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Abstract

The tetrad representation theorem, due to Spirtes, Glymour, and Scheines (1993), gives a
graphical condition necessary and sufficient for the vanishing of an individual tetrad difference
in a linear structural equation model. In this paper, we generalize their result from individual
tetrad differences to sets of tetrad differences of a certain form, and we simplify their proof.
The generalization allows tighter constraints to be placed on the set of linear models compatible
with given data and thereby facilitates the search for parsimonious models for large data sets.

1 Introduction

A linear structural model for a set of variables V' consists of a set of linear equations, one for each
variable X; € V. The linear equation for X; expresses X; as a linear combination of certain of the
other variables and an error term F;. Associated with the model is a directed graph, in which there
is an edge from X; to X; if and only if X; appears in the equation for X;. The model is said to be
recursive if the directed graph is acyclic (has no directed cycles), or equivalently, if the variables
can be ordered so that each variable X; in the equation for X; satisfies ¢ < j. Such models are
widely studied in the social sciences (see, e.g., Bollen 1989).

Recursive linear structural models involving only measured variables generally permit some
of the error terms to be correlated (Kang and Seneta 1980). This means that the exogenous
variables (the variables with no parents in the graph) are correlated. If we allow latent (unmeasured)
variables, however, we can always enlarge the model by introducing latent common parents for any
variables with correlated errors, so as to arrive at a model in which all error terms are uncorrelated.
This paper is concerned with models of this type.

A tetrad difference in a linear structural model is a quantity of the form
P(X,Y)p(Z,W) - p(X, Z)p(Y, W),

where p(X,Y’) denotes the correlation between X and Y (Spearman 1928). The tetrad represen-
tation theorem, due to Spirtes, Glymour, and Scheines (1993), gives a condition on the directed
acyclic graph that is necessary and sufficient for such a difference to vanish structurally — i.e., for
any values of the coefficients in the linear equations. This condition is concerned with “common
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causes of {X, W} and {Y, Z}” - variables that are ancestors of either X or W and are also ancestors
of either Y or Z. The condition is that either (1) there exists a variable U such that any directed
path from a common cause of {X, W} and {Y, Z} to X or W must go through U, or else (2) there
exists a variable U such that any directed path from such a common cause to Y or Z must go
through U. Such a variable U is called a choke point. The theorem depends on the assumptions
mentioned above: the model is recursive, and the errors and hence the exogenous variables are
uncorrelated.

In this paper, we generalize the tretrad representation theorem from individual tetrad differences
to sets of tetrad differences of a certain form, and we greatly simplify its proof.

For the sake of mathematical clarity, we begin, in Section 2, by studying choke points from a
purely graph-theoretical point of view. In Section 3, we take a step from the graph theory towards
the statistical interpretation that motivates us by studying polynomials formed from symbols at-
tached to the edges and exogenous nodes in a directed acyclic graph. Then, in Section 4, we obtain
the tetrad representation theorem and our generalization of it by interpreting the symbols attached
to edges as regression coefficients and the symbols attached to exogenous variables as variances.

In Section 5, we very briefly discuss the enterprise of model search to which the tetrad represen-
tation theorem has been applied by Spirtes, Glymour, and Scheines (1993). It is beyond the scope
of this paper to review this application in detail or to explore how it can exploit our generalization.
The mathematical clarification provided by this paper should, however, provide an underpinning
for more effective model search algorithms.

For a full account of these ideas, with proofs, see Shafer, Kogan, and Spirtes (1993).

2 Treks and Choke Points in a Directed Acyclic Graph

We assume that the reader is familiar with the most basic definitions of graph theory. We assume
that we are working with finite directed graphs. We call a node ezogenous if it has no parents,
endogenous if it does have parents, and barren if it has no children. A path is a sequence of nodes
connected by edges. We allow a sequence consisting of a single node to qualify as a path. If the
first node in a path is I, and the last is J, then we say that the path is a path from I to J. If it is
a path from I to J or a path from J to I, then we say that it is a path between I and J.

A path < X;X,... X} > is directed if either (1) the edge between X; and X;;; has its arrow
pointing to X;4q, for ¢ = 1,2,...,k — 1 (in this case, we say that the path is directed from X; to
Xi), or else (2) the edge between X;_; and X; has its arrow pointing to X;_;, for ¢ = 2,3,...,k
(in this case, we say that the path is directed from X to X, even though it is a path from X; to
Xk).

