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Abstract

The tetrad represeutatiou theorem, due to Spirtes, Glymour, and Scheines (1993), gives a
graphical condition necessary and sufficient for the vanishing ofan individual tettad difference
iu a linea,r structural equation model. In this paper, we generalize their result from individual
tetrad differences to sets of tetrad differences of a certain form, and we simplify their proof.
The generalization allows tighter constraints to be placed on the set of linear models compatible
with given data and thereby facilitates the search for parsimonious models for la^rge data sets.

1 Introduction

A.linear stru,ctural mod,el for a set of variables I/ consists of a set of linear equations, one for each
nariable X; € V. The liaear equation for Xi elpresses X; as a linea,r combination of certain of the
other nariables and an errot term E;. Associated with the model is a directed graph, in whictr there
is an edge from X; to Xl if and only if X; appears in the equation fot Xi. The model is said to be
recurshte if the directed graph is acydic (has no directed cycles), or equivalently, if the variables
can be ordered so that each nariable Xi in the equation for Xi satisfi.es i < i. Such models are
widely studied in the social sciences (.o,.".9., Bollen 1989).

Recursive linear structural models involving only measured variables generally permit some
of the error terms to be correlated (Kang and Seneta 1980). This means that the exogmous
rirariables (the variables with no parents in the graph) are correlated. If we allow latent (unmeasr:red)
va,riables, however, we can always enlarge the model by introducing latent coynrron parents for any
na,riables with corrdated errors, so as to arrive at a model in whic.h all emor terms are uncorrelated.
This paper is concerned with models of this type.

A, tetrud d,ifierence in a linear structural model is a qua,ntity of the form

p(x,Y)p(Z,w) - p(X, Z)p(Y,W),

where p(X,Y) dmotes the correlation betweea X and Y (Spea,rman 1928). The tetrad represen-
tation theorem, due to Spirtes, Glymour, aad Scheines (1993), gives a condition on the directed
acydic graph that is necessary and sufrcient for such a difference to nanish structurally - i.e., for
any rralues of the coefficients in the linear equations. This condition is concerned with "common
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causes of {X, IIr} and {Y, Z\ - variables that are ancestors of either X or W and are also ancestors
of either Y ot Z. The conditionis that either (1) there exists avariable [r such that any directed
path from a corlmon cause of {X,W} r,nd {y, Z} to X or W must go through [/, or else (2) there
exists a nariable U such that any directed path from such a common cause to Y or Z must go
through U. Suctr a nariable [r is called a choke point. The theorem depmds on the assumptions
mentioned above: the model is rectrrsive, and the errors and hence the exogenous variables are
uncorrdated.

In this paper, we generalize the tretrad representation theorem from individual tetrad differences
to sets of tetrad diferences of a certain form, and we greatly 5imFlify its proof.

For the sake of mathematical claritn we begin, in Section 2, by studying ctroke points from a
purely graph-theoretical point of view. In Section 3, we take a step from the graph theory towards
the statistical interpretation that motivates us by studying polynomials formed from symbols at-
tached to the edges and exogenous nodes in a directed acyclic graph. Then, in Section 4, we obtrin
the tetrad representation theorem a,nd our generalization of it by interpreting the symbols attached
to edges as regression coemcients and the symbols attached to exogenous nariables as variances.

In Section 5, we very briefly discuss the enterprise of model search to which the tetrad represen-
tation theorem has been applied by Spirtes, Glymor:r, and Scheines (L993). It is beyond the scope
ofthis paper to review this application in detail or to explore how it can exploit our generalization.
The mathematical clarification provided by this paper should, however, provide an r::rderpinning
for more effective model searctr algorithrns.

For a full account of these ideas, with proofs, see Shafer, Kogan, and Spirtes (1993).

