{'llIxlXeh}. We can think of 11.f5 as the
set of possible values of the joint variable h.
Accordingly, we call \)Iyrtheframefor h.
Also, we refer to elements of tlll6 as configu-
rations of h.We use this terminology even
when h consists of a single variable, say X.
Thus we refer to elements of 'lrx as configura-
tions of X.

Indicator Valuations. Suppose s is a
subset of variables. An in^dicator valuationfor s
is a function t:'lJI, + {0, 1}. The values of
indicator valuations represent probabilities. The
only values assumed by an indicator valuation
are 0 and l, hence the term indicator valuation.
An efficient way of representing an indicator
valuation is simply to describe the elements of
the frame that have value 1, i.e., we represent 1

by O. where C), = {xe lllrlt(x) = l}.

,q cUr.To minimize jargon, we
indicator valuation for s.
problem, we have two indicator

also call an
In the

valuations-r1 (or Qr,) with domain {T,R},
and 12 (or Cl r) with domain {D, O}. These in-
dicator valuations are specified as follows:

Q., = {(t, ns), (t, os), (r, cs), (-t, nr)l;
and

Qrr= {(d, dr), (d, we), (d, so), (-d, uk)\.

11 reprosents the constraint that the seismic test
result is not available only if the oil wildcatter

decides not to do the seismic test. And t2 repre-
sents the constraint that the amount of oil re-
mains unknown if the oil wildcatter decides to
not drill.

Projection of Configurations.
Projection of configrrations simply means
dropping extra coordinates; 7f (t, ns, d, dr) is a
configuration of {T, R, D, O}, for example,
then the projection of (r, ns, d, dr) to {T, R} is
simply (t, ns), which is a configuration of {T,
R).

Ifg and h are sets ofvariables, hcg, and

x is a configuration of g, then let xJh denote
the projection of x to h.

Marginalization of Indicator
Valuations. Suppose C)," is an indicator val-

uation for a, and suppose b E a. The marginal-

ization of C)r" to b, denoted by S)."Ib, is an in-
dicator valuation for b given by

C),"Jb {x e 'tlf 6 I (x, y) e C)r" for some

ye 'llfa-u ).
To illustrate this definition, consider the

indicator valuation C),, for {T, R} in the OW

problem. The marginal of Cd, for {T} is given
by the indicator valuation

gl.rJ, - lt, -tl.
Combination of Indicator

Valuations. Suppose Cl 
" 

is an indicator val-

uation for a, and suppose C),. is an indicator

valuation for b. The combination of Cd" and

C)ro, denoted by Cd"@C!,', is an indicator val-

uation for aub given by Ctr"@Cdo =
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{ x e 'Ur .16 I xJu e Q." and x}u e C).0 1 .

To illustrate this definition, consider the

trvo indicator valuations fI, and Cl,, in the OW

problem. The combination Cd,8(d, is an indi-
cator valuation for {T, R, D, O} given as fol-
lows:

OrrEOr2 = {(r, ns, d, dr), (t, ns, d, we),
(t, ns, d, so), (t, ns, -d, uk), (t, os, d,
dr), (t,os, d,we), (t, os, d, so), (r,
os, -d, uk), (t, cs, d, dr), (t, cs, d,
we), (t, cs, d, so), (t, cs, -d, uk), (-t,
nr, d, dr), (-t, nr, d,we), (-t, nr, d,
so), (-t, nr, -d, uk)\.

Effective Frames. Suppose {Q,,, ...,

Qr) ir the set of indicator valuations in a given

problem such that Cd, is an indicator valuation
io. ,i, j = 1, ..., p. dithout loss of generality,

assume that s1tr...usp = $. (If a variable, say
X, is not included in the domain of some indi-
cator valuation, include the vacuous indicator
valuation Clr for {X}, i.e., Qr = 'lllx.)
Suppose s is a subset of variables. The effec-

tive frame for s, denoted by Or, is given by

Q, = {8{Or* lslns *Ofs.
ln words, the effective frame for s is defined in
two steps as follows. First we combine indica-
tor valuations whose domains include a vari-
able in s. Second, we marginalize the resulting
combination to eliminate variables not in s.

To illustrate this definition, consider the in-
dicator valuations C)r, for {T, R}, and Cd, for
{D, O}.Then, for example, the effective frame

for {R, O} is given by C)1n, o} =
(Q",eqr1J'{R, o} =
{(ns, dr), (ns, we), (ns, sa), (ns, uk),
(os, dr), (os, we), (os, so), (os,uk),
(cs, dr), (cs , we), (cs, so), (cs, uk),
(nr, dr\, (nr, we), (nr, so), (nr, uk)\.
Notice that the definitions of combination

and marginalization of indicator valuations sat-
isfy the ttree axioms needed for local computa-
tion [Shenoy and Shafer 1990]. Thus, we can
compute effective frames using local computa-
tion. Thus, e.9., to compute the effective frame

for {R, O}, by definition, O1x, o} =

(Q,,(Ef,&.r)I{R, O}. However, if we use local

computation, we can compute Q1x,o) =
Ctr,J*OCl rlo. Notice that the combination in

(CI",OQ,,1J{R, o} is on the frame of {T, R, D,

O) whereas the combination in C{,J*@C)rrJo
is only on the frame of {R, O}.