A path in which the first and last nodes are equal is called a cycle. A directed graph in which
there are no directed paths that are cycles (no cycles following the arrows) is acyclic; it is a directed
acyclic graph. We henceforth assume that the directed graph with which we are working is a
directed acyclic graph containing at least one node.

A node on a path (or more precisely, an occurrence of a node on a path) is a collider on the
path if (1) it has two neighbors in the sequence (it is not at the beginning or the end), and (2) it
has arrows directed to it from both these neighbors.

A trek between I and J is a path between I and J that does not contain any colliders. Since
there cannot be any arrows pointing towards each other in a trek, there are only a few possibilities
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for how the directions of the arrows can change as we move along the trek. First of all, there might
not be any arrows at all; if 7 and J are identical, then < I >, the path consisting of I alone, qualifies
as a trek between I and J. Second, all the arrows might go from I to J. Third, all the arrows
might go from J to I. Fourth, the arrows might change direction once, at a third node Q. The last
three possibilities are shown in Figure 1. (The treks shown in this figure are simple, though this
is not required by the definition. It should be noted that Spirtes, Glymour, and Scheines (1993),
from whom we borrow the name “trek”, do require that a trek be simple.)

Q J part I J
I part j / \\

I

N
LTy Y
/ J J/ \I

Here I is the source, and Here J is the source, and
Here Q is the source. the I side consists of Iby  the J side consists of J by
itself. itself.

Figure 1: Three types of treks.

Every trek has a unique node to which no arrows are directed; this is called its source. If the
trek is a path directed from I , then I is its source. If it is composed of a pair of paths directed
from @, then Q is its source. If it consists of a single node I, then I is its source.

Every trek between I and J also has an I side and a J side. The I side is the subpath directed
from the source to I; the J side is the subpath directed from the source to J. The two sides may
have edges in common.

Consider two sets of nodes, I and J. We say that a trek is a trek between I and J if it is a trek
between some element I of I and some element J of J. If X is a node in such a trek 7, then we say
that X is on the I side of 7 if X is in 7’s T side, and we say that X is on the J side of if X is in
7’s J side. If X is the source of 7, then it is on both the I side and the J side. If 7 is simple, its
source is the only node that is on both sides. Notice also that if one or both of I and J are empty,
then there are no treks between them.

The definitions in the preceding paragraph apply even if the sets I and J overlap. If they do
overlap, then a trek consisting of a single node that is in their intersection qualifies as a trek between
them. A trek between two distinct nodes that are both in both I and J is also a trek between I
and J, but when we speak of it as such, we must arbitrarily specify one side as the I side and the
other as the J side. The definitions even apply in the case where I and J, as sets, are identical. In
this case, we still think of I and J as two distinct labels, and we still label one of the sides of the
trek as the I side and the other as the J side.

We say that a node X is a choke point between I and J if two conditions are met:

1. every trek between I and J (if there are any) goes through X, and
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2. either (a) X is on the I side of every such trek, or (b) X is on the J side of every such trek.

If condition 2a is satisfied, then we say that X is an I-side choke point. If condition 2b is satisfied,
then we say that X is a J-side choke point. If condition 1 is satisfied (whether or not condition 2
is satisfied), then we say that X is a weak choke point between I and J. Figures 2 and 3 illustrate
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Figure 2: In both these graphs, X is a choke point between {I;, >} and {Jq,J2} on the {J1,J2}
side.
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Figure 3: There are no choke points between {I;, I} and {J;, >} in either of these graphs, though
there is a weak choke point in both cases: X on the left and I, on the right. On the left, X is not
on the {I;, I} side of < [; X J, >, and not on the {J1, J,} side of < I,XJ; >. On the right, I, is
not on the {I, I,} side of < I;I,J; >, and not on the {J1, Jo} side of < I5J; >.

In the case where I and J each contain exactly two nodes, our definition of choke point is
essentially equivalent to the definition given by Spirtes, Glymour, and Scheines (1993, p. 196). It
is simpler than their definition, however, and this simplification is basic to the contributions of this

paper.
The next lemma clarifies the structure of the choke points between two sets I and J.