2 Treks and Choke Points in a Directed Acyclic Graph

We assume that the reader is fa,miliar with the most basic definitions of graph theory. We assum.e

that we a,re working with finite directed graphs. We call a node eaogenous if it has no parents,
end,ogenous if it does have parents, and banen if it has no ehildren . A path is a sequence of nodes
connected by edges. 'We allow a seguence consisting og s single node to qualify as a path. If the
first node in a path is f, and the last is J, then we say that the path is a path fu* I to J. If it is
a path from f to "I or a path from "I to .[, then we say that it is a path between I and, J.

A path 1 X1X2 . . . Xx > is directed if either (1) the edge between Xi and X;+r has its arrow
pointing to &+r, for i =L,2,...,k-L (in this case, we say that the path is dtirccted,from X1 to
Xp), or else (2) the edge between X;-r and X; has its arrow pointing to X;-r, for i = 2,3,...,k
(in this case, we say that the path is dirzcted,Irom X* to X1, even though it is a path from X1 to
x*).

A path in which the first and last nodes are equal is called a cgcle. A directed graph in whidr
there a.re no directed paths that are cycles (no cycles following the arrows) is acyclic; it is a d,irected

ocyclic gruph. We henceforth assu.m.e that the directed graph with which we are working is a
directed acyclic graph gqnfaining at least one node.

A node on a path (or more precisely, an occrurence of a node on a path) is a collider on the
path tf (1) it has two neighbors in the sequence (it is not at the begi:raing or the entl), and (2) it
has arrows directed to it from both these neighbors.

A. trck between I and./ is a path between .I and ./ that does not contain any colliders. Since
there cannot be any a.rrows pointing towards each other in a trek, there are only a few possibilities
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for how the directions of the a,rrows can change as we move along the trek. First of all, there mightnot be any arrows at all; if r and ..r are identi".l, th"r, < I >,the path consistirg of r alone, qualifiesas a trek between r and J. second, all the arrows might go from r to J. tiira, all the arrowsmight go from J to r. Fourth, the arrows might shangie lir""tioo once, at a third node e. The lastthree possibilities are shown in Figure 1. (TL tretJsnown in this figuxe are simple, though thisis not required by the definition. It should be noted that spirtes, Gf:mour, and sctreiaes (1993),from whom we borrow the na,me (trek', 
do require that a trek be simple.)

o\
/

\J

J part I
\I part

Here Q is the source.

J

Here I is the source, and
the I side consists of I by
itself.

\

/

\
I

Here J is the source, and
the J side consists of J by
itself.

I

Figure 1: Three types of treks.

Every trek has a unique node to which no :urows are directed; this is called its sourre. rf thetrek is a path directed from r, then -t is its source. rf it is composed of a pair of paths directedfrom Q, thea Q is its source. If it consists of a single node .I, then f is its source.
Everytrekbetween-tand./alsohasan r sid,eanda J sid,e. The.Isideisthesubpathdirected

from the source to -I; the "I side is the subpath directed from the so,rce to .r. The two sid.es mayhave edges in common.

Consider two sets of nodes, I and J. We say that a trek is a trck betweenl andJ if it is a trekbetween some elemmt .I of r and some elemmt J of J. rf x is a node in such a trek r, then we saythat X is ontheT sid'e of r rfX isinr's.[side, and we saythat X is onthe J sid,e of rtfx is inr's "I side' rf x is the source of r, then it is on both the i side and the J side. rf r is simple, itssource is the only node that is on both sides. Notice also that if one or both of r and J are emptythen there are no tr&s between them.
The definitions in the precerling paragraph apply even if the sets r and J overlap. If they d.ooverlap, then a trek consisting of a sLgle node that is in their intersection qualifies as a trek betweenthem' A trek between two distinct nodes that are both in both r and J is also a trek between rand J' but when we spea'k oJit as such, we must arbitrarily specify one side as the r side a,nd theother as the J side' The definitions even apply in the 

""r" 
.h"r" r and J, as sets, are identical. rnthis case, we still thinlr ef r and J as two airiio"t labels, and we still label one of the sides of thetrek as the I side and the other as the J side.

We say that a node X is a cholce point betweenl ondJ if two conditions a,re met:
1' every trek betwem r and J (if there are any) goes through x, and

478



2. either (.) X is on the I side ofevery such trek, or (b) X is on the J side ofevery such trek.