As we will see shortly, all the numeric in-
formation in probability and utility valuations
are specified on effective frarnes only. Thus,
the definitions of marginalization and combina-
tion of indicator valuations allow us to compute
effective frames using local computation.

3.3 Numeric Level

Finally, we specrfy a valuation network at the
numeric level. At this level, we specify the de-
tails of the utility and probability valuations.

Utility Valuations. Suppose ug$. A
utility valuation u for u is a function
o: C)u + R, where R is the set of real numbers.
The values of u are utilities. If u is a utility val-
uation for u, we say u is the dornain of o.

In the OW problem, there are two utility
valuations o1 for {T}, and u2 for {D, O}.
Table III shows the details of these utility val-
uations.

Probability Valuations. Suppose

p g $. A probability valuation rc for p is a

function r: Qn+ [0, 1]. The values of n are

probabilities. If rc is a valuation for p, then we

say p is the domain of n.
In the OW problem, there are two probabil-

ity valuations, o for {O}, and p for {O, R}.o
represents the conditional probability for O
given that the values of O are not ruled out by
stnrctural constraints, and p represents the
conditional probability of R given O and the
fact that the values of R are not ruled out by
stnrctural constraints. Table fV shows the de-
tails of these probability valuations.

We have now completely defined a valua-
tion network representation of a decision prob-
lem. In summary, a valuation network repre-
sentation of a decision problem A consists of
decision variables, chance variables, indicator
valuations, probability valuations, utility valua-
tions, and information constraints, A =
{$o, $R, -{tl, ..., lp}, {lJ1,...,0*}, {pt,
"', Po), +)'
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Q{p, o} 02

d
d
d

dr
we

SO

-70,000
50,000

200,000

-d uk 0

Clr 01

t
-t

-10,000
0

Table ltr. Utility valuations in the OW
problem.

Fusion with respect to a decision variable D
is defined as follows. All utility valuations that
include D in their domain are combined to-
gether, and the resulting utility valuation o is
marginalized such that D is eliminated from its
domain. A new indicator valuation (pfor h cor-
responding to the decision function for D is
created. The utility valuations that do not in-
clude D in their domain remain unchanged. All
probability valuations that include D in their
domain are combined together and the resulting
probability valuation p is combined with (p
and the result is marginalized so that D is elimi-
nated from its domain. The probability valua-
tions that do not include D in their domains re-
main unchanged.

Fusion with respect to a chance variable C
is defined as follows. The utility valuations
whose domains do not include C, and the
probability valuations whose domains do not
include C, remain unchanged. A new probabil-
ity valuation, say p, is created by combining all
probability valuations whose domain include C
and marginalizingC out of the combination.
Finally, we combine all probability valuations
whose domains include C, divide the resulting
probability valuation by the new probability
valuation that was created, combine the result-
ing probability valuation with the utility valua-
tions whose domains include C, and finally
marginalize the resulting utility valuation such
that C is eliminated from is domain.

The details of the fusion algorithm are
given in [Shenoy 1993b]. Figure 3 depicts the
fusion algorithm graphically for the OW prob-
lem.

5. Summary and Conclusion

The main contribution of this paper is a gen-
eralization of the valuation network technique
for representing and solving asymmeric deci-
sion problems. The structural asymmetry in a
decision problem is represented by indicator
valuations. An indicator valuation is a special
type of a probability valuation. Indicator valua-
tions allow us to reduce the domain of proba-
bility valuations. This conributes to the effi-
ciency of the solution technique. Also, indica-
tor valuations are used to define effective
frames. An effective frame is a subset of a
frame. All computations are done on effective
frames, and this contributes also to the effi-
ciency of the solution technique.

Table fV. Probability valuations in the OW
problem.

C)1g, R) p

dr ns
dr os
dr cs

.600

.300

.100
we ns

we os
we cs

.300

.400

.300

so ns
so os
so cs

.100

.400

.500
uk ns
uk os
uk cs

.333

.333

.333
dr nr 1

we nr 1

so f7r 1

uk nr 1

4. A Fusion Algorithm
In this section, we sketch a fusion algorithm
for solving valuation network representations
of decision problems.

The fusion algorithm is essentially the same
as in the symmetric case [Shenoy 1992].The
main difference is in how indicator valuations
are handled. Indicator valuations are treated as
probability valuations. However since indicator
valuations are identically one on effective
frames, there are no computations involved in
combining indicator valuations. This con-
tributes to the efficiency of the solution tech-
nique.Indicator valuations do contribute do-
main information and cannot be totally ignored.

cb o
dr
we
so

500
300
200

uk I
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Figure 3. The fusion algorithm for the OW problem.
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In [Shenoy 1993b], we compare the
ilsymmetric valuation network reprcsentation
and solution technique with the symmetric val-
uation network technique described in [Shenoy
19921, and with the influence diagram-based
technique of Smith et al.ll993l. We note that
of all proposed techniques, our technique is the
only one that can solve the OV/ problem using
local computation.
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