Lemma 2.1 Let C designate the set of weak choke points between I and J. Then every trek from
I to J goes through the nodes in C in the same order.
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Lemma 2.1 tells us in particular that any trek between I and J goes through all the choke points
in the same order. So if there are choke points between I and J, we can talk about the one nearest
I and the one nearest J. Similarly, if there are I-side choke points, then we can talk about the
I-side choke point nearest the sources of the treks between I and J; this is the same choke point for
all such treks. The source of a trek from I to J always lies between the last I-side choke point and
before the first J-side choke point, except that in some cases it may be equal to one or the other
or both.

The next lemma will help us prove Theorem 2.3, which explains what happens when a choke
point does not exist.

Lemma 2.2 Consider sets 1,15, ,...,Ix. Suppose that for each i, 1 < i < k, there is at least one
choke point between I; and J. Let C; designate the set consisting of all the choke points between I;
and J. Set C = JX; C; and I = UX, I;. Then the following statements hold.

1. Every trek from ng;l I; to J (if there are any) goes through all the nodes in C and does so
in the same order.

2. Suppose there does ezist a trek from (.1 I; to J. (This means, in particular, that ", I is
non-empty.) Then the node in C nearest J is a choke point between I and J.

Figure 4: There cannot be a choke point between {I;, I} and {J1, Jo}, because the {I;, I} side of
7 is disjoint from 7, and the {J;, J»} side of 7 is disjoint from =.

It is evident from the definition of choke point that there is no choke point between I and J
if there are two non-intersecting treks between I and J, or even if there are two treks between I
and J that intersect only on the I side of the first and the J side of the second, as in Figure 4.
The following theorem tells us that the converse is true as well: if there is no choke point, then
there exist treks = and 7 such that the I side of = does not intersect 7 and the J side of 7 does not
intersect 7, though possibly the J side of = and the I side of 7 may intersect one or more times.

Theorem 2.3 If there is no choke point between I and J, then there erist treks © and T between I
and J such that the I side of w is disjoint from T and the J side of T is disjoint from .

In summary, there is no choke point between I and J if and only if there exist treks = and 7
such that the I side of © does not intersect 7 and the J side of T does not intersect =.

Corollary 2.4 There is a choke point between I and J if and only if there is a choke point between
{h, L.} and {J1, ]2} whenever {I1,I;} CI and {J1,J2} CJ.
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3 Correlation and Covariance Structures

In this section we study polynomials formed from symbols attached to the edges and exogenous
variables of a directed acyclic graph. Anticipating the statistical interpretation in the next section,
we call the structures obtained by attaching these symbols to the directed acyclic graph correlation
and covariance structures.

A correlation structure is a directed acyclic graph in which we have attached distinct symbols
to the edges. We are interested in polynomials formed by multiplying the symbols along treks and
then adding the products.

Given a trek 7 in a correlation structure, we write 7 for the product of the edge symbols along
the trek, and we call *7 the edge product over =. If = consists of a single node, then by convention,
*7 is equal to 1. Given any two nodes I and J, we set

*(1,J) =D {sxlx € o(1,7)},

where o(I, J) is the set of all simple treks from I to J. We call x(I, J) the simple trek sum between
I and J. Notice that since < I > is the only simple trek between I and itself, (I, I) is equal to 1.

By convention, %(I,J) is equal to 0 if there are no simple treks (i.e., no treks at all) between
I and J. The converse is also true, of course. Though mathematically trivial, this observation is
sufficiently significant for the application considered in the next section that we call it a theorem:

Theorem 3.1 If I and J are nodes in a correlation structure, then the following statements are
equivalent:

1. #(I;J) =10,
2. There is no trek between I and J.

3. There is no node X such that there exists a directed path from X to I and a directed path
from X to J.

Given a trek = and a node X, we write # x(x) for the difference between the number of arrows
on 7 that come into X and the number that go out of X. It is easily seen that if the endpoints of
7 are distinct, then

1, X is an endpoint and not the source,
0, X is neither the source nor endpoint,
—1, X is both the source and an endpoint,
—2, X is the source and not an endpoint.

#x(r)=

Given two treks, = and 7, we write #x(m,7) for the sum #x(7) + #x(7).

The following lemma will help us understand the significance of individual terms in the product
of two simple trek sums.