If condition 2a is satisfied, then we say that X is an l-side choke point. If condition 2b is satisfied,
then we say that X is a J-side choke point. If condition 1is satisfied (whether or not condition 2
is satisfied), then we say that X is aweob choke pointbetweenl and, J. Figr:res 2 and 3 illustrate
these definitions.
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Figure 2: In both these graphs, X is a choke point between {-[,I2] and {Jr,Jz}, on the {h,Jz}
side.

I Jr I Jr

2

I 2 2

Fignre 3: There a,re no choke points between {It,Iz} and {fi, Jr!. h either of these graphs, though
there is a weak choke point in both cases: X on the Ieft and 12 on the right. On the left, X is not
on the {h,Izl,. side of < I1XJ2 ), and not on the {.I1,./2} side of < I2XJ1). On the right,.I2 is

not on the {.I1,.I2} side of 1I1I2J2 ), and not on the {.I1,./2} side of <-12J1).

In the case where I and J each contain exactly two nodes, our definition of c.hoke point is

essentially equinalent to the definition given by Spirtes, Glymour, and S&eines (1993, p. 196). It
is siynpler than their definition, however, aad this simplification is basic to the contributions of this
paper.

The next lemma cla,rifies the structure of the choke points between two sets I and. J.

Lernma 2.L Let C designate the set of uealc choke points betweenT and, J. Then eaery trek frcm.
I to J goes thrcugh the nodes in C in the same ord,er.

I

JJ2
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Lemma 2.1 tells us in partiorlar that any trek betwem I and J goes through all the &oke points
in the sa,me order. So if there are &oke points between I and J, we qan falk about the one nearest
I and the one nearest J. $irnil6alS if there a,re I-side choke points, then we san fallr about the
I-side choke point nearest the sources of the treks between I and J; this is the same choke point for
all such treks. The source of a trek from I to J always lies between the last l-side choke point and
before the first J-side ctroke point, except that in some cases it may be equal to one or the other
or both.

The next lemma will help us prove Theorem 2.3, which explains what happens when a choke
point does not exist.

Lemma 2.2 Consid,er sets Ir,Iz,,...,Ik. Suppse thot for eoch i, L < i < k, there is at least one
chohe point between Ii ond J . Let Ci designate the set consisting of all the choke points between li
and, J. Set C = UI=r Ci ond I = UL, Ii. Then the follouing staternents holil.

1. Eaery bek ftom flllr li to J (if there orc any) goes thrcugh all the nodes in C and does so

in the same ord,er.

2. Suppose therc d,oes ecist a hzb frcrn flLr Ir to J. (This rneons, in particul,or, that 1!!, f1 ;s
non-empty.) Then the node in C nearcst J is a choke poi,nt betweenl and J.

I1 lz J1 J2

Figrrre 4: There cannot be a choke point between {h,Iz} and {fi, J2}, because the {I1, -I2} side of
rr is disjoint from r, and the {h, Jz} side of r is disjoint from rr.

It is evidmt from the definition of c.hoke point that there is no &oke point between I and J
if there are two non-intersecting treks between I and J, or even if there are two treks between I
and J that intersect only on the I side of the first and the J side of the second, as in Figr:re 4.
The following theorem tells us that the cotrverse is true as well: if there is no &oke point, then
there erist treks r aod. r such that the I side of r does not intersect r and the J side of r does aot
intersect r, though possibly the J side of r and the I side of r may intersect one or more times.

Theorerr 2.3 If there is no choke point futweenl and,I, then therc ecist heks r and, r betweenT
and J such that the I side of r is disjoint frpm , and the J side of r is ilisjoint fiprn r.

Ln summa.rS there is no choke point betwem I and J if and only if there erist treks zr and r
such that the I side of zr does not intersect r and the J side of r does not intersect r.

Coroltrar5r 2.4 Therc is a chohe point betweenl and, J if and, only if therc i,s o choke point between

{h,Iz} ond, {fi,J2} wheneaer {I1,Iz} e I and {h,Jz!. g J.
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3 Correlation and Corrariance Structures

In this section we study polynomials formed from symbols attactred to the edges and exogenous

variables of a directed acyclic graph. Anticipating the statistical interpretation in the next section,
we call the structures obtained. by attaching these symbols to the directed acyclic graph conelotion
and coaoriance stntctutes.

A conzlation stntctute is a directed acyclic graph in which we have attached distinct symbols
to the edges. We are interested in polynomials formed by multiplying the symbols along treks and
then adding the products.

Given a trek zr in a correlation structure, we write xn for the product of the edge slm.bols along
the trek, and we call *r the ed,ge prcd,uct o?)er r. If :r consists of a single node, then by convention,
*r is equal to 1. Given any two nodes -I and ..I, we set

*(1, J)= !{*zrlr e o(1, J)},

where o(1, J) is the set of u1l sirnple treks &om I to J . We call x(f , J) the simple trek sum betueen
I and,..I. Notice that since < -f > is the only simple trek between f and itself, *(f,.I) is equal to 1.

By convention, *(f, "I) is equal to 0 if there are no simple treks (i.e., no treks at all) between

-I and ./. The converse is also true, of course. Though mathematically trivial, this observation is
suftcimtly significant for the application considered in the next section that we call it a theorem:

Theorern 3.1 If I and J are nodes in a comelation strttcture, then the follouing stotements are
equiaalent:

1. ,*(1,/) = O.

2. There is no hzk between I and J.

3. Therc is no nod,e X such that there edsts a ilirected, path fum X to I ond. o dirccted, path

frcm X to J.

Given a trek n and a node X, we write f;(r) for the difference between the nr:-mber of arrows
on n that come into X and the number that go out of X. It is easily seen that if the endpoints of
r a,re distinct, then

#x(o) =

1, X is an mdpoint and not the source,
0, X is neither the source nor endpoint,

-1, X is both the source and an endpoint,

-2, X is the source and not an endpoint.

Given two treks, r and z, we write #x(o,z) for the sum #x(o) + #x(").
The following lemm.a will help us understand the significance of individual terms in the product

of two simple trek sums.

Lemma 3.2 Supposethefourenilpointsof thetrehsr andr areilistinct. ThenffyQr,r)i"negotiue
if and, only if X is the soarlr,e of one (or both) of r and r.
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This lemma is usefirl when we are given a product ,*7c * T but do not have the treks r aad. r
themselves. All we cr?, see by looking at *r*r is the edges involved, with their multiplicities (some
edges may be in both treks or on both sides of one of the treks). But from this information, we
can calculate #x(rrr) for every node X, and hence we cau identify the sources involved in the two
treks.

The following theorem is analogous to Theorem 3.1, inasmuch as it shows how a fact about the
graph can be represented by a fact about a polpromial in the edge symbols.

Theorem 3.3 If lrrfzrJt, ond, J2 are distinct nodes in o convlation stntcture, then the follouing
statements orc equhtolent.

1. Therc is o choke point between {h,I2l and {h,Jz}.
2. The polgmomial *,(I1,.!) x(12,J2) is equolto the polynomial*(11,J2),*(12,J1).

We now develop an analogue of Theorem 3.3 for the case where we assnme that each endogenous
node is the only ctrild of at least one exogenous parent, we attach symbols to the exogenous nodes
as well as to all the edges, and. in the place ef sirnple treks, we consider treks that have simple sides

and have exogenous nodes as sources.

A coaariance stnrctutr- is a directed acyclic graph in which each endogenolur node is the only
child of at least one exogenorur parent, and we have attached distinct symbols to eac.h eEogenous
node as well as to each edge.

We call a trek an ultmtrck if its source is exogenous. Given an ultratrek a between .I and /,
we write X(o) for the first node starti.g from f (or, equivalently, the first node starti.g from J)
where a's f a''d ./ sides intersect. We call X(a) the base of. a. We write I a for the subtre& that
follows a from f to X(a) and thm directly to J, and we write I c for the trek that follows a from
X(o) to the source and then bac& to X(o). (See Figure 5.) Notice that J a is a simple trek from
I to J , in fact it is a's only sirnfle subtrek from .I to ./. On the other hand, J a is an ultratrek.