Lemma 3.2 Suppose the four endpoints of the treks # and T are distinct. Then # x (7, T) is negative
if and only if X is the source of one (or both) of * and .
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This lemma is useful when we are given a product *« % 7 but do not have the treks = and 7
themselves. All we can see by looking at #m % 7 is the edges involved, with their multiplicities (some
edges may be in both treks or on both sides of one of the treks). But from this information, we

can calculate # x (7, 7) for every node X, and hence we can identify the sources involved in the two
treks.

The following theorem is analogous to Theorem 3.1, inasmuch as it shows how a fact about the
graph can be represented by a fact about a polynomial in the edge symbols.

Theorem 3.3 If I,1,,J1, and J, are distinct nodes in a correlation structure, then the following
statements are equivalent.

1. There is a choke point between {I,I,} and {J1,J2}.

2. The polynomial (I, J1) * (I3, J2) is equal to the polynomial x(I1, J2) * (I2, J1).

We now develop an analogue of Theorem 3.3 for the case where we assume that each endogenous
node is the only child of at least one exogenous parent, we attach symbols to the exogenous nodes
as well as to all the edges, and in the place of simple treks, we consider treks that have simple sides
and have exogenous nodes as sources.

A covariance structure is a directed acyclic graph in which each endogenous node is the only
child of at least one exogenous parent, and we have attached distinct symbols to each exogenous
node as well as to each edge.

We call a trek an ultratrek if its source is exogenous. Given an ultratrek a between I and J,
we write X (a) for the first node starting from I (or, equivalently, the first node starting from J)
where a’s I and J sides intersect. We call X (a) the base of a. We write | a for the subtrek that
follows a from I to X (a) and then directly to J, and we write T a for the trek that follows a from
X(a) to the source and then back to X (a). (See Figure 5.) Notice that | a is a simple trek from
I to J, in fact it is a’s only simple subtrek from I to J. On the other hand, T a is an ultratrek.

Given an ultratrek in a covariance structure, we write = for the product of all the symbols
along the ultratrek (the edge symbols together with the symbol attached to the source, which is
exogenous), and we call ¢x the symbol product over n. If = consists of a single node, its source,
then ¢ is simply the symbol attached to the source. Given any two nodes I and J, we set

O, J) = E{QWIW € v(I,7)},

where v(I,J) is the set of all ultratreks from I to J. We call {(I,J) the ultratrek sum between
I and J. By convention, the ultratrek sum is equal to 0 if there are no ultratreks (i.e., no treks)

between I and J. If I is exogenous, then < I > is the unique ultratrek between I and I, and hence
{O(I,1) is the symbol attached to I.

Theorem 3.4 If I1,1,,J;, and J, are distinct nodes in a covariance structure, then the following
statements are equivalent.

1. There is a choke point between {I1,I5} and {J1,J2}.
2. The polynomial {(I, J1)$ (12, J2) is equal to the polynomial (I, J2)O (12, J1).
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Figure 5: | a = aja4 and T a = azas.
4 Application to Statistical Inference

Let us now interpret correlation structures by taking the nodes to represent real-valued random
variables, with a joint probability distribution in which each variable has zero partial correlations,
given its parents, with its non-descendants (Pearl 1988). This implies in particular that the exoge-
nous variables are all uncorrelated with each other. We interpret the symbols on the edges pointing
into an endogenous variable as the regression coefficients in the linear regression of that variable
on its parents, as in Figure 6.

We interpret covariance structures in a similar way: we take the nodes to represent real-valued
random variables, such that the exogenous variables are uncorrelated, the symbols on the exogenous
variables represent their variances, and each endogenous variable is a linear combination of its
parents, with the symbols on the edges representing the coefficients.

Since the errors in the regression equations for the endogenous variables in a correlation structure
have zero correlations with each other and with the exogenous variables in the structure (this follows
from the assumption that each variable has zero partial correlations with all its non-descendants
given its parents), we can expand the correlation structure to a covariance structure by adding to
each endogenous variable a parent representing the error in its regression equation, as in Figure 7.
Notice that when we add the error, we put a new symbol on it, representing its variance, and
also a symbol on the new edge. The symbol on the edge replaces the unit coefficient for the error
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Figure 6: The graph on the left is a correlation structure associated with the recursive linear
regression equations on the right.

in the regression equation, so that the regression equation becomes the equation representing the
endogenous variable as a linear combination of its parents in the covariance structure.
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Figure 7: The covariance structure corresponding to the correlation structure of Figure 6.