Given an ultratrek in a covariance structure, we write Qr for the product of all the symbols
along the ultratrek (the edge symbols together with the symbol attached to the source, whi& is
exogmous), and we call 0r t},re sgmbol prod,uct ooer tr. If zr consists of a singls node, its source,
then 0r is simply the symbol attached to the source. Given any two nodes -I and J, we set

0(r, /) = !10"1" e u(I,J\\,

where u(I,J) is the set of all ultratreks from I to J. We call 0(/,/) tbie ulbzhrk sum between

I and, /. By convention, the ultratrek sr:m is equal to 0 if there are no ultratreks (i.e., no treks)
betwem f and J. If I is erogenous, then < I > is the r:aique ultratrek between f and .I, and hence

0(I,I) is the symbol attached to f.

Theorem 3.4 If lrrfz,J1, ond J2 ane distinct nodes in a couartance stntcture, then the following
staternents arc equioalent.

1. Therc is a choke point between {\,12} and {\,J2l1.

2. Thepolynomiol0(Ir,/r)0(Iz,Jz) is equoltothe polynomial0(Ir,./z)0(Iz,Jt).
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Figure 5: J a = o1o,4and t a = d2ds.

4 Application to Statistical Inference

Let us now interpret correlation structures by taking the nodes to represent real-valued ra,ndom
variables, with a joint probability distribution in which each va,riable has zero partial correlations,
given its parents, with its non-descendants (Pearl 1988). This implies in particular that the exoge-

nous rrariables are all uacorrelated with eactr other. We interpret the symbols on the edges pointing
into an endogenous variable as the regression coefficients in the linear regression of that variable
on its parents, as in Figure 6.

We interpret covariance structures in a sirnilar way: we take the nodes to represent real-nalued
random variables, such that the exogenous nariables irre uncorrelated, the symbols on the exogenous

variables represent their varianc€s, and each endogenous variable is a linear combination of its
parents, with the symbols on the edges representing the coefficients.

Since the errors in the regression equations for the endogenous variables in a correlation structure
have zero correlations with each other and with the exogenous variables in the structure (this follows
from the assumption that each variable has zero partial correlations with all its non-descendants
given its parmts), we can expand the correlation structure to a covariance structr:re by adding to
eac}' eadogenous variable a parent representing the error in its regression equation, as in Figure 7.

Notice that when we add the error, we put a new symbol on it, representing its nariance, and
also a symbol on the new edge. The symbol on the edge replaces the unit coeff.cient for the error
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X+=bo#r+E+

b41tr4

b
b6a Xs=brfl, +Es

& = beX++ hrKs + Eo

Figure 6: The graph on the left is a correlation structure associated with the recursive linear
regression equations on the right.

in the regression equation, so that the regression equation becomes the equation representing the
endogenous na,riable as a linear combination of its parents in the covaria,nce structure.

E
&=qfi+bz& +brE

&

c
3

&
5

2
4

+

E + bs5Es

Figure 7: The conariance structure corresponding to the correlation structr:re of Figure 6.

Let us write p(f, "I) and Cov(.[,..I), respectively, for the correlation and conariance of any pair
of random variables f and "I. The following theorem, which is easily ptoven by induction on the
ntrmber of variables in the directed acyclic Braph, shows the substantive significance of the trek
surns.

Theorern 4.1

1. Il eaery aariable in a conelation stru,cturc has oariance one, then p(IrJ) = x(-I1 J) for euery
pair of aariables I and, J in the stntcture.

2. Cov(I,J) = Q(f, J) lor eaery pair of aariables I anil J in a cooariance structure.

x^

&

boh

brJt

X6=bu&+ hs& +booQ
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Statement 1 is a special case of Sewall Wright's (1934) rule for decomposing correlation by path
aaalysis. 'lVright's rule reduces to this statement when the errors in the path model are r:ncorrelated.