Let us write p(I,J) and Cov(I,J), respectively, for the correlation and covariance of any pair
of random variables I and J. The following theorem, which is easily proven by induction on the

number of variables in the directed acyclic graph, shows the substantive significance of the trek
sums.

Theorem 4.1

1. If every variable in a correlation structure has variance one, then p(I,J) = x(I,J) for every
pair of variables I and J in the structure.

2. Cov(I,J) = O(1,J) for every pair of variables I and J in a covariance structure.
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Statement 1 is a special case of Sewall Wright’s (1934) rule for decomposing correlation by path
analysis. Wright’s rule reduces to this statement when the errors in the path model are uncorrelated.

We are interested in constraints on correlations or covariances that are equivalent to the van-
ishing of polynomials in the symbols in a covariance structure. Examples include the constraint
that a particular correlation, say p(I,J), should equal zero, which is equivalent to

0(I7J)=07 (1)

or the constraint that a particular “tetrad difference”, say

p(Ila Jl)p(I2’ JZ) = P(Il, Jz)P(Iz, Jl)a

should vanish, which is equivalent to

0(11,J1)<>(12,J2)— 0(11,J2)<>(12,J1) =0. (2)

We call such a constraint on correlations structural if the polynomial is identically equal to zero
— i.e., if the constraint holds for every possible choice of the exogenous variances and endogenous
coefficients. We call it accidental otherwise — i.e., if it holds only for particular variances and
coefficients. It is reasonable to call such constraints accidental, for they would not be expected
if the variances and correlations were themselves chosen at random from some continuous joint
probability distribution. If we specify a finite class of such constraints (e.g., all possible vanishing
correlations, partial correlations, and tetrad differences for a set of variables) before examining a
body of data extensive enough to test them, then it will be reasonable for us to conjecture that
those constraints that do hold are structural, and this will give us information about the correlation
structure.

The next theorem, the tetrad representation theorem, is an important tool in this program
of statistical inference. The ideas involved in this theorem go back to Spearman (1928), but the
theorem was formulated and proven only recently, by Spirtes, Glymour, and Scheines (1993).

Theorem 4.2 Suppose I1,1,,J;, and Jy are distinct variables. Then

p(I1, J1)p(I2, J2) — p(I1, J2)p(I2, J1) = O

1s a structural constraint if and only if there is a choke point between {Iy,I>} and {J1, J2}.

This theorem follows immediately from Theorems 3.4 and 4.1.

Corollary 2.4 yields the following generalization of the tetrad representation theorem.

Theorem 4.3 Suppose I and J are disjoint set of variables in a correlation structure. Then

p(I1, J1)p(I2, J2) — p(I1, J2)p(I2, J1) = O

is a structural constraint for every subset {I,, I} of I and every subset {J1,J2} of J if and only if
there is a choke point between I and J.
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5 Conclusion

The assumption that given tetrad differences among measured variables are structurally zero will
obviously impose constraints on a structural model that includes those variables. How can these
constraints be exploited in searching for or constructing such models?

Answers to this question were first explored by Spearman and by Kelley (1928), who used
vanishing tetrad and pentad differences to search for psychological models of intelligence. Their
strategy can be generalized in the following way:

1. Perform a statistical test that each tetrad difference is equal to zero, and form the set of
tetrad differences that pass the test. (Wishart (1928) described a statistical test for vanishing
tetrad differences drawn from a joint normal distribution, and Bollen (1990) has described an
asymptotically distribution free test.)

2. Identify for an initial model the set of tetrad differences that are equal to zero for all values
of the linear coefficients and all positive values of the variances.

3. Modify the model so that the set of tetrad differences entailed to vanish is closer (relative to
a suitable metric) to the set of tetrad differences that pass the test. (Several methods for this
step have been described by Spirtes, Glymour, and Scheines (1993) and Spirtes, Scheines,
and Glymour (1990).)

In a variety of simulation tests reported in the preceding references, variations of this strategy
(implemented in the TETRAD II program) have been shown to be reliable for large (n ~ 2000)
samples from Gaussian models.

The results of this paper are used in Step 2. The evaluation of their usefulness will depend,
therefore, on an eventual overall assessment of the three-step strategy. We expect that the strategy
will be most successful when it is extended so as to use additional constraints and other sources of
evidence in addition to vanishing tetrad differences.
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