We are interested in constraints on correlations or covaria,nces that are equivalent to the van-
ishing of polynomials in the symbols in a covaria,nce structure. Exa,mples include the constraint
that a particular correlation, say p(I,J), should equal zero, which is equinalent to

0(/, -r; = g, (1)

or the constraint that a particular "tetrad difference", say

p(11, J1)p(12, Jz) - p(11, J2)p(12, J),

should vanish, which is equivalent to

0(4,&)0(Iz,Jz) - 0(/r, Jz)O(Iz,/r) = 0. (2)

We call such a constraint on correlations stnrcturul if the polynomial is identically equal to zero

- i.e., if the constraint holds for every possible choice of the exogenous variances and endogenous
coefrcients. We call it accidentol otherwise - i.e., if it holds only for particular variances and
coeff.cients. It is reasonable to call such constraints accidental, for they would not be erpected
if the variances and correlations were themselves chosen at random from some continuous joint
probability distribution. If we specify a finite class of such constraints (e.g., all possible vanishing
correlations, partial correlations, and tetrad diferences for a set of nariables) before ssarnining a
body of data extensive enough to test them, then it will be reasonable for us to conjecture that
those constraints that do hold are structural, and this will give us information about the correlation
structure.

The next theorem, the tetrad representation theorem, is an important tool in this prograrn
of statistical inference. The ideas involved in this theorem go back to Spearman (1928), but the
theorem was formulated and proven only recently, by Spirtes, Glymor:r, and Scheines (1993).

Theorern 4.2 Suppose f1,f2rJ1, and, J2 are distinct aariables. Then

p(\., J1)p(12, Jz) - p(11, J2)p(12, Jr) = 0

is a stntctuml constraint if ond, only if there is a choke point betueen {It,I2|. and {h, Jz}.

This theorem follows irnmediately from Theorems 3.4 and 4.1.

Corolla,ry 2.4 yields the following generalization of the tetrad representation theorem.

Theorern 4.3 Suppose I ond J orc disjoint set of uari,ables in a conelation stntcturc. Then

p(\, J1)p(12, Jz) - p(11, J2)p(12, /r) = 0

is o stnrctuml constraint for eoery subset {17,12} of I and, euery subset {Jr, J2} of J if and only if
therc is a choke point betweenl and J.
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5 Conclusion

The assumption that given tetrad. differences arnong measured nariables are structurally zero will
obviously impose constraints on a structural model that includes those nariables. Eow can these
constraints be exploited in sea,rching for or constructing suc"b. models?

A:rswers to this question were first explored by Spearman and by Kelley (1928), who used
vanishing tetrad and pentad differences to search for psychological models of intelligence. Their
strategy can be generalized. in the following way:

1. Perform a statistical test that eactr tetrad difference is equal to zero, a,nd form the set of
tetrad differences that pass the test. (Wishart (1928) described a statistical test for nanishing
tetrad diferences drawn from a joint normal distribution, and Bollen (1990) has described an
aslmptotically distribution free test.)

2. Idmtify for an initial model the set of tetrad differences that are equal to zero for all nalues
of the linear coefrcients and all positive values of the nariances.

3. Modify the model so that the set of tetrad differences entailed to vanish is closen (relative to
a suitable metric) to the set of tetrad differences that pass the test. (Several methods for this
step have been described by Spirtes, Glymour, and Scheines (1993) and Spirtes, Scheines,
and Glymour (1990).)

In a variety of simulation tests reported in the preceding references, variations of this strategy
(implemmted in the TETRAD II progra,m) have been shown to be reliable for large (z = 2000)
s.rnples from Gaussian models.

The results of this paper are used in Step 2. The evaluation of their usefulness will depmd,
therefore, on an eventual overall assessment of the three-step strategy. We erqpect that the strategy
will be most successfirl when it is extmded so as to use additional constraints and other sources of
evidence in addition to nanishing tetrad difermces.
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